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Abstract 
 
The formulation of large strains and displacement relations and equilibrium 

equations for evaluating nonlinear behavior of horizontally curved beams is presented. 
An examination is conducted to investigate the effects of approximations used in 
existing studies on curved beams. Justification of simplified approach is reviewed 
based on results from this study. Solution of equations is obtained by the development 
and use of a line element which incorporates the characteristics of displacement field 
and shape function of curved beams. The results from analysis are compared with 
those from three-dimensional finite element models of example beams and from test 
data. Beams with doubly and singly symmetric I-section, symmetric C-section and 
general cross sectional shape are examined. It is determined that analyses considering 
only small displacements and small rotations or large displacements and small 
rotations underestimate deflections and stresses. The effects of p-delta and cross 
sectional deformation on the load-displacement behavior and stresses of horizontally 
curved beams are investigated with the result that nonlinearity due to these effects is 
significant. An equation for maximum stress in curved beams is developed through a 
parametric study using the line element incorporating the effects of large 
displacements, large rotations and sectional deformations.  
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1. Introduction 
1.1 Background  

Current practice of designing horizontal curved beams is based on the concept 
of amplification. That is the application of a multiplication factor to stresses of straight 
beams provides adequate values for horizontally curved beams. This concept is 
derived from the correlation between flexural and shearing strengths in the plane of 
loading and out of plane, lateral tosional buckling of straight beams.  

However, there is a strong difference between the behavior of straight and 
curved beams. For straight beams, the in plane behavior and the out of plane buckling 
are considered independent in the theory of small displacement. For horizontally 
curved beams, the primary loading is perpendicular to the plane of curvature of the 
beam. The vertical or out of plane displacement starts at the onset of load application. 
The vertical displacement is coupled with a horizontal displacement and twisting of 
the beam, making the behavior of the beam nonlinear with respect to the applied load. 
Therefore the evaluation of displacement and stresses of horizontally curved beams 
should take into consideration of vertical displacement, horizontal displacement and 
twisting of the beam simultaneously. 

There have been numerous studies on the buckling and deflection of curved 
members. Some considered the in-plane and out of plane behavior of arches with the 
applied loads in the plane of the arch curvature. Some evaluated the out of plane 
nonlinear behavior of horizontally curved beams. All of these studies used various 
degrees of simplifying assumptions, rendering most of these studies as nonlinear 
analysis which incorporated large displacement in the derivation of governing 
differential equations. But none of these studies has been evaluated analytically for 
accuracy. 

 
1.2 Objective and Scope 

The objectives of this study are 1) to develop a procedure for examining the 
results of existing studies; 2) to formulate equations for calculating accurately the 
displacement and stresses of horizontally curved beams; and 3) to explore the 
development of an equation, or a set of equations for estimating maximum stresses in 
the beams for design purposes. To achieve these goals, the following steps were 
followed in the course of this research. 
 

(1) investigate the effects of simplifying assumptions used by previous studies. 
(2) derive equations for analyzing the effects of large displacement, of large 

rotation and of other possible factors such as cross sectional deformation and p-
delta effect. 

(3) examine the difference equations for beams with doubly symmetric, singly 
symmetric and unsymmetrical or general cross section. 

(4) develop a procedure for solving the derived differential equations for 
displacement and stresses 

(5) check the accuracy of the solution 
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(6) explore the procedure for developing an equation of maximum stresses in 
horizontally curved beams 

 
 
2. Brief Review of Previous Studies 
 
2.1 Background 
Previous studies on curved structural members can be categorized as buckling analyses, 
deflection analyses and strength analyses of arches and horizontally curved beams. 
Arches and horizontally curved beams are characterized by the loading condition. 
When loads are applied in the plane of curvature, a member is an arch, and 
horizontally curved beam can be subjected to any load transverse to the plane. Arches 
resist applied loads by longitudinal axial forces and in-plane bending moments. 
Horizontally curved beams resist external loads by torsion about the longitudinal axis 
and bending about the strong axis and the weak axis. In analysis, whether a member is 
horizontally curved beam or an arch, the fundamental principles leading to the 
governing differential equations are the same. The formulation of equilibrium has to 
handle both in plane and out of plane forces. However, since previous studies were 
mainly conducted either on arches or curved beams, these studies are reviewed 
presently in two different section; behavior of arches and behavior of horizontally 
curved beams. Even though previous studies have dealt with several subjects in the 
analysis, the work on specific aspects are extracted and reviewed for convenience. 
 
2.2 Studies on Behavior of Arches 
2.2.1 In-plane behavior of Arches 
Previous studies related to in-plane behavior of arches mostly concentrated on global  
buckling and large displacement behavior. Global buckling can be defined as when an 
arch moves from one equilibrium position to an adjacent equilibrium position without 
load change and cross-sectional deformation. The early stages of studies were done by 
Timoshenko and Gere (1961). They studied the instability of arches in bifurcation and 
snap-through buckling by formulations of equilibrium in-plane. Warping of the arch 
cross section was not considered. The bifurcation buckling associates with 
inextensibility of the centroidal axis under internal axial force whereas the snap-
through buckling is analyzed assuming extensibility of the centroidal axis. Since the 
effects of prebuckling displacement are not included in their studies, the results are 
approximate solutions.  

 
The nonlinear load and displacement behavior of deep circular arches was investigated 
by Huddleston (1968). Using a numerical analysis based on a standard predict-and-
correction method, the characteristics of bifurcation and snap-through buckling were 
investigated. Several parametric studies were conducted to examine the effects of 
height-to-span ratio and of the compressibility on the load and in-plane large 
displacement. 
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Austin (1971) studied extensively the buckling of symmetric, circular, two-hinged 
arches with concentrated vertical load at the crown. It was found that the critical axial 
thrust for a symmetrically loaded arch is rather insensitive to the type of loading and 
unsymmetrical loading produces instability at a much lower value of thrust than does 
symmetrical loading. In 1976, he extended his previous study of in-plane buckling to 
include the prebuckling effects.  Numerical analysis was conducted for an accurate 
solution of the “exact” theory in which moments were computed for the displaced 
configuration and displacement was computed from changes in curvature by a 
numerical technique considering large deflection. Comparison was made with the 
classical theory. The critical load was calculated in either a symmetrical buckling 
mode or an antisymmetrical buckling mode by both the “exact” method and the 
classical method. It was founded that the critical loads and the corresponding 
horizontal reactions for antisymmetrical modes are rather insensitive to the 
prebuckling displacements and the classical theory provides a practical way to estimate 
the buckling load for the symmetrical modes. 
 
DaDeppo and Schmidt (1974) studied the buckling behavior subsequent to large 
prebuckling deflection of hingeless circular arches subjected to a downward load at the 
crown as well as their own dead weight. Euler’s nonlinear theory of the inextensible 
curved elastica was used. Interaction curves of the critical values of the two loads were 
developed. It was founded that non-shallow hingeless arches buckle in-plane by either 
asymmetrical sideway or symmetrical snap-through, depending on the relative 
magnitudes of the point load and the weight of the arches. 
 
A study of the in-plane inelastic strength of steel arches was studied by Harrison 
(1970). He investigated analytically the ultimate strength of pin-ended parabolic steel 
arches of rectangular and circular cross section and considered the effects of the 
prebuckling deformation and the spread of yielding.  
Shinke et al. (1975) investigated analytically the effects of residual stresses and initial 
crookedness on the in-plane strengths of arch ribs. He concluded that the effects of 
initial crookedness are not important on the in-plane strengths.  
 
Pi and Trahair (1996) investigate the in-plane inelastic buckling and strength of 
circular steel I-section arches using a finite element method for nonlinear inelastic 
analysis. The elastic-plastic-strain-hardening character of steel was considered. The 
behavior of arches was analyzed by considering the effects of the arch curvature, large 
deformations, material inelasticity, initial crookedness, and residual stresses. Radial 
loads uniformly distributed along the arch axis, concentrated loads, and loads 
distributed along the horizontal projection of the arch were investigated. For the 
numerical method, the total Lagrangian formulation was used for nonlinear elastic 
large-deformation analysis. 
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2.2.2 Out-of-Plane Behavior of Arches 
The early pioneering work for buckling analysis of thin-walled curved members was 
done by Saint-Venant (1843). Since then, a number of others have contributed to the 
understanding of behavior of curved beam. Timoshenko and Gere (1961) investigated 
the behavior of arches and derived linear differential equation for in-plane and out-of -
plane buckling. In their analysis, warping effects was not considered.  
A more through analysis was given by Vlasov (1961). He derived linear differential 
equations for curved member with a thin-walled open cross section subjected to 
warping. From a unit length of the line of centriod, six equilibrium equations were 
developed. Three differential equations are for the axial force and the perpendicular 
forces in the directions of axis normal to the longitudinal direction. The other three 
equations are for the moment about axis normal to the longitudinal axis and the total 
tosional moment. The total torsional moment is composed of St. Venant torsion and 
the warping torsion. In order to drive a set of differential equations, Eq. 2.1, Vlasov 
used constitutive relationship of straight beam, Eq. 2.2. He replaced kinematic terms of 
a straight beams with those of curved beams. 
 

• Differential equation 
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 (The terms in the equation are defined later in Chapter3) 
 

• Constitutive relationship of a straight beam 
zz EF ε=                 2.2a 

xxx IEM κ=               2.2b 

yyy IEM κ−=         2.2c 
κκω ′+′′−= Tzz KGIEM        2.2d 

 
In comparison of the kinematic terms, corresponding strain and curvature terms are 
listed in Table 2.1. With the developed linear differential equation, Eq. 2.1, Vlasov 
derived buckling strength of curved member. 
 
Vacharajittiphan and Porpan (1975) derived differential equations for analyzing the 
flexural-torsional buckling of curved member by extending the methods established 
for straight members and plane frames. They presented numerical solutions obtained 
by a finite integral method.  
 



 6

In all the aforementioned studies on out-of-plane buckling of curved members, the 
equilibrium approach was used. By the equilibrium method, a equilibrium equation is 
derived with the curved member in a displaced position. Another approach for 
obtaining equilibrium equation is to use the method of minimum total potential energy. 
In the energy method, equilibrium equation is obtained by the calculus of variation of 
total potential energy.  
 
Yoo (1982) presented a set of stability equation derived by the energy approach in 
which the curvature terms of curved member were incorporated into the energy 
functional expressions. The closed form solutions of critical loads for some specific 
loading and boundary conditions were presented. Yoo compared his critical loads with 
those of Timoshenko and Vlasov. His results were different from Vlasov’s and 
Timoshenko’s in certain loading cases. Yoo suspected that the differential equation of 
Vlasov may have an error. The error may be attributed to the fact that Vlasov 
substituted the curvature terms of curved members (Table 2.1) into differential 
equation for stability of straight members. This contradiction triggered a lot of 
controversy and called attention to the study of curved members. 
 
Trahair and Papangelis (1987, 1987a, and 1987b) published a series of papers on 
flexural-torsonal buckling and experiment of buckling of curved members with doubly 
symmetric and mono-symmetric I-shaped cross section.  Nonlinear expressions for the 
axial and shear strains were derived from the consideration of displaced geometry. By 
using the second variation of total potential energy, the buckling equation was 
obtained. Closed-form solutions were derived for critical loads for arches in uniform 
bending and uniform compression. They compared their numerical results with the 
results of Vlasov (1964), Yoo (1982) and the experiment, and showed that the 
experimental results agreed better with their theory than with those by Yoo (1982) and 
Vlasov (1964). They concluded that the disagreement is caused by the substitution of 
curvature terms of curved members into the governing equation of straight members.  
 
Usami and Koh (1980) developed a large displacement theory in which the 
displacement components of an arbitrary point on a cross section was derived by 
integrating the nonlinear strain-displacement equation for thin-walled curved members 
expressed in the cylindrical coordinates. They derived the governing equation for 
lateral-torsional buckling of arches by using the derived strain-displacement relations 
through the Euler method in a variational principal.  
Another important contribution on the buckling analysis on the curved members was 
made by Yang and Kuo (1987). Nonlinear differential equation based on the principle 
of virtual displacements was derived. The effect of curvature was included on the 
sectional properties, stress resultants and radial stresses. They showed that each of 
these factors affects the critical loads significantly and concluded that for correct 
results, all the factors have to be included in the buckling analysis of curved members 
under general loading.  
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Later the concept of radial stress factor used by Yang was critiqued by Kang (1994). 
Kang pointed out that the radial stress has to vanish when the fundamental assumption 
is considered. The mathematical interpretation of the assumption that cross sections do 
not distorted is that the transverse strain and shear strain in the plane of a cross section 
equal to zero. The radial stress associated with transverse strain and shear strain 
therefore has to vanish. Also he doubted about using two shear forces, noting that 
Saint Venant shear stresses do not form shear forces.  
 
Pi and Trahair (1994) presented the effects of prebuckling in-plane displacement on 
the elastic buckling of mono-symmetric arches. Nonlinear displacement-strain 
relationship was derived by using position vectors. They studied the discrepancies 
among theoretical solution of Yoo (1984), Yang and Kuo (1986) and Rajasekaran and 
Padmanabhan (1989). They found out that an inconsistency in the treatments of the 
effects of the initial curvature and the using of different displacement transformations 
in deriving the displacement-strain relationship caused the discrepancies. The 
rotational transformation matrix [TR] has to satisfy the condition [TR]×[TR]T 
=[TR]T×[TR] = I and Det[TR] = 1.  
 
2.3 The Behavior of Horizontally Curved Beam 
Previous studies on the behavior of horizontally curved beams can be categorized as 
buckling analysis, amplification analysis and strength studies. Buckling analyses has 
been conducted to understand the buckling characteristic of small curvature curved 
beam through an eigenvalue analysis of the linear differential equations. Amplification 
analyses of horizontally curved beams have been conducted for studying nonlinear 
behavior of horizontally curved beam, either by the assumption of small deflection or 
large deflection. Strength studies have been made to investigate the relationship 
between the strength and curved beam parameters which includes the geometry of 
beam cross section, span length, boundary conditions and material properties. From 
parametric studies, simplified equations for estimating the strength have been derived 
for designing horizontally curved beams. 
 
2.3.1 Buckling Analyses of Horizontally Curved Beams 
When horizontally curved beams with small curvature are subjected to external forces 
out-of-plane of the curvature, out-of-plane displacement in the vertical direction and 
twist-rotation takes place (the in-plane displacement is not considered in many 
previous studies). This condition implies that bifurcation type of out-of-plane buckling 
can happen. 
  
Ojalvo (1968) presented differential equations and boundary conditions from which 
the small-deflection static instability analysis for arbitrary cross beam sections and 
loads can be accomplished. He considered two different stages of equilibrium, the 
reference stage and the departure stage. These stages can be interpreted as the un-
deformed stage and the pre-buckling stage under load. Because of the displacement 
from the reference stage due to loading, the equilibrium equations at the stage of 
departure become nonlinear. In order to solve the nonlinear equilibrium equations, 
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linearization is necessary. Linearization was accomplished by the assumption that in 
the departure or perturbation stage, the variation from the reference stage is small and 
the coupling terms associated with the variation are negligible. Similar linearization 
can be applied to the associated boundary condition, displacement-curvature relations 
and the constitutive equations which relate the internal stress resultants to deformation 
quantities. The equilibrium equations in the departure stage are expressed as 
 

( )
0=∆+∆+∆+∆−∆−

∆
xyzzyzyyz

x fkFFkkFFk
dz

Fd
   2.3a 

( )
0=∆+∆−∆−∆+∆+
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yxzzxzxxz

y fkFFkkFFk
dz
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∆
xyyzzyzyyz

x mfkMMkkMMk
dz
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( )
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dz
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( )
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dz
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Where kx, ky, kz are curvature about x, y and z axis. Fx, Fy and Fz are concentrated 
internal forces. Mx, My and Mz are internal moments. fx, fy and fz are distributed 
internal forces, and mx, my and mz are distributed internal moments. The terms with ∆ 
and ¯ are quantities representing the departure stage and the reference stage. For the 
constitutive relationship between stress resultants and displacement, Equation, Eq.2.4 
was used.  

 
( )xxx kIEM ∆=∆         2.4a 
( )yyy kIEM ∆=∆         2.4b 

( )zTz kKEM ∆=∆                2.4c 
 
The curvature terms in Equation 2.4 and the longitudinal strains were derived by the 
position vector and the assumption of inextensibility conditions.  The moment ∆Mz in 
Equation 2.4c represents the twisting moment about longitudinal direction. As seen in 
Eq. 2.4, only one sectional property, Saint-Venant constant KT was used; warping 
torsion was not included. For thin-walled-open-sections, torsional resistance is primly 
through warping torsional rigidity and has to be considered. This task was 
accomplished by McManus and Culver (1971). 
 
McManus and Culver derived second order differential equations for thin-walled open 
sections under normal stresses due to bending and torsion by using the method of 
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Ojalvo. In the formulation by McManus, constitutive relationship of force-
displacement was derived by replacing curvature terms of straight beam with 
corresponding curvature terms of curved beam, Table 2.1. For buckling analysis, the 
second order differential equations were linearized by ignoring higher-than first order 
terms under the assumption that the variation from the reference stage is small. In 
order to investigate the effect of the significant parameters on the critical loads, they 
conducted numerical analysis by using the finite difference method. They found that 
“the buckling loads determined for a curved beam loaded normal to the plane of 
curvature are essentially the same as those for a corresponding straight beam”. 
 
Kang and Yoo (1992) studied buckling behavior of horizontally curved beam and 
found that large variations of torsional rigidity have little effect on the buckling 
strength of horizontally curved beams loaded by vertical bending moment and that the 
subtended angle is the main parameter for buckling strength. From the parametric 
study accomplished by finite element analysis, a reduction factor was developed which 
reduces the buckling strengths for an equivalent straight beam to that of the curved 
beam.  
 
Pi and Trahair (1996) investigated the bifurcation buckling strength of horizontally 
curved beam. Using a strain-displacement relationship derived by position vector and 
the energy method, they derived nonlinear governing differential equations. Buckling 
load was obtained by solving nonlinear differential equation numerically. Among the 
numerical methods, finite element method was used.  They compared their result with 
that of Yoo et al and found that their buckling moments are lower than those obtained 
by Kang and Yoo (1992), particularly for curved beam with large substended angles.    
 
2.3.2 Amplification Analysis of Horizontally Curved Beam 
For any horizontally curved beam, the buckling load provides a reference but the 
analysis does not predict the behavior of curved beam. As soon as a load is applied to a 
curved beam, the beam undergoes out-of-plane displacement, rotation and associated 
in-plane displacement. Thus, bifurcation type of out-of-plane buckling does not 
happen. For a meaningful study on the strength of curved beam, amplification analysis 
characterized by load-deflection behavior is necessary. The amplification analysis of 
curved beams can be classified as small displacement-small rotation analysis, large 
displacement-small rotation analysis and large rotation-large displacement analysis. 
 
A theoretical treatment on amplification analysis is traced back to Gottfeld (1932). He 
studied two beams supported by cross bracings and subjected to loads transverse to the 
plane of curvature on both beams. Umanskii (1948) investigated a curved beam with a 
doubly symmetrical I-shaped cross section with a more complete analysis which 
included the bi-moment in the I-beam which was supported by point-type bearings and 
was subjected to a load perpendicular to the plane of curvature. 
 
Early big contribution on the amplification analysis of curved beams was made by 
Dabrowski (1968). He studied the bending and non-uniform torsion of continuous 
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curved beams of thin-walled, singly symmetric, open cross section. He derived the 
fundamental equations for the non-uniform torsion of curved box girders with non-
deformable asymmetric cross section. He also derived closed-form solution to the first 
order linear differential equations for curved beam of thin-walled, non-deformable, 
doubly and mono symmetric open cross-section, with different loads perpendicular to 
the plane of curvature and “basic boundary condition”. The bi-moment and deflection 
of beams were derived by linear differential equations. Because his studies on load-
deflection behavior were based on linear differential equations in which the out-of-
plane displacement is not coupled with the in-plane of displacement, lateral 
displacement was not generated by the vertical loads. 
 All the studies done by Gottfeld (1932), Umanskii (1948) and Dabrowski (1969) were 
based on the assumption of small displacement and small rotation. 
  
With the assumption of large displacements and small rotations, McManus (1971) 
derived linearlized differential equation for curved beam by superimposing two 
differential equations representing the reference stage and the departure state. Using 
the “basic boundary system”, McManus investigated the amplification behavior of 
horizontally curved beams under flexural bending and bi-moment loads. He interpreted 
restraint provided by lateral bracing in bridge system as a bi-moment loading to a 
beam. With various combination of vertical bending moment and bi-moment and 
different curvature of beams, several numerical case studies were conducted by using 
the finite difference method. He compared his results with those of Dabrowski and 
showed that the lateral deflection and lateral bending moment occurred immediately 
upon loading of a curved beam and grew nonlinearly and quite rapidly as the 
magnitude of load increased. He also showed that the flange stresses caused by bi-
moment were higher than those computed by linear analysis. To take into account the 
results that the angle of twist and the bi-moment increased nonlinearly as the applied 
end moment was increased, he developed an amplification factor.  
  

*

2**

1
4.086.01

M
MMAmp

−
+−

=         2.5 

Where:  
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L
M 2

2 ωππ         2.6b 

 
This amplification factor can be applied to the bi-moment at the mid-span and at the 
end sections, Mω, and to the lateral bending moment, My2. 
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The notations in the Eq. 2.8 are shown in Figures 2.1 and 2.2. The subscript 1 and 2 in 
Eq. 2.8b indicate the quantities at the reference stage and the departure stage. Equation 
2.8b is the simplified equation derived by using the direction cosine. The fundamental 
assumption and its application will be presented in next section for strength analysis.  
A series of extensive investigations on the behavior of horizontally curved beam 
considering large rotations and large displacements was made by Fukumoto and 
Nishida (1981). They derived second-order equilibrium equations for curved beams 
based on the nonlinear strains derived by adopting assumption for classical thin-walled 
open section. By using a transfer matrix, they presented the nonlinear elastic loads and 
deflection of a curved beam with the basic boundary condition and under a point load 
and constant moment. Six welded, curved I-beams were tested under point loading to 
investigate the load and deflection behavior and the ultimate load. The ratio of span 
length to radius, L/R, was a parameter of study. They compared their test results and 
the results of their large-displacement analysis. The agreement was quite good. The 
interesting phenomenon of their analytical result is the lateral deflection. As the lateral 
deflection at the mid-span increased with load and became large, the direction of 
lateral displacement was reversed. This phenomenon has been used for checking the 
outcome of many subsequent finite element analyses by others.  It is noted that in the 
formulation by Fukumoto and Nishida, the effects of curvature on the sectional 
properties, e.g. R/(R-x) were not included and only doubly symmetric cross section 
was considered.  
 
Gendy (1992) conducted a study for developing equation based on one reference line 
for curved beams. He developed a finite element formulation for non-symmetric cross 
sections based on generalized strains. Rotation about the radial axis and the vertical 
axis were treated independently with vertical and lateral displacement. His numerical 
results were compared with those generated from strains used by Yoo (1980) for 
doubly symmetric cross sections. In order to use the strains of doubly symmetric cross 
sections for non-symmetric cross sections, transformation was needed: from two-
reference lines to one-reference line. He used rigid boy rotation for transformation, 
which is not generally applicable. Furthermore, even though single reference line 
formulation is derived based on the generalized strain, transformations for radial and 
vertical displacements are still needed.  
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With the assumption of large displacement and small rotation, Kang and Yoo (1994) 
developed equilibrium differential equations using the nonlinear strains that were 
developed from similar procedure by Usami and Roh (1980). In the formulation of 
finite line element to solve the equations and to investigate the large deflection 
behavior of horizontally curved beams, Kang and Yoo used the theory of Total 
Lagrange. In order to simplify the complexity of nonlinear strains associated with large 
rotations, conventionally only the first term of Taylor’s expansion of trigonometric 
functions is used. On the other hand, they used the first and second term to improve 
accuracy of their differential equation.  
 
Another important contribution to the static analysis of horizontally curved beams was 
made by Pi and Trahair (1996). They investigated the second-order coupling between 
the vertical and horizontal deflection and twist rotation in the nonlinear range of 
behavior of doubly symmetric cross section. By using a finite line element formulation 
base on the nonlinear strains developed from the position vector, they studied the 
linear and nonlinear elastic equilibrium of horizontally curved I-beam under vertical 
loading. They found that when the curvature of a curved beam is small and the beam is 
nearly straight, the primary coupling is small and bending is the major action. If the 
curvature of curved beam is not small, torsion is a major component of deflection. The 
nonlinear behavior develops very early and no flexural torsional buckling behaviors 
occur.  
 
Most of the previous amplification analyses were on doubly symmetric cross sections. 
In the cases of large displacement and rotation analysis, consideration of singly or 
general cross section were very rare. Because of the complexity of the nonlinear 
differential equations, simplification was always made for solution. However little 
study on the effect of simplification on the behavior of horizontally curved beam was 
conducted. Nor was the contribution of sectional deformation or P-∆ effect on load-
deflection behavior included in any of these previous studies.   
 
2.3.3. Flexural Strength of Horizontally Curved Beam 
No guideline or equation for design of curved beam is based on the ultimate carrying 
capacity of these beams. Buckling and limiting stresses are the references. The current 
AASHTO Guide Specifications provide equation for computing the flexural stress of 
horizontally curved beams with rectangular flanges and a vertical or inclined web 
attached at mid-width of the top flange. The span length is between lateral bracing 
points. For design load, factored constant moment and bi-moment at the end sections 
are considered. The equations for curved beams are modified from that for an 
equivalent straight beam by using the reduction factors. Two reduction factors, wbρρ  
and ,wbρρ are specified for compact and non-compact cross sections. 
 
For a Compact section: 

wbbscr FF ρρ=            2.9 
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Where:  
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Fbs is ultimate bending stress of a curved beam compression flange 
Fcr is maximum average stress in curved flange 
ρb is curved beam reduction factor to account for bending 
ρw is curved beam reduction factor to account for warping 
L = distance between brace points 
R= radius of curvature 
fl = total factored lateral flange bending stress 
fb = factored average flange stress 

 
For a non-compact section: 

wbbscr FF ρρ=          2.13 
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when: 0≥
b

l

f
f

, 21 www or ρρρ = , whichever is smaller 

when: 0≤
b

l

f
f

, 1ww ρρ =  

 
These flexural design criteria are based on the analytical work of McManus (1971) 
who developed an amplification model based on small rotation and large displacement. 
He conducted a parametric study for the relationship between sectional properties and 
flange stress with warping moment increased by amplification factors. In the 
derivation of the reduction factors, secondary moment (lateral bending moment) was 
considered. Lateral bending moment generated by the coupling effect was calculated 
by the simplified Equation 2.8b. The un-simplified or complete form of Equation 2.8b 
is Equation 2.15. 
 

12122 zxy MvMM += β        2.15 
Where v2 and β2 are displacement and rotation calculated from the departure stage, 
Figure 2.2. The symbols v1 and β1 in Eq. 2.8b are displacement and rotation obtained 
from the reference stage. With this approximation, the coupling between in-plane 
displacement and out-of-displacement is eliminated.  This approximation is valid 
within small rotation and small displacement. 
 
An interaction formula for allowable stress design of horizontally curved I-beams was 
proposed by the Hanshin Expressway Public Corporation of Japan (1988). 
 

0.1
1

≤+
uasa

b

F
f

F
f ω

ψ
                   2.16 

 
Where Fsaψ1 is the allowable lateral torsional buckling stress, Fua is the allowable 
upper limit flexural stress and fb and fw are bending and warping stress. This equation 
represents interaction between the warping stress and lateral buckling strength of the 
beam which is reduced by the curvature effect. The specification is derived from the 
theoretical and experimental study of Nakai et al (1988).  
 
Fukumoto and Nishida (1985) presented an approximate strength equation based on 
the second order deflection of the compression flange. The equation takes into 
consideration the plastic moment capacity, the elastic buckling moment of equivalent 
straight and the elastic buckling load with respect to weak axis of the curved beam. 
 
Yoo and Davidson (1996) proposed an interaction equation based on the static analysis 
of I-shape beams under vertical end-moments. This equation can be used for singly 
symmetric composite and non-composite I-shape in both the positive and negative 
region of beam bending moment. For compact sections, complete plasification is the 
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limit and for non-compact section, first yielding at mid-span or end-section is the 
reference. 
 
 As a summary of the review on previous studies, it is determined that although a 
number of buckling analyses related to in-plane and out-of-plane behavior of curved 
members have been conducted, investigation considering large rotation and large 
displacement of horizontally curved beams is needed. The treatment of the nonlinear 
terms in the strains is inconsistent, and no numerical study on this effect has been done. 
For horizontally curved beams with moderate curvature, the behavior is not governed 
by the buckling phenomenon but by the relatively large out of plane and lateral 
deflection or the flange stresses. An adequate procedure for calculating flange stresses 
associated with large displacement, large rotation and cross sectional deformation is 
needed.  
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Table 2.1 the longitudinal strain and curvature of straight and curved beams 
 εz кx кy кz 

Straight Beam w′  v ′′−  u ′′  β ′  

Curved Beam 
R
uw −′  

R
v β

+′′−  2R
uu +′′  

R
v′

−′− β  
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Figure2.1. the curved beam subjected with constant moment and bi-moment with 

basic boundary condition system. 
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Figure 2.2 the deflection of the beam in x, y and z direction and twist rotation 
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3. Strain and displacement relationship 
 
3.1 Introduction 
In the previous chapter, literature on the analysis of a curved member was reviewed. 
Many studies on the behavior of horizontally curved beams dealt with the buckling 
strength. Since horizontally curved beams subjecting to vertical loads sustain vertical, 
horizontal and rotation of beam cross sections, the behavior is three dimensional and 
nonlinear even in the elastic range of material properties. As soon as an external force 
is applied to a curved beam, all displacements take place. Bifurcation type of buckling 
does not happen. Therefore it is necessary to study the behavior of horizontally curved 
beams based on an analysis considering large displacement and rotation. This task can 
be started with developing the relationship between strains and displacements of the 
beams. Because of the coupling between displacement and twist (rotation of cross 
sections), complex nonlinear strain-displacement relation is inevitable. The 
development of a strain and displacement relationship for the spatial behavior of a 
horizontally curved beam with an arbitrary prismatic cross section is accomplished by 
conducting the following two stages.  
 

a) The development of the kinematics and strain-displacement relationship which 
include fourth order terms of displacement and strains. In this stage, no 
approximation is attempted. 

 
b) The simplification of the complex fourth-order strain equation based on 

different levels of approximation. 
 
3.2 Strains and Displacement 
3.2.1 Assumptions 

In order to derive a strain-displacement relationship, several assumptions are adopted 
in the present study, and are listed below. 
 

1. The shear strains due to change of normal stresses (flexural and warping normal 
stresses) are negligibly small. 

2. The displacements are finite. 
3. The thin-walled cross section retains its original shape (cross sectional 

deformation is treated in Chapter 4) 
4. The span length of beam is much larger than any cross sectional dimension. 
5. Shear strains in planes normal to the middle surface of the thin wall can be 

neglected. 
 

The longitudinal displacement of the reference line of the beam cross section can be 
derived by the assumption 5. The displacement at any point on the beam cross section 
can be expressed in terms of the reference line displacement and rigid cross sectional 
rotation and warping, based on the assumption that the cross section retains its shape. 
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3.2.2 Longitudinal and Shear Strains 
A cross section of a curved beam is shown in Fig 3.1. The general strain-displacement 
relations, in curvilinear coordinate system, are given by the following equations [73]. 
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Where u, v and w are the displacement in the horizontal, vertical and longitudinal 
direction of an arbitrary point (x, y, z) of the cross section; εx, εy, εz are normal strains; 
εxy, εzx and εzy are the shear strains and R is the radus of curvature of the beam. 
From the assumption that span length is much larger than any cross sectional 
dimension, it is implied that the displacement of u and v are much large than w and 
nonlinear terms associated with derivation of longitudinal displacement can be ignored.  
Thus, Eq. 3.1 can be expressed as the following equation. 
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Based on the assumption that the cross section retains its original shape, the strains εx, 
εy and εxy are zero.  
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The solution of differential Eq. 3.2g and Eq. 3.2h leads to the following lateral and 
vertical displacement equations.  

 
( ) ( )( )ββ cos1sin −−−−−= sss xxyyuu      3.3a 

 
( ) ( )( )ββ cos1sin −−−−+= sss yyxxvv        3.3b 

 
where xs and ys are centroid distances of the shear center, us and vs are the horizontal 
and vertical displacement of shear center and β is the angle of rotation about z-axis as 
defined in Figure 3.1. 
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The shear strains on surfaces parallel to the middle surface of the cross section, εzs, and 
the shear strain on the planes normal to the middle surface, εzn, in a curvilinear 
coordinate system can be related to the shear strains εzx and εzy, by the following 
formulas. 
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where s is contour ordinate along the middle surface of thin-wall shown in 
Figure 3.1 and n is the axis normal to s 

 
The mathematical interpretation of the assumption that the shear strains due to change 
of normal stresses and shear strains in planes normal to the middle surface of thin wall 
are small and negligible is the following: 
 

0=zsε)                      3.5a 
0=znε           3.5b 

 where zsε) denotes the shear strain at middle surface of z-s plane. 
 
With Eq. 3.4 and Eq. 3.5, and Eq. 3.2, the longitudinal displacement can be solved and 
is expressed by the following equation:  
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Where w is the longitudinal displacement of an arbitrary point on the section. 
wc is the displacement of centroid. 
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∫=
s
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The terms ω and ρ are the normalized sectorial area and distance of contour tangent 
from the reference point. The normalized sectorial area satisfies the 
condition 0=∫A

dAω . In Equation 3.6a, two reference lines (shear center and centroid) 

are used. If only the centroidal axis is used as the reference line, all displacement 
components must refer to the centroid.  
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By substituting the above displacement field of Eqs. 3.3 and 3.6 into the non-zero 
strains in Eq. 3.1, the following equations for longitudinal and shear strain are obtained.  
 

ωωω ωγωγγγγγωγγγε yxxyyyxxyxz yxxyyxyx ++++++++= 22
0  3.7a 

 
nzs n γε 2=          3.7b 

 
Where:  

))cos1(sin~(0 R
x

R
ywa ss

c
ββγ −

−−′=  

( )

( )

( )( ) 

























−++

+′+′−′

+′+′+′

+

2

2

2

2

2

cos1sin

sincos

sincos~

2
1

R
xyu

yxv

xyu

a

sss

sss

sss

ββ

ββββ

ββββ

              3.8a 

 

( )ssx xu
R
a

R
a

+−= 2

2

γ  

( )

( )




























′′+

+
+

′′
+

′
−

+





 ′′−′′−′′+−′′−

+
β

ββ

β

s
ssss

s
s

sss
s

s

v
R

xu
R
vuy

R
ua

vuv
R
y

R
ua

22

2
2 2~~

~1~

cos  

 















 ′−′′−+






 ′′−′′−′′−′′+ 2

2
2 ~~~)~(~sin s

s
sssss

s
ss u

R
yuavu

R
yvua ββββ  

 



















′−−′′+′′−+ 2

22

2
22 ~cos ββββ s

s
ss

s
s

s x
R
xv

R
yu

R
ya  

 























 ′′−′′−+ ββββ s

s
s u

R
yxa ~~sin 2

22  

 



 23





































′++′′

+′′−′′−′′−
+

2
2

2

2

2

~~~

cossin
ββ

ββββ
ββ

s
s

ss
ss

ss
s

ss
s

s

y
R
yv

R
yx

u
R
xu

R
yy

a    3.8b 

 
 

( ) ( )( )βββγ ′′−+′′+′′−=
~~~cos 2

sssy uauva  



















′′−

+
−

′
+






 +′′+′′+ s

sss
ss v

R
xu

R
ua

R
vua βββ 2

2
2

~1~sin  

( ) 





 ′−′′+′′−+ 22222 ~sin~cos ββββββ ss

s
s yu

R
xaya  







 ′++′′+′′−+ 2

2
2 ~~cossin ββββββ s

s
s

s
s x

R
xu

R
yxa    3.8c 

 

R
uaa sββγω

′′
−′′−=

~
2  















 ′−

′′
−+






 ′′

+
′′

−+ 2
2

2
~~

cos βββ
R
y

R
vua

R
u

R
va sssss  



















′−

′
+






 ′′

+
′′

+ 2
2

2
2

~~
sin βββ

R
x

R
ua

R
v

R
ua ssss  















 ′′+














 ′′−+ ββββ s

s
s

s u
R
xav

R
ya ~sincos 2

22
2

22  

( )ββββ ′′−′′+ ssss vxuy
R
a ~sincos 2

2

      3.8d 

 

2

2

2

2

cos
2 R

a
R
a

xx βγ −=   

       




















′++






 ′+

′
−+ 2

2

2

2

2
2 1~

2
cos ββ

R
v

R
y

R
ua

s
ss  

      















 ′−′−+

2

2

2
2 ~~

2
sin su

R
ysa ββ  















 ′+′−






 ′−′−+ s

s
ss

s v
R
yuu

R
y

R
a ~~~sincos 2

2

βββ     3.8f 

 



 24

( ) 







′++

′
+′= 2

22

22
22

2
2 1~

2
sin~

2
cos ββββγ

RR
uaa s

yy   

   






 ′′
−+

R
ua sβββ

~~
sincos 2               3.8e 

 















 ′−′−′+














 ′−′′= s

s
ss

s
sxy u

R
yu

R
av

R
yu

R
a ~~~sin~~cos 2

2
2

2
2 ββββγ  

  

















′−−′′+

′
−′′+′+ 2

232

2

2
22 1~~~~~sincos βββββ

R
vu

R
y

R
uu

R
ya ss

ss
s

s   3.8g 

 
 







 ′′+′′+






 ′′−′′= s

s
s

s
sx u

R
y

R
av

R
yu

R
a ~~sin~cos 2

2

2

2

βββββββγ ω  

           





 ′−′′−+






 ′−′′+ 2

22

2
22

3

2
2 ~~~sin~cos s

s
ss

s
ss u

R
yu

R
av

R
yuv

R
a βββ                    

 

















′′+

′
−′′+′′+ ss

ss
ss

s
s vu

R
y

R
uuv

R
yv

R
a ~~~~sincos 2

2

22

2

βββ    3.8h 

 

( ) ( )sy u
R
a

R
a ′′−+′′= ~sin~cos 2

22

βββββγ ω  

       ( ) ( ) 
















 ′′
−

′′
−+′+′′+ 23

22
3

2
2

2

2
2

~~~
sincos~sin~cos

R
u

R
uvau

R
av

R
a sss

ss
ββββββ   3.8i 

 







 ′

−
′

+′= βββγ sin
~

cos
R
u

R
va ss

n           3.8j 

Where  

 
xR

Ra
−

=         3.8k 

R
uww s

cc −′=′~          3.8L 

R
vs+= ββ~         3.8m 

n is direction coordinate which is normal to the middle surface and 
defined in Figure 3.1 

 
The strains in Equation 3.8 are too complicated to use. Various levels of simplification 
have been made in different studies based on the assumption that nonlinear terms 
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which are believed to have minor effects can be ignored. These approximations can be 
categorized as the following. 
  

a) The nonlinear terms divided by R2 and higher can be ignored. 
b) R / (R-x) can be approximated to be unity. 
c) All nonlinear terms divided by R can be ignored  
d) With the assumption of small rotation and displacement, trigonometric 

functions can be approximated by the first term of Taylor expansions  

e)  The inextensible conditions: 0≅−
∂
∂

R
u

z
w  or 0≅∂

∂
z

w , depending on 

interpretation of the inextensible condition. 
 
Although simplifications based on these approximations have been made, not much 
effort has been attempted to examine their effects on the behavior of load and 
deflection of horizontally curved beams because the complete strain and corresponding 
differential equation are too complicate. In order to examine the effects, the 
longitudinal and shear strain of Equation 3.7 are simplified based on each category of 
approximation above.     
 If approximation a) is adopted that the nonlinear terms divided by R2 can be ignored, 
the strains of Equation 3.8 can be simplified as listed in Table 3.1. It is to be noted that 
by adopting the approximation that the nonlinear term divided by R2 can be ignored, 

the difference on the interpretation of inextensible conditions; 0≅−
∂
∂

R
u

z
w  or 

0≅∂
∂

z
w  in Eq. 3.1c and 3.2c vanishes. Thus, approximation e) is at the same level as 

approximation a). Therefore no examination is needed on approximation e). The next 
approximation is on R/(R-x). There are two ways of treatment. One is that R/(R-x)is 
approximated as 1+x/R. The other one is that x/R is much smaller than 1 and R/(R-x) 
can be approximated as one. The former makes the differential equation of curved 
beams more complicated.  So, the latter, which is approximation b), is adopted. With 
that, the strain equations in Table 3.1 are simplified to those of Table 3.2. Another 
level of simplification can be made by using the approximation that nonlinear terms 
divided by R are small and can be ignored. The terms of strains in Table 3.2 are then 
further simplified and are shown in Table 3.3. Finally if the assumption of small 
rotation and small displacement is adopted, the strains may be further simplified. Table 
3.4 show the simplified terms of strains based on this approximation. The equations in 
Table 3.4 are of 4th order. If only 2nd order terms are considered, the equations are 
simplified as listed in Table 3.5. 
 
Equation 3.8 contains fourth order nonlinear differential terms for the longitudinal 
strain and shear strain of Equation 3.7. This set of equations is formulated with two 
reference lines, which are the centroidal axis and the axis of shear center. The 
derivation of longitudinal and shear strains based on one reference line (centroid) can 
be done by simply replacing the terms associated with xs and ys. Special care is needed 
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when the reference line is not on the cross section of the beam. This will be discussed 
in chapter 4. In the one-reference-line system, the differential equation for longitudinal 
and shear strains for both doubly symmetric and non-symmetric cross sections have 
identical terms except that the sectional properties are different. Table 3.6 shows the 
strains associated with the one reference line formulation, corresponding to those 
given in Eq. 3.8 for two reference lines. The simplification of the equations associated 
with one reference line formulation can be done with the same procedure adopted in 
the two reference line formulation. 
 
3.2.3 Comparison of longitudinal strains 
The simplification of longitudinal strains for doubly symmetric cross sections was 
done in all previous studies based on the interpretation of insignificant contribution of 
the nonlinear terms. Dabrowski (1968) derived the longitudinal and shear strains with 
the assumption of small rotations and small displacements. Fukumoto and Nishida 
(1981) derived the equation for longitudinal strains based on large rotation theory and 
incorporated no higher than second order terms. Kang and Yoo (1994) developed the 
equation for longitudinal strains by using first and second terms of Taylor’s expansion 
of trigonometric function. These equations and that of the current study are compared 
below. 
 
(1) Current Study  
The simplified equation for longitudinal (normal) strains in beams with a doubly 
symmetric cross section is shown as Equation 3.9. It is derived from longitudinal 
strains listed in Table 3.1 by considering the approximating level a) through e) on page 
39 and ignoring the third and fourth order terms.  
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(2) By Dabrowski (1968) 
 







 ′′

+′′−+





 +′′+′′−+






 −−′′−+′=

R
v

R
uvy

RR
uuxw s

s
s

sz βωβββε ~~~
22       3.10 

 
Equation 3.10 is developed with the basic assumption that beam cross sections can not 
deform and the shear strain at the middle surface of the thin-walled beam can be 
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ignored. The simplification was accomplished by a mixture of approximations a) 
through e). In comparison to Equation 3.9, it can be seen that terms with R2 in the 
denominator exists in Equation 3.10 while many other terms in Equation 3.9 are 
missing in Equation 3.10.  
 
(3) By Fukumoto (1981) 
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The equation for longitudinal and shear strains by Fukumoto are the basis for Japanese 
specifications for curved beams. Equation 3.11 is derived from last assumption in 
Section 3.2.1 and using approximation a) through c). All strain terms by Fukumoto are 
the same as those from the current study simplified by a) through c) except the terms 
related to warping: 
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If approximation d) is imposed on the Equation 3.11, it results in an equation almost 
identical to Equation 3.9 except the underlined term ( su ′′~β ) in Eq. 3.9 is missing. 
 
 (4) Kang (1994) 
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With the inclusion of the first and second terms of Taylor’s expansions in the 
derivation, Equation 3.13 contains more terms than Equation 3.9 of the current study. 
The effects of the approximations for simplifying the equations for complex and 
nonlinear longitudinal and shear strains are examined later in Chapter 6. 
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Table 3.1 Simplified Strain Terms by Neglecting Nonlinear Terms Divided by R2 
Approx-
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Figure 3.1 Coordinate System of Curved Beam 

 
 

C and S are centriod and shear center 
us, vs, ws are displacement of shear center in x, y, z direction  
uc, vc, wc are displacement of centroid in x, y, z direction 
β is rotation of the cross section about z axis 
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4. Formulation of Differential Equation for A Curved Beam 
 
4.1 Introduction 
In this chapter, a formulation of differential equation for the analysis of arbitrary thin-
walled spatial curved beams under general loading and boundary condition is derived 
by using the principle of minimum total potential energy. The formulation includes six 
modes of stretching, shearing, twisting and bending with non-uniform warping being 
an important mode of displacement. Flexural behavior of horizontally curved beams 
represented by large rotations and large displacements is modeled on the basis of 
incremental formulation for un-deformable cross-sections.  
For the singly-symmetric and non-symmetric cross sections, two reference lines (the 
axes of centroid and shear center) are needed in the conventional beam theory. Two-
reference-line system generates many disadvantages caused by the coupling associated 
with the distance between the two reference points. In order to overcome these 
difficulties, one-reference-line system is developed by transferring all displacements to 
one-reference point.  
For investigating the effects of sectional deformation of I-shaped cross sections, a 
formulation is derived based on the assumption that the flanges retain their original 
shape and the web can deform. The shape of web deformation depends on the external 
load. In-plane loading and out of plane loading generate different shape. In this study, 
only the shape of web deformation by out-of-plane loading is considered. The 
formulation of differential equation with sectional deformation starts with introducing 
a relative rotation between the flanges and the web. The additional strain terms 
associated with sectional deformation are derived from the relative rotation. For large 
rotation and displacement analysis, formulation is modified for incremental step 
analysis.  
Solving linear differential equation for arbitrary boundary conditions with specific 
loading is difficult. Dabrowski (1968) derived the exact solution for one specific 
boundary condition, which is defined here as the “basic boundary system”. With 
similar approach, exact solutions of linear differential equation are derived for a set of 
different boundary conditions including those of free-free and fixed-fixed against 
warping at the ends of a curved beam. 
 
 
4.2 Application of the Principle of Stationary Total Potential Energy to Curved 

Beams 
When an elastic system is subjected to conservative forces and is in equilibrium, the 
total potential energy of the system must be stationary.  The essence of using the 
principle of stationary total potential energy to solve problems of load and 
displacement is to calculate the total potential energy Π at different stages and to 
invoke stationary Π.  
In a linear elastic continuum with zero initial stresses, the total potential energy of the 
system is the following: 
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[ ] ∫∫∫ −−=Π
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2
1        4.1 

Where: ε  is strain vector 
T is transpose  
V is volume of curved beam  
[C] is material stiffness matrix; 
u  is displacement vector; 

Bf  is body force vector per unit volume; 
Sf  is surface area of beam 

fsu  is displacement vector of u corresponding to surface Sf 
fsf  is surface traction vector per unit surface area (Sf)  

 
The first term in Equation 4.1 for the total potential energy is the strain energy stored 
in the elastic body. The Second and third terms are the loss of potential energy of the 
system. 
The mathematical statement of the principle of stationary total potential energy can be 
expressed as 0=Πδ . By invoking the stationary total potential energy with respect to 
the displacements, the equilibrium equation can be obtained as the following equation; 
 

0=−−=Π ∫∫∫
f

f
T
f

S

ss

V

BT

V

T dSfudVfudVS δδεδδ       4.2 

For equilibrium Equation 4.2, it is assumed that constitutive law in Equation 4.3a, the 
strain-displacement relationship in Equation 4.3b and the displacement boundary 
conditions in Equation 4.3c are satisfied. 
 

[ ] εCS =     in Volume V            4.3a 
u∂=ε      in Volume V       4.3b 

0=− uu us  on the surface Su      4.3c 
  
Where Su is surface area of support, usu is displacement component corresponding to 
the surface Su, u is the prescribed displacement components and S is stress vector. 
Since in this study, the non-zero strains and stresses are εz, εzs and σz, σzs, the strain 
and stress vectors in Eq. 4.2 can be expressed by the following equations. 
 

{ }T
szz εεε ,=          4.3d 

{ }T
szzS σσ ,=          4.3e 

 
For the horizontally curved beam, only homogeneous material is considered. Thus, 
material matrix [C] is  
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In order to account for the effect of curvature of curved beam on the volume, the 
differential of volume, dV, is expressed in cylindrical coordinate as:  

 
dydddV ρϕρ=           4.4 

Where: ρ is R-x  
ϕ is enclosed angle defined in Figure 2.1 

 
In Cartesian coordinates, Equation 4.4 can be transformed to the following equation;  
 

dzdA
R

xRdzdydx
R

xRdV −
=

−
=         4.5 

 Where dA is the differential area of the beam cross section A 
 
It should be noted that integration of the term [(R-x)/R] dA causes new sectional 
properties for the curved beams. These new properties generally can be expressed by 

the two conventional sectional properties, i.e., 
R
I

QdA
R

xRxQ y
yA

c
y −=






 −

= ∫  where 

Qy
c is first moment of area about y-axis for curved beams. Qy and Iy are first moment 

of area about y-axis and moment of inertial about y-axis respectively. The effect of 
sectional properties associated with x/R can be examined by comparing the results of 
ignoring and including x/R in the calculation. 
 
 4.3 Derivation of Components for Differential Equations 
The individual components of the equilibrium equation, Eq 4.2, need to be expressed 
in strains and displacements for solution. Any of the simplified strains from Chapter 3 
can be used. With more elaborate expression for strains, better solution of load-
displacement relationship will be the outcome. However, solving of complicated 
differential equation is still often not achievable. The equilibrium equation based on 
the assumption of small rotation is derived in this section and further simplified as 
linear differential equation from which exact solution is derived for a specific loading 
and boundary condition in the following section. The governing differential equation 
based on large rotation and displacement will be derived in Chapter 5 and solved for 
specific loading and boundary conditions using the numerical procedure in Chapter 6.  
 
4.3.1 Variation of Strain Energy 
In the variational formulation, the symbol δ is used for variation of variables. The 
expression δF is similar to the differential dF. The law of variational sum and products 
are the following:  
 

( ) )()()()( zGzFzGzF δδδ +=+       4.6a 
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( ) GFFGGF δδδ +=        4.6b 
( ) ( ) FFnF nn δδ 1−=         4.6c 

 
One of the important laws of variation is that the operator of variation can be translated 
in and out of an integral sign:   

 

∫∫ = dzzFdzzF )()( δδ          4.7 
A simplified nonlinear equilibrium differential equation for small displacement and 
rotation is derived using the longitudinal strain and shear strain in Eq. 4.8. which is 
simplification of Eq. 3.7 based on the the assumption of ignoring the terms with 1/R2 
and higher than 2nd order. 

  
ωωω γωγωγγγγωγγγε yxxyyyxxyxz yxxyyxyx ++++++++= 22

0     4.8a 

nzs n γε 2=          4.8b 
Where n is direction coordinate which is normal to the middle surface and 
defined in the Figure 3.1 

 
For convenience, the components of strains are divided into linear and nonlinear terms, 
e and η. 
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=+ xxxxe η ( )

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2

2
0 βa                 4.10e 

=+ yyyye η ( )



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


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2

2
0 βa                  4.10f 

=+ xyxye η ( )
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′′+ su

R
a β

2

0                 4.10g 

=+ ωω ηxxe 00 +                  4.10h 

=+ ωω η yye ( )







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2

2
0 βa                  4.10i 

=+ nne η 





 ′

+





 ′

+′
R

ua
R
va ss ββ                 4.10j 

  ez and esz are linear parts of longitudinal and shear strain 
  ηz and ηsz are nonlinear parts of longitudinal and shear strain 
  a = R/(R-x) 

 
With the strains in Eq. 4.9, the first term in Eq. 4.2 can be expressed as the following: 

( )[ ]∫∫ +=
V

T

V

T dVeSdVS ηδεδ  

( )[ ] ( )[ ]∫∫ +++=
V

zszszs
V

zzz dVedVe ηδσηδσ               4.11a 

Where 
{ }T

zszS σσ ,=         4.11b 

{ }T
zsz eee ,=         4.11c 

{ }T
zsz ηηη ,=         4.11d 

 
The strain energy, Eq. 4.11a is composed of longitudinal and shear strain energy. The 
strain energy associated with longitudinal strain can be expressed as the following 
equation 
 

    ( )[ ]∫ +++
V

yxz dVeeyexe ωωδσ 0  

( )[ ]∫ ++++++++
V

yxyyyxxyxz dVyxyyxyx ωω ηωηηηηωηηηδσ 22
0  4.11d 

    
Equation 4.11d is expanded by using the stress resultants defined in the following 
equations. 

∫=
A

zz dAF σ                   4.12a 
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∫=
A

zx dAyM σ                  4.12b 

∫−=
A

zy xdAM σ                  4.12c 

∫=
A

z dAM ωσω                  4.12d 

∫=
A

zxx dAxK 2σ                  4.12e 

∫=
A

zyy dAyK 2σ                   4.12f 

∫=
A

zxy xydAK σ                  4.12g 

∫=
A

zx dAxK ωσω                  4.12h 

∫=
A

zy dAyK ωσω                   4.12i 

 
Equation 4.12 applies to two groups. One group of resultant is from the traditional 
form of ( )∫= dAyxF ωσ ,, . The other is associated with curvature of the curved beam. 

( )∫ −= dAxRRyxF a )/(,, ωσ . Those resultants with the superscript “a” can be 
expressed by just multiplying the additional term R/(R-x) to those shown in Eq. 4.12. 
With the stress resultants, Eq. 4.11 associated with longitudinal strain is expanded to 
the following. 
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+
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                         4.13 

Using Eq. 4.5 and substituting the expression for linear and nonlinear strains, Equation 
4.13 can be expressed as the following equation: 
 

=


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



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+
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∫
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By using Eq. 4.15, the expansion of variation for the nonlinear longitudinal strain 
terms of Eq. 4.14 results in the following: 
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Equation 4.14 can be divided into two groups of variational strain energy. One is for 
the strain energy associated with linear strains. The other one is for the strain energy 
associated with nonlinear strains.  From this separation, linear and nonlinear terms for 
the equilibrium differential equation can be developed.  By integrating by parts and 
grouping the strain energy with the same variational terms, the strain energy associated 
with linear strains can be expanded as the following. 

• Variational energy strain terms associated with δus is  

∫ 

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z dzuMu
R
F δδ             4.16 

Integration by parts: 
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• Variational energy strain terms associated with δwc is 

∫ ′



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Integration by parts: 
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• Variational energy strain terms associated with δvs is  
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
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Integration by parts: 
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• Variational energy strain terms associated with δβ is  
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Integration by parts: 

dzMMM
R

M
R
F

y
L

LLxz
s

L

βδβδβδβδ ωωω
″−′+′−






 −− ∫∫

0
00

0

  4.23 

 
Similarly, the strain energy associated with nonlinear strains can be expanded as the 
following: 
 

• Variational energy strain terms associated with δus is 
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Integration by parts: 
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• Variational energy strain terms associated with δwc is 
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Integration by parts: 
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• Variational energy strain terms associated with δvs is 
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Integration by parts: 
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• Variational energy strain terms associated with δβ is 
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Integration by parts: 
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In a similar way with regard to shear strains, the last term of Equation 4.11a can be 
expressed as the following: 
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By using the definition of stress resultants, Equation 4.32 can be expanded as the 
following:  
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Substituting the expression for linear and nonlinear strains from Eq. 4.10j and sorting 
out same displacement field, Equation 4.33a can be expressed as the following: 
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• From variational energy strain terms associated with δus and integration by 

parts; 
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• Variational energy strain terms associated with δvs: 
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• From variational energy strain terms associated with δβ and integration by 
parts, the expression associated with linear and nonlinear strains are the 
following 
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4.3.2 Variation of Potential Energy due to Applied Load 
For the analysis of load and deflection behavior of curved beams in this study, the 
external loads include distributed loads and concentrated loads. The body forces are 
not included. The variation of potential energy due to applied loads, as expressed by 
the third term of Eq. 4.2, can be expressed as the following: 
 

∑∫ +
j

j
T

j
L

T Fqdzfu δδ        4.38 

 
Where f  and u  are the vector of distributed loads and displacements along the span 
length L as defined in Figure 4.1, and have the following components:  
 

{ }T
zyxzyx mmmmffff ω,,,,,,=              4.39a 

{ }T
yxsss wvuu ωθβθθ ,,,,,,=               4.39b 

sx v′=θ                   4.39c 

R
wu c

sy +′=θ                    4.39d 

R
vs′+′= βθω                   4.39e 

Where: 
fx is distribute shear loads applied to shear center in direction x-axis 
fy is distribute shear loads applied to shear center in direction y-axis 
fz is distribute axial loads applied to centroid in z-axis 
mx and my are distribute moment  applied to centeroid 
mz and mω are torsional and warping moment applied to shear center 
wc is longitudinal displacement of the centroid 
θx and θy are rotation about x- and y-axis 
θω is warping rotation 

 
jF of Eq. 4.38 is the equivalent concentrate force vector defined in Figure 4.2, and 

jq is the displacement vector at the location of the applied loads jF . 
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{ }T

jzjyjxjzjyjxjj MMMMFFFF ω,,,,,,=                4.40a 

{ }T
jjyjxjcjsjsjj wvuq ωθβθθ ,,,,,,=              4.40b 

 where j is load number 
 
With the orthogonal condition and by integration by parts, Equation 4.38 can be 
expanded as the following expression: 
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4.41 
Where Lj is the location of applied load number j  

 
 
4.3.3 Components of Governing Differential Equations and Boundary Forces  
The governing differential equation can be derived by substituting the strain energy 
expressions developed in preceding sections into the equation of total potential energy. 
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For in-plane deformation δus: 
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For out-of-plane deformation δvs: 
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For twist rotation δβ: 



 51

 

( )( )

( )

( ) ( )( )
dz

R
uM

KKK
R
uMyMuMM

R
uKuMxu

R
yMvMMvM

yxvxuyFM
R

M
R
FyM

L

s
sv

a
y

a
yy

a
xx

s
s

a
xsx

a
x

sa
xysxss

s
ysy

a
ysy

ssssss
a

zsv
xz

s

∫















































′






 ′

−

′++−
′′

+
′

′+′+′−+

′






 ′

−′′+
′







 ′+′−′−+′′+

′
′++′−′−−






 −−″−

0

22

)~(~)(

~2)(

)()~(

δβ

βββ

β

β

ωω

ω

 

∫ 




 ′−=

L

z dzmm
0

δβω         4.45 

 
Since the displacements δus, δvs, δwc and δβ are arbitrary, the terms in the brackets on 
both sides of Eq. 4.42 to 4.45 must be equal. The resulting differential equations for 
horizontally curved beams are the following.  
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As a check of correctness of Eq. 4.46, a set of differential equation is reduced from it 
for a straight beam with a doubly symmetrical cross section. By letting the radius of 
curvature R approaching infinity and centroidal distance xs and ys of the shear center 
equal to zero, Equation 4.46 is simplified to the following  set of equations. 
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This set of equations is that of straight beams given by Galambos (1968). Further 
verification of the adequacy of Eq. 4.46 will be conducted in Chapter 6 with a 
numerical examples. 
The application of the principle of variation of total potential energy generates 
boundary forces at both ends of the curved beam in association with the equilibrium 
equations. The force boundary conditions related to the differential displacement 
components are:  
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• For δus 
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• For δvs 

( ) )( y
a
yss

a
z

y
sx MMxvF

R
M

R
M

yM −′−′−′+
′

+
′

+′ ββω  

( ) 0=+−+





 ′

+
′

−′−
R

mm
R

M
R

y
R
uMM x

sv
s

sa
xy

ωββ     4.50 

• For δθy  
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• For δβ 
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• For warping δθω  
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The above force boundary conditions are in addition to the geometric boundary 
conditions. 
 

0======= ωδθδβδθδθδδδ xysss vuw       4.55 
 
With regard to each of the differential displacement, either the force boundary 
condition or the geometric boundary condition should be satisfied. 
 
 
4.4 Differential Equations for Curved Beams 
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4.4.1 Linear and nonlinear Components 
Solving of the governing differential equations with complicated terms of stress 
resultants is very tedious if at all possible. Even when relatively simplified forms of 
strain-displacement relationship are used, Eqs 4.46 are still unmanageable when there 
are linear and nonlinear strain terms in the stress resultants. While a solution technique 
is to be presented later in this study for general cases, the solving of linear parts of the 
differential equations is made here for a few load cases. 
The linear differential equations expressed in terms of stress resultants can be derived 
from Equation 4.46 by mealy removing the coupling terms. 
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The total torsion-moment, Mz, is the summation of Saint-Venant torsion and the 
warping torsion, which can be expressed as the derivative of warping moment. 

 

svz MMM +′= ω         4.57 
 
By using the constitutive laws, cross sectional properties and the complete strain-
displacement relationship, the stress resultants in Equation 4.56 can be expressed by 
the displacement field.  
The constitutive laws expressed in Eq. 4.3a can be decomposed as the following 
equations: 

 
( ) ( )zzzz eEE ηεσ +==                 4.58a 

( ) ( )szszszsz enGG ηετ +== 2                4.58b 
 
Where E and G are the elastic modulus and the shear modulus. 

 
By substituting Equation 4.58 and the strain-displacement relationship of Equation 4.8 
into equation 4.12, the stress resultants can be expressed in the following forms. 
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The superscript “e” and “n” in the stress resultants denote linear and nonlinear. In 
Equation 4.59, the sectional properties associated with second and third order units are 
defined as  

∫=
0A

dAA                   4.60a 

∫=
0A

x ydAQ                   4.60b 

∫=
0A

y dAxQ                   4.60c 

A, Qx and Qy are the area and the first moment of area about the x-axis and the y-axis 
respectively.  
The sectional properties associated with fourth order units are; 



 59
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2

A
x dAyI                   4.61a 
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xy dAyxI                   4.61c 

( )∫=
S

T dstnK 22                    4.61d 
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dAQ ωω                   4.61e 

 
Ix, Iy and Ixy are moment of inertial about the x-axis and the y-axis and the cross 
product of inertia. KT is the Saint-Venant torsional constant and Qω is the warping 
static moment. Since normalized warping function is used in this study, the warping 
static moment of 4.61e vanishes. 
The sectional properties associated with fifth and sixth order unit are; 
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The Ixω, Iyω and Iω are warping product of inertia about the x-axis and the y-axis and 
the warping moment inertia. It is to be noted that in the differential equations based on 
two reference lines, (shear center and centroid), the quantity of Ixω or Iyω can be made 
to vanish by using normalized warping function for singly symmetric cross section, but 
this can not be done in the equation based on a single reference line at the centroid. 
This fact also applies to other sectional properties associated with warping sectorials.  
The other sectional properties in equation 4.59 are defined by the following equations. 
The sectional properties associated with fifth order units are: 
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The sectional properties associated with sixth order units are: 
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The sectional properties associated with higher than sixth order units are: 
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In Eq 4.59, the sectional properties have super script a, q or r, which represent 

multiplying
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R  to the integrand in Equations 4.60 to 4.65. 

e.g. ∫ 







−
=

0

2

A

a
x dAy

xR
RI , ∫ 








−
=

0

2
2

A

q
x dAy

xR
RI  and ∫ 








−
=

0

2
3

A

r
x dAy

xR
RI . Because 

of these terms, the quantity of Qx, Qy, Qω, Ixy, Ixω and Iyω can not be made to vanishe in 
formulation; the orthogonal condition can not even be applied to a symmetrical cross 
section. 
 
The linear differential equations in terms of displacement can be derived by 
substituting Equation 4.59 into Equation 4.56. If the approximation a) and b) in  
Section 3.2.2 is adopted, the resulting equations are the following.  
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4.4.2 Exact Solution for Linear Differential Equations 
For some loading and boundary conditions and cross sectional shapes, the stress 
resultants for horizontally curved beams can be clearly derived based on the first order 
analysis. Conventionally the “basic” loading and boundary condition of Figure 4.3(b) 
were used for deriving exact solution of stress resultants along the beam span. In the 
two dimensional beam model of Figure 4.3(b), u and v are lateral and vertical 
displacement of the shear center, w is the longitudinal displacement of the centroid, θx, 
θy, β are rotation about x, y and z axis, θω is warping rotation, Ф and Ф’are angles to 



 62

the point load measured from the left and the right end, z’ is the longitudinal 
coordinate from the right end and Γ is the enclosed angle of the curved beam.  
From static equilibrium, the vertical flexural bending moment Mx and the axial force 
Fz along the span for any cross sectional shape can be determined. Thus, Eq 4.56d are 
independent with the other differential equations, Eq. 4.56a, Eq. 4.56b and Eq 4.56c. 
With the assumption of small displacement and small rotation, the approximation 
R/(R-x) =1 and the orthogonal condition of singly symmetric cross sections about y-
axis, the linear part of Mω and Msv of Eq. 4.59 can be simplified as 
 

 ( )βωω ′′−=
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( )β ′=
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and Eq. 4.56d becomes 
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This equation is identical to that derived by Dabrowski (1964). The torsional moment 
and bi-moment in a curved beam must be determined by solving the differential 
equations in conjunction with boundary conditions. The determination of stress 
resultants for seven example cases is considered in this section. The loading and 
warping boundary conditions of these cases are the following. The curved beam is 
simply supported for flexural loading. 
 
 1. Point loads and equal end moment, P and M  Fixed – Fixed 
 2. P and M       Fixed – Free 
 3. Distributed vertical load and moment, p and m  Fixed – Fixed 
 4. p and m       Fixed – Free 
 5. Moment at one End, M     Fixed – Fixed 
 6. Moment and both ends, ML and MR   Fixed – Free 
 7. Bi-moment at one End, Bi     Fixed – Free 
The resulting expressions for stress resultants are listed in Table 4.1 to 4.7 for the 
above seven example cases. The expression of stress resultants for the seven loading 
cases and free-free warping boundary condition can be founded in Dabrowski (1968). 
With given numerical values of beam dimension and applied loads, the expressions in 
Table 4.1 to 4.7 permit the calculation of forces, stresses and displacements under the 
assumption of  linear behavior 
 
4.4.3 Comparison of Results 
There are no available analytical results for evaluating the exact solution listed in 
Table 4.1 to 4.7. Only an approximate solution has been derived by simplified analysis, 
(Xanthakos, 1994). The evaluation of solution is conducted by comparing the results 
from exact solution and approximate solution.  
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Figure 4.4 shows the procedure of the simplified analysis in which the Bi-moment of 
the horizontally curved beam under point load P is calculated. The first step of the 
simplified analysis is to isolate a flange from the curved beam and treat it as a straight 
beam which has length L=RΓ. The boundary condition of the equivalent straight beam 
is in compliance with the warping boundary condition of curved beam. Figure 4.4(b) 
shows the example of fixed-fixed warping boundary condition. The next step is to 
derive the lateral distributed loads along the span. These loads can be obtained from 
the beam bending moment diagram by equilibrium of a free body of a small segment 
of the curved flange, Figure 4.4(a). The last step is to calculate lateral bending moment 
from the laterally distributed loads. Then, the bi-moments can be obtained by 
multiplying web-depth to the obtained lateral bending moment, e.g., Mω(0)=MAh, Mω 

(L)=MBh, Mω (L/2)=Mch. These approximated bi-moments Mω(0), Mω(L/2) and Mω(L) for a 
curved beam with the cross sectional geometry shown in Figure 4.5 are compared with 
those calculated from the equations  presented in Table 4.1 in which exact solution of 
bi-moment for fixed-fixed boundary condition is listed. Table 4.8 shows the results for 
computation. The approximated bi-moments are fairly close to the exact value at the 
end sections. But at the mid-span, the results are quite different. So, the evaluation of 
the equations in Table 4.1 to 4.7 can not be achieved by comparing with the 
approximate solution. Evaluation of solution will be made by using the finite line 
element for the curved beams, which is developed in Chapter 5, and by using the 
numerical method in Chapter 6. 
  
4.5 Method of Solution by Incremental Total Lagrangian Formulation 
 
4.5.1 Derivation of Equilibrium Equation in Incremental Formulation 

In preceding sections, linear and nonlinear differential equations are developed 
with the assumption of small rotations and displacements. For certain loading and 
boundary conditions, closed form solutions of linear differential equation are also 
developed. Since in general curved beams can undergo large displacement and large 
rotation, precise load-deflection behavior can only be obtained from solving nonlinear 
differential equation. An approximate solution of nonlinear differential equation for 
large displacement and rotation analysis can be derived by the incremental analysis. In 
incremental analysis, the governing equations in each incremental step are linearized 
and equilibrium is maintained at the beginning and the end of each discrete increase of 
displacement.  
Three equilibrium positions are schematically shown in Figure 4.6 - the initial and two 
consecutive positions. For convenience, these are designated as position 0, t and t+∆t, 
although no dynamic effect is considered. In each incremental step, it is assumed that 
the displacement, rotation and strains are small enough for the adoption of 
conventional small displacement beam theory, with high order terms ignored and 
trigonometric functions represented by the first term of Taylor expansions. Depending 
on the choice of reference position and configuration, two formulations can be made; 
total Lagrangian and updated Lagrangian formulation. In the total Lagrangian 
formulation, all static and kinematic variables are referred to the initial position and 
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undeformed configuration. The updated Lagrangian formulation uses the last position 
and configuration of equilibrium. Both the total Lagrangian and updated Lagrangian 
formulation include all kinematic nonlinear effects due to large displacement and large 
rotation. In practice, these two formulations give identical results. The only advantage 
of one over the other is in the numerical efficiency (Bathe 1982) 
 In this study of horizontally curved beams, the total Lagrangian formulation is 
adopted.  The updated Lagrangian formulation needs the modification of beam 
configuration based on the character of external forces which are displacement and 
rotation dependant. Also, to update the beam configuration, an equivalent stiffness 
matrix has to be added to the beam stiffness of the last step. This causes the system 
stiffness matrix to be non-symmetric when non-conservative moment is considered 
and require more processing time.  
One disadvantage of the total Lagrangian formulation is the complexity of the 
geometric stiffness matrix and the stress stiffness matrix. Each stiffness matrix 
includes the total displacement and trigonometric expression associated with large 
rotation which can not be simplified by taking only the first term of Taylor series.  

 
To deriving the equilibrium equation of the curved beam at a discrete position 

by using minimum total potential energy, the first step is to evaluating the incremental 
displacement and rotation. Minimum total potential energy at the position t+ ∆t is 
expressed as the following. 
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Where V0 and S0 are the volume and surface of the undeformed body, ttS ∆+ is the stress 
tensor at position t+ ∆t, H is the loss of potential energy, and Bf  and fsf  are 
components of the externally applied forces per unit volume and externally applied 
surface traction per unit surface.  
 
The following relations can be expressed between two adjacent positions.  

 
uuu ttt ∆+=∆+                  4.71a 

εεε ∆+=∆+ ttt                  4.71b 

SSS ttt ∆+=∆+                  4.71c 
 
The incremental form of the principal of minimum total potential is  
 

ttt Π−Π=∆Π ∆+ δδδ                    4.72 
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In the configuration position t+∆t, tΠδ  is already satisfied. That is, the variation of 
total potential energy at position t is equal to zero. 
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By substituting the incremental values of Eq. 4.71 into Eq. 4.69 and using Eq. 4.73, the 
variation of incremental total potential energy is 
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Equation 4.74 can be further decomposed by noting that a strain tensor can be 
expressed in linear and nonlinear terms, ηε += e , and that the variation of total strain, 

tt ∆+εδ , equals to εδ∆ ;  
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By considering the equilibrium state at position t, the terms within the parentheses on 
the right hand side of equation 4.75a can be removed. 
No approximation has been made in the formulation of Eq 4.75a. However, because 
the first term on the right hand side of the equation is nonlinear, thus no solution can 
be derived directly. Approximation must be introduced. By neglecting the high order 
terms, and using the linear constitutive law between incremental stress and strain 
tensor, eCS ∆= , the following linear equation is obtained. 

 
( ) [ ] ( ) ( ) t
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Where [ ]C  is the material stiffness vector 
 
Equation 4.76 is the governing equation at position t+∆t for incremental loading tH ∆ . 
The incremental displacement can be obtained from Equation 4.76 corresponding to 
position t+∆t. The total displacement, total stress and total strain at that position can 
easily be calculated by adding incremental displacement, stress and strain onto the 
respective values which have been evaluated at position t. 
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Because of the approximation used in linearization to arrive at Eq. 4.76, the 
incremental displacement may not be correct. Therefore it is necessary to check the 
difference between the exact solution and approximated solution. With the computed 
approximate displacement, stresses and external forces at position t+∆t, the error can 
be defined as the following equation. 
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Where k is an iteration number 
 
Iteration will be performed until the error is negligible. Several iteration schemes will 
be exam and employed in the next chapter. 
 
4.5.2. Incremental Strain of Large Total Rotation 
The procedure to develop large rotation incremental strain is basically the same as that 
for small rotation. The difference is in handling the trigonometric functions. In large 
rotation incremental analysis, the total rotation can’t be approximated by the first term 
of Taylor series. But the incremental rotation ∆β at each incremental load step can be 
made small so the higher order terms of Taylor series of cosine function can be 
ignored.  Thus, the trigonometric functions may be assumed as the following. 
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( ) ( ) ( ) ( ) ( ) ( ) ββββββββββ ∆−∆+=∆+∆+ 22 sincoscossincossin           4.78e 
 
Consequently, the incremental strains of large rotation can be derived by using the 
following relation; 
  

t
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By substituting the total displacement at positions t+∆t and t, ttu ∆+ and tu , into any 
strain-displacement equation derived in Chapter 3, the incremental strain Eq. 4.74 can 
be expressed in terms of the displacement. In this chapter, incremental strains based on 
Eq. 3.8 only are derived. Because Eq. 3.8 has not undergone simplification, the derived 
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incremental strain will be used for developing the complete incremental stiffness 
matrix later in Chapter 5.  
The incremental strain can be decomposed into three parts; linear incremental strain, 
incremental strain associated with initial displacement at the beginning of the 
increment and quadric incremental strain terms. However, in all the strain parts, certain 
terms are coupled with trigonometric functions (as seen later in Eq. 4.81, 4.82 and 
4.83). Thus, strictly, dividing incremental strain into three parts can not be done. But 
for comparison with the results from considering only small rotation and for the 
convenience of examining the contribution of initial displacement and stress at the 
beginning of the increment on the total behavior of horizontally curved beams, the 
incremental strain is decomposed. 
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Where: 0

ze∆  is linear longitudinal incremental strain 
i
ze∆ is incremental strain associated with initial displacement 

zη∆  is quadric longitudinal incremental strain 
0
zse∆  is linear incremental shear strain 
i
zse∆  is incremental shear strain associated with initial displacement 

zsη∆  is quadric incremental shear strain 
 



 68

The linear incremental strain terms in Equation 4.80 are as expressed by Equations 
4.81a to 4.81e for doubly symmetric cross sections. The additional incremental strain 
terms associated with non-symmetric cross section are listed in Table 4.9. 
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The incremental strains associated with initial displacement in equation 4.80 are goven 
below as Eqs. 4.82a to 4.82j for doubly symmetric cross section. The corresponding 
additional incremental strain terms associated with non-symmetric cross section are 
listed in Table 4.10. 
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The quadric incremental strain terms are shown in Eq. 4.83a to 4.83j. The 
corresponding additional incremental strain terms associated with non-symmetric cross 
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section are listed in Table 4.11. The 4th order terms are included in the quadric 
incremental strain, for later examination of effects of high order terms on the load-
displacement behavior. 
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Incremental strains from simplified strain-displacement equations, Table 3.1 to Table 
3.8, can be obtained from Eq. 4.81, 4.82 and 4.83 by using the approximation a) to e) 
shown in Section 3.2.2. 
 
4.6 Formulation with Respect to One Reference Line 
 
4.6.1 Reference Lines 
Conventionally, the beam theories have been formulated based on two reference lines: 
the centroidal axis and the axis of shear center. In previous sections, the equation for 
curved beams were also developed using two reference lines. Using two reference 
lines has the advantage of making the governing differential equations independent 
and utilizing the orthogonal condition for symmetric cross sections. However, this 
advantage disappears in analysis with large displacement and rotation or in analysis of 
non-symmetrical cross sections. Furthermore, there are apparent disadvantages. First, 
in the two-reference line formulation, external loads act through two different points of 
beam cross section: torsional moment and shear force on the shear center and flexural 
moment and longitudinal axial force on the centroid. Because of this, coupling 
between external loads and the distance of two reference points in deformed 
configuration can be occurred. With small rotations, the coupling is easily expressed 
by rigid-rotation. But with large rotations, the uncoupling may not be possible. 
Secondly, there are degenerate cases where the shear center is not defined or is 
difficult to find. Therefore, there is strong advantage in developing a formulation 
based on one reference line.  
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The reference line could be any line that passes through the plane of cross section. The 
centroidal axis is chosen as the reference line in this study, because it utilizes sectional 
properties corresponding to those for conventional beam theory and provides 
orthogonal character in the formulation. The centroidal axis is within the cross section 
for doubly and singly symmetric I-sections and is out side of the cross section for un-
symmetric cross sections. Depending on whether the location of the centroidal axis as 
the reference line is inside or outside of the cross section, different procedure is needed 
for the deriving differential equation of curved beams. 

 
4.6.2 Reference Line in Cross Section 
When the single reference line is in the cross section, Figure 4.7, the longitudinal and 
shear strains can be derived by modifying the corresponding ones of two-reference 
lines. The terms associated with distances xs and ys in the strains of the two-reference 
line formulation are replaced. Thus, the set of equations in Eq. 4.9 is modified as the 
following equations.  
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Where uc, vc and wc are the displacement at the centroid. For simplicity and 
convenience, only the linear parts of strains are presented.  
By using the longitudinal strain and the shear strain of Eq. 4.84, the variation of strain 
energy in minimum total potential energy, Eq. 4.2, can be expressed as the following 
equations.  
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The loss of potential energy expressed by Eq. 4.38 can be modified as the following 
equation; 
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It is noted that all external forces ( f and jF ) in Eq. 4.86a are applied through the 
centroidal axis. 
 
4.6.3 Formulation for One-reference Line not in Cross Section 
When the reference line is not in the cross section, Figure 4.8, one-reference line 
formulation cannot be developed by mealy replacing terms containing xs and ys as it is 
done in the previous section. This situation comes from the condition that cross 
sectional rotation is composed of two parts. One is associated with Saint-Venant 
torsion and the other one, with warping torsion. If the centroidal reference line is in the 
cross section, rotation of the reference line includes the contribution from both 
warping and pure torsion. When the refernce point is not in the cross section, warping 
displacement does not occur at the refernce point and only Saint-Venant torsion 
contributes to the rotation. The magnitudes of rotation angles θx, θy, β and θω of shear 
center and the centroid in Fig. 4.8 have to be same respectively. In Figure 4.8 the 
fictitious wall linking the centroidal line to a lonigudinal line at a point in the cross 
section is not subjected to warping displacement. Consequently, the equations of the 
minimum total potential energy expressed in Eq. 4.85 and 4.86 have to be examined. 
For the strain energy in the total potential energy, Equation 4.85 can be used. However, 
the loss of potential energy as expressed by Eq. 4.86 has to be changed. In Eq. 4.86, 
the reference point rotation of θx, θy and warping rotation θω contain the β' term which 
represents warping torsion, as shown below 
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Because the reference point is outside of the cross section and only rigid body rotation 
is contributing, the rotation generated by warping should be removed. Otherwise the 
magnitudes of roation angle θx, θy, β and θω at shear center and centroid in Fig. 4.8 are 
different. Therefore, the proper expression for rotation of any point in the cross section 
can be expressed as the following set of equations. 
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By using Eq. 4.88, the complete nonlinear equation of a horizontally curved beam can 
be formulated based on centroidal reference line, and is used for formulating the finite 
line element for solution in next chapter. 
 
4.7 Effect of Sectional Deformation of I-Beams 
 
4.7.1. Slander and Stocky Cross Sections 
When a horizontally curved beam is subjected to vertical load, the beam deflects 
vertically, laterally and twists. Associated with these displacement are internal radial 
forces between the flanges and the web. Figure 4.9 shows schematically the distributed 
internal radial forces in the top flange of a curved beam under equal end moment. In 
conventional beam theory, the sectional deformation is not considered, implying 
stocky beam cross section and that the web can resist the distributed internal radial 
load without deformation. For the slander cross sections with relatively high 
slenderness ratio of web depth to web thickness, deformation of the cross section is 
inevitable. The upper flange deflects outward in the plane of beam curvature and the 
bottom flange deflects inward corresponding to the radially distributed loads on the 
flanges. The shape of the deformed cross section is sketched in Fig. 4.10. The internal 
bending moment associated with the deformed web is shown in Fig. 4.11. The amount 
of web deformation depends on the rigidity of the web. If the web is rigid, it deforms 
very little, the torsional moment associated with twisting is resisted by Saint-Venant 
torsion and warping torsion as assumed in conventional beam theory. If the web is 
very flexible and deforms, the contribution of the web in resisting torsional moment is 
small and it can be assumed that torsional moment is only resisted by the warping 
action.  
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In this section, strains based on web deformation and associated flange rotations are 
derived. By using the variation of total potential energy, nonlinear differential equation 
including the effect of sectional deformation will be developed. 
   
4.7.2 Strains from Deformation 
Strains based on sectional deformation can be formulated by modifying the third 
assumption in Section 3.2.1 as “the cross section of I-beam can deform but the amount 
of deformation is small”. It is assumed that the flanges are rigid enough to remain flat 
and that only the web deforms as shown in Figures 4.10 and 4.11. The strains in the 
web in the direction of its depth can be expressed in terms of rotation ,α, between the 
flanges and the web.  
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 where: εw is strain of web in direction of y-axis 
  d is the depth of web 
  α is relative rotation of flange as defined in Fig. 4.11 
 
The relative twist rotation of flanges, α, generates additional shear strains in the 
flanges. The total shear strains, including the additional strains by web deformation, 
are expressed by the following equations: 
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 where:  
fszε is shear strain of flange associated with web deformation 

wszε is shear strain of web associated with web deformation 
 
The additional longitudinal strain can be derived from the assumption that shear strain 
in planes normal to the middle surface of the thin wall can be neglected. By the same 
procedure that is used in Chapter 3, the additional longitudinal strain associated with 
web deformation is derived as the following. 
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The sectional rotation, α, is considered to be small based on the assumption that the 
amount of deformation is small. Therefore, Equation 4.90c can be simplified as the 
following. 
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Because the sectorial area of flange for thin-walled I sections can be expressed as ω= 
(d/2)x at flange, and x and ω equal to zero at web, the right hand side of Equation 
4.90d vanishes. Therefore no additional longitudinal strain is generated from web 
deformation. 
 
With the shear strains of the web and flanges, Eq. 4.90a and 4.90b , the first term of 
the equation for variational total potential energy, Eq. 4.2, can be expressed as the 
following. 
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Where:  
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Vf, Af is the volume and area of flange 
Vw, Aw is the volume and area of web 

 
By integration by parts, Equation 4.91a is re-organized as the following. 

 
For variation δvs 
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The strain energy of the web and its variation form are expressed as the following. 
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σw is the stress in direction of y-axis at the web 
 
Because the variation terms associated with rotation α are additional terms, the 
modified differential equation for horizontally curved beams including web 
deformation can be developed by just adding the additional terms into the original 
differential equation. 
With this incorporation of the additional terms for the variation of δα, δβ, δus and δvs, 
the differential equations for deformable curved beam are the following. 
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              4.94c 
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 αα mMM
fsv 2=+′                     4.94e 

 
Where: 

wf svsvz MMMM ++′= ω
α                  4.94f 

   mα is distribute moment from sectional deformation, Figure 4.11 
 
In Equation 4.94, the sectional rotation, α, due to web deformation is considered being 
the same for the flanges. However, because of the arch effect and the direction of the 
internal distributed radial forces, the rotation at the top and bottom flanges is slightly 
different. In the present study, the effect of this difference is not considered. 
 
4.7.3 Differential Equations Incorporating Sectional Deformation 
The constitutive laws associated with sectional deformation can be expressed by the 
following equations. 
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 ′
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
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By using Eq. 4.95, the stress resultants associated with sectional deformation in 
Equation 4.94 can be expressed in terms of displacement. 
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ααα IEM =                   4.96c  
 
Where: 
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3
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T
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d
tI w

3

=α         4.96c 

  b and d are the width and depth of the beam 
  tf, and tw are thickness of flange and web 
 
By substituting the stress resultants in Equation 4.96 into Equation 4.94, the linear 
differential equations in terms of displacement are obtained: 
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Equations 4.97 apply to curved beams with a thin-walled cross section.  If the 
orthogonal condition for doubly symmetric section is utilized, the linear equations Eqs. 
4.97d and 4.97e can be simplified to the following equations: 
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( ) ′−+−=″+′′− ωω αββ mm
R

MKGKGIE z

e
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TT
iv

f

~~                4.98 

ααααβ mIEKGKG
ff TT 2~

=+″−′′                            4.99 
 
It is noted that e

xM is the linear part of Mx, Eq. 4.95b, and is simplified from 
approximation a) and b) of Section 3.2.2. When only a concentrated external load, Mx 
is applied, Equation 4.99 can be further simplified as: 
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When the radius goes to infinity, the term RM e
x / in Eq. 4.100 vanishes and Eq. 4.100 

becomes differential equation of the straight beam. This equation is the same as that 
derived by Goodier and Barton (1944). This identity is a check of the adequacy of Eq. 
4.97.  
The homogeneous solution of Equation 4.100 is 

( ) ( ) ( ) ( ) ( )zkCzkCzkCzkCz 2211 cosh4sinh3cosh2sinh1 +++=α          4.101a 
Where:  
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The coefficients C1…C4 are determined by the boundary conditions of the web 
deformation angle α at the ends of the beam.  
The exact solution for linear and nonlinear differential equation that including the 
effect of web deformation for an arbitrary boundary condition and loading condition is 
very difficult to obtain. Therefore, a numerical approximation procedure such as a 
finite element method or a finite strip method is recommended. In the present study, a 
finite line element that included the degree of freedom for sectional deformation will 
be developed in Chapter 5.  
 
For sectional deformation associated with large rotation, the incremental analysis is 
necessary. This task can be done by deriving the incremental shear strains of Equation 
4.90, and adding the incremental web deformation strain of εw. By the same procedure 
which is employed in Section 4.5.2, the incremental shear strains associated with web 
deformation and related strains can be derived as shown below. 
 
The incremental strain from web-deformation is 
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 where 0
αe∆  is the component of linear incremental strain of web 

 
The shear strains associated with large rotation are 
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Where cs ˆ,ˆ are cos(β-α) and sin(β-α) 
 
The linear incremental shear strains are 
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where 0
fne∆ and  0

wne∆ are the component of linear incremental shear strain of the flange 
and the web. The incremental shear strains associated with initial displacement are 
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The terms, i

n f
e∆ and i

n w
e∆ , are the components of incremental shear strain of the flange 

and the web associated with initial displacement.  
The quadric incremental shear strain associated with web deformation is 

ff nzs n ηη ∆=∆ 2                4.106a 

ww nzs n ηη ∆=∆ 2                4.106b 

( ) ( ) 





 ′∆

∆−∆+
′∆

∆−∆−=∆
R
uc

R
vsa ss

n f

~
ˆˆ αβαβη            4.106c 



 82







 ′∆∆

+
′∆∆

−=∆
R

uc
R

vsa ss
n w

~ββη              4.106d 

 
The terms,

fnη∆ and  
wnη∆ , are the components of quadric incremental shear strain of  

the flange and the web. 
 
Precise load-deflection behavior of horizontally curved beam can be obtained when the 
nonlinear differential equations are solved. However, it is very difficult or impossible 
to derive exact solution for differential equations with sectional deformation, arbitrary 
loading and boundary condition.  In order to overcome these difficulties, numerical 
approximate procedures such as finite element method is necessary.  
In the next chapter, formulation of a finite line element will be derived based on the 
formulation in this chapter.  
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Table 4.1 Exact solutions for point load and end moment with fixed-warping 
boundary condition 

I II

z = R

z' = r '

b=R
b=R '

us (0) = 0
vs (0) = 0
Wc (0) = 0
β(0)  = 0 
Θω (0) = 0
Θx (0) =\= 0
Θy (0) =\= 0

P

M

us (0) = 0
vs (0) = 0
β(0)  = 0 
Θω (0) = 0
Wc (0) =\= 0
Θx (0) =\= 0
Θy (0) =\= 0

R
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Γ
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Table 4.2 Exact solution solutions for point load and end moment with free and 
fixed boundary condition 

I II

z = R

z' = r '

b=R
b=R '

us (0) = 0
vs (0) = 0
Wc (0) = 0
β(0)  = 0 
Θω (0) = 0
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Θy (0) =\= 0
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Table 4.3 Exact solution for distribute loading with fixed-fixed warping boundary 
condition 

z=R

Γ

z'=R '

p

m

us (0) = 0
vs (0) = 0
Wc (0) = 0
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1232 ff =        1333 ff =        1535 ff =        1636 ff =  
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Table 4.4 Exact solution for distribute loading with free and fixed warping 
boundary condition 

p

m

z=R z'=R '
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m
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us (0) = 0
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Θx (0) =\= 0
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1242 ff =        1343 ff =        2545 ff =        2646 ff =  
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Table 4.5 Exact solution for one vertical end moment with fixed-fixed warping 
boundary condition 

z=R z'=R

M

us (0) = 0
vs (0) = 0
Wc (0) = 0
β(0)  = 0 
Θω (0)  = 0
Θx (0) =\= 0
Θy (0) =\= 0

us (0) = 0
vs (0) = 0
Wc (0) = 0
β(0)  = 0 
Θω (0)  = 0
Θx (0) =\= 0
Θy (0) =\= 0
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1252 ff =       1353 ff =       1555 ff =       1656 ff =  
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Table 4.6 Exact solution for two different vertical end moments with fixed and 
free warping boundary condition 

z=R z'=R

ML MR

us (0) = 0
vs (0) = 0
Wc (0) = 0
β(0)  = 0 
Θω (0)  = 0
Θx (0) =\= 0
Θy (0) =\= 0

us (0) = 0
vs (0) = 0
Wc (0) = 0
β(0)  = 0 
Θx (0) =\= 0
Θy (0) =\= 0
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Table 4.7 Exact solution for one end bi-moment with fixed and free warping 
boundary condition 

z=R
z'=R

Mω=BR

us (0) = 0
vs (0) = 0
Wc (0) = 0
β(0)  = 0 
Θω (0)  = 0
Θx (0) =\= 0
Θy (0) =\= 0

us (0) = 0
vs (0) = 0
Wc (0) = 0
β(0)  = 0 
Θx (0) =\= 0
Θy (0) =\= 0
Θω (0)  =\= 0

 
Mx 0 

Mω ( ) ( )
k

zkTzkB sinhcosh 00 +  

T0 
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−
−

 

B0 
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−
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071 =f        kBf R=74        1272 ff =       1373 ff =       2575 ff =       2676 ff =  

 
 
 
 
 
 
Table 4.8 Comparison the results solution for point load (P=10) and end moment 

with fixed-warping boundary condition  
 z=0 z=L/2 z=L 

Exact Solution 94.6 -53.9 94.6 
Approximation 104 -63.4 104 
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Table 4.9 Additional Incremental Strain Terms Associated with Non-Symmetric 
Section 

Value Additional terms 
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Table 4.11 Additional Incremental Terms Associated with Quadric Incremental 
Displacement for Non-Symmetric Section 
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Figure 4.1 basic boundary and loading condition for shear force and moment. 
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Figure 4.2 Shear forces and moments for load number j. 
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(a) 3-D Curved Beam Model 
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(b) 2-D Curved Beam Model 

 
Figure 4.3 Curved Beam Models 

 



 96

F=M/h
F=M/h

∆ ∆

q

q=M/R h

L=R

Plane View of Curved Beam

Plane View of 
Equivalent Straight Beam  

Point Load P

Mc=PL/4

BMD

Segment of Enclosed Angle 

 
 
 
 

qc=Mc/(R h)=(P L)/(4R h)

Plane View of Isolated Flange5qcL(ML)A=
96

2

5qcL
96

2

Mω Z=0 = (ML)A h Mω Z=L = (ML)B h

(b)

3qcL
96

2

RA=qc L/4 RB=qc L/4

Distributed Lateral foces
Induced by Moment, M

Fixed 
Warping BC

(ML)B=

(ML)C=

 
 

Figure 4.4 (a) Small Segment of Curved Beam and Equivalent Straight Beam; 
 (b) Procedure of Calculating Approximated Bi-moment 
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Figure 4.5 Cross section of curved beam for evaluation of exact solution 
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Figure 4.7 Section with Reference Line in Cross Section. 
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Figure 4.8 Section with Reference Line not in Cross Section. 
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                          Figure 4.9 Radial Distributed Load on the Flange 
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Figure 4.10 Rotation α Induced by the Sectional Deformation 
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Figure 4.11 Web Deformation and Internal Moment mα 
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5. Development of Line Element 
 
5.1 Introduction 
In last chapter, the differential equations of load-displacement relationships are 
developed for horizontally curved beams considering large displacements, rotations 
and deformations of the beam cross section. The makeup of terms of these equations is 
dependent upon loads and boundary conditions. The equations are too complex and are 
too complicated for closed-form solution. Even for individual cases of beam geometry 
and loading, exact solution is generally not possible and approximate solution by 
numerical procedure is difficult. Instead, most often the employed procedure for 
solution is the finite element method. 
General purpose finite element packages with shell elements can be used for 
evaluation of behavior of individual curved beams, with satisfactory results. However, 
for examining the general behavior of curved beams, for evaluating the existing 
solutions of differential equation based on first order formulation and for the 
demanding task of developing stress equations for design of horizontally curved beams, 
utilization of a general purpose finite element program is a formidable undertaking. 
  In order to achieve the goals of this study, a finite line element for curved beams is 
developed in this chapter. The line element incorporates sectional deformation and 
warping of the beam cross section. The effects of different levels of simplification, as 
given in Chapter 3, can be compared by employing the line element. The P-∆ effect on 
curved beams will also be developed in this chapter. 
The mathematical base of formulating the line element is essentially the same as that 
utilized in last chapter for the formulation of general equations. 
 
5.2 Shape Function and Displacement Field 
In a finite element analysis, a system is approximated by an assemblage of discrete line 
elements which are connected at the nodal points. The displacement field of the line 
element in the variation of minimum total potential energy, Equation 4.2, can be 
interpolated from nodal displacement by using shape functions.  
 

{ } [ ]dNu =                     5.1a 
{ } { }T

scs vwuu αβ=                       5.1b 
[ ] [ ]54321 ,,,, NNNNNN =                   5.1c 

 
where { }u  is displacement field vector 
  d  is nodal displacement vector 

[ ]N  is the shape function or transformation matrix 
 
Since five independent displacement variables are used in this study, five shape 
functions are needed. The other displacement variables shown in Eq. 4.39b can be 
expressed by the five independent variables. In the following section, the components 
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of the displacement vector and the shape function matrix for a curved beam element 
are presented. 
 
5.2.1 Nodal Degree of Freedom 
The line element for curved beam has two nodes. Each node has seven degrees of 
freedom (DOF) as shown in Figure 5.1: three translations and three rotations about x, y 
and z, and warping. Thus, fourteen degrees of freedom (DOF) are used for the nodal 
displacement vector of a line element. The nodal DOF can be expressed by the 
combination of displacements and twist rotation; 
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Where: us0, vs0 and wc0 are the displacement at nodal point (z=0) 
θx0, θy0 and β0 are rotational about x-, y- and z-axis (z=0)  



 103

θω0 is warping rotation at nodal point (z=0) 
             usL, vsL and wcL are the displacement at nodal point (z=L) 

θxL, θyL and βL are rotational about x-, y- and z-axis (z=L)  
θωL is warping rotation nodal point (z=L) 

       
If sectional deformation is considered, another degree of freedom is needed. Since the 
sectional deformation degree of freedom is an independent variable, nodal 
displacement vector can be expressed in the following matrix form. For convenience, 
only the nodal DOF at z=0 are presented. 
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s
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Where  

{ }T
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dsu0  and 0us are the vector dsu  and us at z=0 
The superscript “s” in Eq. 5.3 denotes sectional deformation. It is noted that two 
reference axes are used for the nodal displacement and rotation of Eq. 5.3. The 
longitudinal nodal displacement wc0 refers to the centroid; the lateral and vertical 
displacement us0 and vs0 refers to the shear center. For the one-reference axis line 
element, all displacement and rotation refer to the centroid. Special care is needed to 
form nodal rotation, θx, θy and θw, from independent variables, uc, vc and β. This is 
presented in the following subsection.  
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5.2.2 Shape Functions 
One of the issues of deriving a shape function is the problem of membrane locking. 
When a lower order independent interpolation function for displacement is used, the 
finite element model becomes too stiff resulting in displacement smaller than the exact 
value. Higher order interpolation functions are not efficient in terms of calculation 
time. In an effort to overcome the numerical difficulty and to have an efficient 
interpolation function, an approximate function based on the generalized linear strain 
is used. The generalized linear strain formulated on two reference line can be obtained 
from Eq. 3.7 and expressed as the following: 
 

 ( )






 −−−−′= )cos1(sin/ ββ

R
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R
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
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
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

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R
vy s

s ββωββ cossincos                    5.4 

 
If the linear parts of strains are treated as independent variables, the strain terms inside 
of parentheses can be used for interpolation of element displacement. By assuming that 
strains associated with the flexural and torsional behavior of a curved beam line 
element can be approximated by linear functions and those strains associated with 
axial displacement can be approximated as constants, shape functions can be derived.  

( ) 21
1)cos1(sin/
R

a
R
x

R
yRuw ss

sc =−−−−′ ββ                   5.5a 

( ) 232
1coscoscos11
R
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R
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R
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R s
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s 





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



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R
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R
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




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R

a
R
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R
vs 






 +=

′′
−′′− ββ                  5.5d 

Where: a1 to a7 are coefficients to be determined by nodal displacement. 
 
The shape function of the sectional degree of freedom, α, is assumed as an 
independent variable and interpolated by a linear function.  

2
8

R
a

=′α                     5.5e 

Equation 5.5 is solved to obtain the displacement components of the curved beam. The 
solutions are: 
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For convenience, only the shape functions for eight DOF which are associated with 
sectional deformation are presented. In matrix form, Equation 5.6 can be expressed as 
the following: 

{ } [ ] au ss •Φ=                     5.7a 
where: 
 { }Ts aaa 161K=                              5.7b 



 106

[ ] [ ]

































































−
−

−

−
−

−

=ΦΦΦΦΦ=Φ

ϕ

ϕ

ϕϕϕ

ϕϕϕ

ϕ

ϕ

ϕ
ϕϕ

0000
00
00
00100
0000

020

0
62

0

01000
10000

000

000

000
00010
00001
0001
000

22

32

2

54321

zzzs

zzz

s

s

s

z
s

zz

ssssss

ssRcy
ccRs

R
R

y

Ry
R

R
R
y

c
R
y

sc

       5.7c 

R
z

=ϕ , 





=

R
zcz cos and 






=

R
zsz sin  

The superscript “s” in Eq. 5.7 denotes the inclusion of sectional deformation. To link 
the displacement field, Eq. 5.6, with the nodal displacement, Eq. 5.3c, the following 
relationship is used. 

 
[ ] au sdsds •Φ=                    5.9a 

[ ] [ ]54431231 ΦΦ′ΦΦ′Φ′ΦΦΦ=Φ ssssssssds                5.9b 
The symbol prime denotes differentiation with respect to z. Since the nodal 
displacement is the displacement field at the ends of the curved beam element, the 
relationship between the integration constant or coefficient a  and nodal displacement 

{ }T
L

sss uud ,0=  can be established by combining Eq. 5.3a and Eq. 5.9a. 
At z = 0; 

[ ] [ ]( )aBu sdsss •Φ•= 00                            5.10a 
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At z = L; 
[ ] [ ]( )aBu sd

L
ss

L
s •Φ•=           

5.11a 
[ ]

T

L

LL

LLLLL

LLL
L

sL

LsLsL
s

LLLL

LLLLL

s
L

s
LL

d
L

s

R
c

R
s

RR

sc
R

R

cs
R

R
y

R
s

R

cysyycs

sRcRR
R

R
R
y

R
yc

















































−

−

−

−

−−

−

=Φ

ϕ

ϕ

ϕϕϕ

ϕϕ

ϕϕϕϕ

ϕϕϕ

ϕϕ

000000010000000

00021001000000

00010000000

0014
2

000000000

00000000000001

000
2

00010

012
6

000000000

000000000011

2

2

2

22

23

 
5.11c 

Where:  
R
L

L =ϕ   





=

R
LsL sin  






=

R
LcL cos  

 
From Eqs. 5.3, 5.10 and 5.11, the integration constant as  can be expressed by the 
following equation: 
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[ ] da sss •Ψ=                   5.12a 

[ ] [ ]
[ ]









Φ

Φ
=Ψ

d
L

s

ds
s 0                  5.12b 

             
By substituting Equation 5.12a into Equation 5.7a, the displacement field can be 
interpolated by the nodal displacement: 
 

[ ] dNdu ssssTs
s 1

1
1 =Ψ×Φ=

−                  5.13a 
 

[ ] dNdw ssssTs
c 2

1
2 =Ψ×Φ=

−                 5.13b 
 

[ ] dNdv ssssTs
s 3

1
3 =Ψ×Φ=

−                  5.13c 
 

[ ] dNd ssssTs
4

1
4 =Ψ×Φ=

−
β                 5.13d 

 
[ ] dNd ssssTs

5
1

5 =Ψ×Φ=
−

α                 5.13e 
 Where 1Ns .. 5Ns  are the shape function vector for us, wc, vs, β and α 
The superscript “s” in Ns denotes the inclusion of sectional deformation. If it is not 
included in the analysis, the matrixes [sΦ] and [sΨ] in Eq. 5.13 have to be modified for 
the shape functions of the seven degrees of freedom (DOF) of the line element.  The 
modified matrixes and the shape functions of the seven DOF are listed in Table 5.1 for 
later use in this study. 
The shape functions 1Ns .. 5Ns  are developed from two reference lines. The procedure 
of developing the shape function from one reference line is the same as that for two 
reference lines except the terms xs and ys are replaced. However the definition of nodal 
rotation should be changed.  
Since the rotation of arbitrary points which are not in a cross section is not affected by 
warping and is constant by the rigid body rotation of the cross section, only Saint-

Venant torsion has to be considered for these points. The nodal rotation
R
wu c

cy +′=θ , 

′= cx vθ  and 
R
vc′+′= βθω  have two rotational components. The nodal displacement uc 

and vc in the expression of θx, θy and θω can be expressed as βssc yuu +=  

and βssc xvv −= . Thus, the nodal rotations are 
R
wyu c

ssy +′+′= βθ , ′−′= βθ ssx xv and 

R
xv ss

′−′
+′=

ββθω  . The terms ′βsy  and ′βsx in the expression of nodal rotation are due 

to warping of the cross section. It implies that the rotation of the reference axis which 
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is located outside of the section includes warping deformation. However, warping 
deformation exists only in the section. Therefore, the rotation associated with warping 
deformation should be removed from the rotation of the reference axis outside of the 

cross section. Therefore, nodal rotations of one reference line are ( )
R
wyu c

scy +′−= βθ  , 

( )′+= βθ scx xv  and ( ) Rxv sc /′++′= ββθω . The shape functions based on one 
reference line can be obtained by modifying the matrix [sΦ], [sB] and [sΨ] expressed in 
the Eq 5.7c, 5.3e and 5.12b. [sΦ] can be modified as: 
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The superscript “s” and subscript “c” in [ ]c
s Φ  denote sectional deformation and 

centroid.  
The nodal degree of freedom, ds , can be modified as; 
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The modified [ ]Ψs   are 
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With the matrix [ ]c
s Φ , [ ]c

sB  and [ ]c
s Ψ , the displacement fields based on one reference 

line can be interpolated as the following equation. 
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[ ] dNdu s
c

ss
c

sT
c

s
c 1

1
1 =Ψ×Φ=

−                  5.17a 
 

[ ] dNdw s
c

ss
c

sTs
c 2

1
2 =Ψ×Φ=

−                5.17b 
 

[ ] dNdv s
c

ss
c

sTs
s 3

1
3 =Ψ×Φ=

−                 5.17c 
 

[ ] dNd s
c

ss
c

sTs
4

1
4 =Ψ×Φ=

−β                5.17d 
 

[ ] dNd s
c

ss
c

sTs
5

1
5 =Ψ×Φ=

−α                 5.17e 
  
Where 1c

s N .. 5c
s N  are the shape function vector based on one reference line (centroid) 

for uc, wc, vc, β and α. 
 
5.2.3 Nodal Load Vector 
The nodal load vector can be derived from Eq 4.41. As mentioned before, body forces 
are not considered in this study. The nodal load vector is composed of two vectors, due 
to distributed and concentrated loads. By substituting the shape function of Eq. 5.13 
into the first term (the integrand term) of Eq. 4.41, the distributed load can be 
transformed into an equivalent nodal load and expressed as the following equation: 
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           5.18a 













=
L

d

f
f

f 0                   5.18b 

{ }Tddd
z

d
y

d
x

d
z

d
y

d
x mmmmmffff 000000000 αω=                5.18c 

{ }Td
L

d
L

d
zL

d
yL

d
xL

d
zL

d
yL

d
xLL mmmmmffff αω=              5.18d 

 
Where df  is the equivalent nodal load vector due to distributed loads. The 
forces d

xf , d
yf , d

zf , d
xm , d

ym , d
zm , dmω and dmα are equivalent nodal loads due to 

xf , yf , zf , xm , ym , zm , ωm and αm , respectively. 
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The nodal load vector due to concentrated forces can be derived from the last term of 
Eq 4.41. By limiting the location of concentrated load to the nodal points, the nodal 
force is:  

  









=
L

d

F
F

F 0                   5.19a 

{ }T
zyxzyx MMMMMFFFF 000000000 αω=            5.19b 

{ }T
LLLzLyLxLzLyLxL MMMMMFFFF αω=            5.19c 

 
Where dF  is the nodal load vector due to concentrated external loads. The nodal load 
vectors are shown in Figure 5.1 for the single reference line formulation. In two 
reference line formulation, Mx, My, Fz are applied to the centroid of cross sections and 
Fx, Fy, Mz, Μω are applied to the shear center. 
For incremental analysis of large displacement and rotation, the variation of nodal 
displacements, distributed loads (Eq. 5.18) and concentrated loads (Eq. 5.19) are 
changed to incremental nodal displacements, distributed loads and concentrated loads. 

 
=∆∆ df sd δ  

( )
dz

dNmdNmmdN
R
m

f

dN
R
mmfdNmf

L

ssss
z

ssy
z

ss
xy

ss
yx

∫




















∆∆+∆




 ′∆−∆+∆







 ∆
+∆+

∆












 ′∆
−′∆−∆+∆





 ′∆−∆

=
0

542

31

δδδ

δδ

αω

ω

  

5.20 













∆

∆
=∆

L

d

f
f

f 0                   5.21a 

{ }Tddd
z

d
y

d
x

d
z

d
y

d
x mmmmmffff 000000000 αω ∆∆∆∆∆∆∆∆=∆            5.21b 

{ }Td
L

d
L

d
zL

d
yL

d
xL

d
zL

d
yL

d
xLL mmmmmffff αω ∆∆∆∆∆∆∆∆=∆            5.21c 









∆

∆
=∆

L

d

F
F

F 0                   5.21d 

{ }T
zyxzyx MMMMMFFFF 000000000 αω ∆∆∆∆∆∆∆∆=∆  5.21e 

{ }T
LLLzLyLxLzLyLxL MMMMMFFFF αω ∆∆∆∆∆∆∆∆=∆    5.21f 

 
Because the line element is represented by reference lines and points, external 
concentrated loads have to be transformed to reference point loads. When concentrated 
loads are not on the reference point, it generates secondary forces corresponding to the 
displaced configuration of the beam. Figure 5.2 shows a concentrated load that is not 
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on the reference line. The load is coupled with the sectional rotation and displacement, 
and generates a secondary moment. By using the incremental form of potential energy 
due to applied loads, the secondary moment at the reference point can be derived with 
respect to the initial configuration. With the assumption of small rotation in each 
incremental step, secondary moment can be expressed by the following equation. 
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Where, the superscript “sm” in Eq 5.22 denotes secondary moment. For large rotations 
with concentrated loads applied at arbitrary points of a cross section (y0), secondary 
moment can be obtained using the following expressions. 
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Where  smM  is vector of the secondary moment 
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 sm
yM  is the secondary moment about y-axis 

 sm
xM  is the secondary moment about x-axis 
sm
zM  is the secondary moment about z-axis 

x0 and y0 are the distances of point load from the reference point 
[T1] are the transformation vector associated with y0 

  [T2] are the transformation vector associated with x0 
 
5.2.4 Calculation of Stresses 
With large displacements and rotations, curved beams may be subjected to relatively 
high stresses. It is necessary to calculate the maximum stress based on the large 
displacement and large rotation analysis, for checking against limit states.  
The simplified longitudinal strain for an arbitrary cross section is obtained From Eq. 
4.9a and expressed as the following. 
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In this equation, the terms associated with x2, y2, xy, xω and yω are not included. The 
components of the strain in Eq. 5.25 can be expressed in terms of sectional properties 
and stress resultants, Mx, My, Mz, Bi. 

 

( )
AE

Fe z=+ 00 η                  5.26a 

( ) ( ) ( ) ( )
( ) 











−−−+

−+−+−
−=+ 222

2

2 xyxwxywyywxyxwwyx

ywxyxwxywwxyywxwwxyx
xx IIIIIIIIIIIE

IIIIBiIIIMIIIIM
e η  5.26b 

( ) ( ) ( ) ( )
( )222

2

2 xyxwxywyywxyxwwyx

ywyxwxyywxwwxyyxwwyx
yy IIIIIIIIIIIE

IIIIBiIIIIMIIIM
e

−−−+

−+−+−
=+η        5.26c 

( ) ( ) ( ) ( )
( )222

2

2 xyxwxywyywxyxwwyx

xyyxywxyxxwyywyxwxyx

IIIIIIIIIIIE

IIIBiIIIIMIIIIM
e

−−−+

−+−+−
=+ ωω η        5.26d 

 
By substituting Equation 5.26 into Equation 5.25 and using the constitutive law, the 
following equation for calculating longitudinal normal stresses is obtained; 
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It should be noted that in Equation 5.27, approximation (b) in Section 3.2 is used and 
stress resultants Kxx, Kyy Kxy and Kxω associated with terms of x2, y2, xy and xω are not 
included under the assumption that the contribution of these stress resultants are 
negligible. In order to use equation 5.27, the stress resultants, Mx, My, Mz and Bi have 
to be calculated first. Although the linear part of these stress resultants can be derived 
by solving linear differential equations or by free body diagrams, the complete stress 
resultants can only be obtained by solving higher order nonlinear differential equations. 
Furthermore, if the contributions of stress resultants, Kxx, Kyy Kxy and Kxω to the 
longitudinal stress are not negligible, obtaining stresses from Eq. 5.27 may generate 
inaccurate results.    
In finite element analysis, on the other hand, stresses can be easily computed. In each 
incremental step, the displacement field is interpolated from the nodal displacements. 
By substituting the displacement field into Equation 4.9a and using the constitutive 
law, the longitudinal stresses can be calculated. With regard to the maximum 
longitudinal stress in the beam, an example equation for calculation including full 
nonlinear effects is developed in Chapter 8 by using this approach for curved beams 
subjected to end moments Mx..  
 
5.3. Stiffness Matrix 
5.3.1 Linear, Stress and Geometric Stiffness Matrixes 
In order to solve the nonlinear equation in the variation of total potential energy, Eq. 
4.2, linearization of the first term is necessary. Linearization can be done by ignoring 
the high order terms under the assumption that displacement and rotation are small and 
can be represented by the first term of Taylor’s expansion.  After linearization, first 
term of strain energy, Eq. 4.2 can be expressed as the following.  
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Where S  is the approximate stress vector and can be expressed as [ ] eCS = . The first 
term and the second term of the linearized variation of strain energy of Eq. 5.28 are 
defined as the linear stiffness matrix, [K], and the stress stiffness matrix, [Ks]. Since 
there are two non-zero strains, longitudinal and shear strain, and only homogeneous 
material is considered, the linear stiffness matrix can be defined from the following 
equation: 
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By substituting the linear strains, Eq 4.9, into Eq 5.29, the following equations are 
obtained 
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The displacement functions in equation 5.30 can be interpolated by the shape function 
in Table 5.1 and expressed as the following equation; 
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By using the sectional properties defined in Eq 4.60 to 4.65, the linear stiffness matrix 
in Eq 5.31 can be expressed as the following equation; 
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Similarly, the stress stiffness matrix, [Ks], can be derived from the second term of 
Equation 5.28. By substituting the interpolation functions into the displacement field, 
the stress stiffness can be expressed by the nodal displacements and shape functions: 
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In Eq 5.33, the superscript “a” of stress resultants represents multiplying

xR
R
−

 to the 

corresponding terms in the integration function of Eq 4.12, e.g., ∫ 







−
=

0A

a
z dA

xR
RF σ .  

The linear and stress stiffness matrix, Eq. 5.32 and Eq. 5.33 are developed under the 
assumption of small displacement and rotation. For large displacement and large 
rotation analysis, the incremental stiffness matrixes are needed. By using the 
incremental total Lagrange formulation derived in Section 4.5, the incremental 
stiffness matrixes can be developed. In this study, several different incremental 
stiffness matrixes are derived. The difference among them is in the approximation used 
in the simplification of incremental strains. These incremental stiffness matrixes will 
be used for analyzing the effect of simplification in large rotation stage.  
 
The linear incremental stiffness matrix can be formulated from the first term of 
Equation 4.76. The incremental strain in e∆ of Eq. 4.76 can be decomposed into two 
strains; the linear incremental strain and the initial incremental strain. 
 

ieee ∆+∆=∆ 0                      5.34 

 Where 0e∆  is the linear incremental strain vector 
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  ie∆  is the initial incremental strain associated with initial displacement 
 
By using Eq. 5.34, Equation 4.76 is decomposed as 
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The first term and second term of the linearized variation of strain energy in Eq. 5.35 
contain the incremental linear stiffness matrix, [∆K], and the incremental geometric 
stiffness matrix, [∆Kg]. The third term contains the incremental stress stiffness matrix, 
[∆Ks]. Since there is only two non-zero incremental strain, longitudinal and shear 
strain, the first term of equation 5.35 can be written as the following equation; 
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By substituting the linear incremental strains, Eq. 4.81, into the first and second term 
of right hand side of Eq. 5.36, the linear incremental strain energy can be expressed in 
terms of the incremental displacement field: 
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By interpolating incremental displacement in equation 5.37 from the shape functions 
of Table 5.1, the incremental linear stiffness matrix can be obtained: 
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From orthogonal condition and the sectional properties defined in Eqs. 4.60 to 4.65, Eq. 
5.38b is transformed to the following equation: 
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The incremental geometric stiffness matrix [∆Kg] can be derived from the second term 
of Equation 5.35. Several geometric stiffness matrixes are derived from the simplified 
longitudinal and shear strains in this study. For convenience, only the geometric 
stiffness matrix based on the complete incremental strain developed in Section 4.5.2, is 
expressed in Eq 5.41 and Eq. 5.42.  
In [∆Kg], two types of displacement are used, initial displacement and incremental 
displacement. Since at position t+∆t of Figure 4.6, the initial displacement is known, 
the only unknown quantities are the components of the incremental displacement. 
Thus, the incremental geometric stiffness matrix can be obtained by interpolating the 
incremental displacement, resulting in the following equation. 
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5.41 
 
The strain vector terms D in equation 5.41 are listed in Table 5.2. The superscript “g” 
of the symbols gD  indicates that the strain vectors are associated with geometric 
stiffness matrix and are expressed with coupling between incremental and initial 
displacement. The superscript “a” and “q” in the symbol gD  denote that strain terms 
are multiplied by the term R/(R-x) and R2/(R-x)2. 
 
In the total Lagrange formulation, the undeformed configuration is used as the 
reference for the subsequent positions. Thus, the initial displacement at each 
incremental position has to be updated by adding the incremental displacement from 
the last position to the initial displacement of that position. The nonlinear response in 
the load and deformation relationship is caused by the coupling between incremental 
and initial displacements as seen in Equation 5.41. This updating of the initial 
displacement and the coupling of terms make the geometric stiffness matrix very 
complicated. This is one of the disadvantages of the total Lagrange formulation. 
The triple integration function of Equation 5.41 can be simplified to single integration 
by using orthogonal condition, the sectional properties and Eq 4.5. Because the 
complete expansion is quite lengthy, only the terms associated with A, Qx, Qy, Qω, Ix, 
Iy, Iω and KT are shown below in Eq. 5.42. The omitted terms are listed in Table 5.3. 
The complete geometric stiffness can be obtained by multiplying the sectional 
properties in the second column of Table 5.3 to the strain terms in the third column and 
adding to Eq 5.42. 
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The incremental stress stiffness matrix [∆Ks] can be derived from the third term of the 
variation of strain energy, Eq 5.35. Similar to the case of incremental geometric 
stiffness matrix, several stress stiffness matrices are derived from the simplified 
longitudinal and shear strains. Only the stiffness matrix based on the complete 
incremental strain developed in Section 4.5.2, is expressed in Eq 5.43 and 5.44.  
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The matrix terms of incremental strains in Eq. 5.44, [ ]sD0  to [ ]s

nD , are interpolated by 
the shape function in Table 5.1 and listed in Table 5.4. The superscripts “a” and “q”in 
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[ ]sD  indicates that strain matrix terms are to be multiplied by R/(R-x) and R2/(R-x)2, 
respectively  
 The incremental displacement and stress resultant are coupled in the stress stiffness 
matrix [∆Ks], from which the nonlinear effect of initial stress resultants can be 
considered. In the total Lagrange formulation, stress resultants have to be updated at 
the end of each position and can be calculated by using Eq. 4.59. 
The stiffness matrix, [∆Κ], [∆Κg] and [∆Κs] in Eqs. 5.39, 5.42 and 5.44, are derived 
based on shape functions, 1N .. 4N  which do not consider sectional deformation and are 
listed in Table 5.1. When sectional deformation is considered, the stiffness matrix, 
[∆Κ], [∆Κg] and [∆Κs] are changed to [ ]Ks∆ , [ ]g

sK∆  and [ ]s
sK∆  which is linear, 

geometric and stress incremental stiffness matrix associated with sectional deformation. 
The superscript “s” denotes sectional deformation.  
 
The linear incremental stiffness, [∆K] Eq. 5.39, can be changed to [ ]Ks∆  by 
replacing 1N .. 4N  to 1Ns .. 4Ns  (Eq. 5.13) and modifying the last term of Eq. 5.38b, 
which is associated with shear strain and altered to the following equation. 
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By using the sectional properties, Eq. 5.45 can be expressed as: 
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Where KTf and KTw are Saint-Venant constant of flange and web respectively. 
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The geometric incremental stiffness, [∆Kg] Eq. 5.42, can also be changed to [ ]g
sK∆  by 

replacing 1N .. 4N  to 1Ns .. 4Ns  and modifying the last term of Eq. 5.42, which is 
associated with shear strain and altered to the following equation. 
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Similarly, the incremental stress stiffness, [∆Ks] Eq. 5.44, is changed to [ ]s

sK∆  by 
replacing 1N .. 4N used in Table 5.4 to 1Ns .. 4Ns  and modifying the last term of Eq. 5.44 
and is shown as below. 
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Additional incremental stiffness matrixes associated with the web deformation are 
needed. With the web-deformation strain and the incremental shear strain expressed in 
Eq. 4.102 and 4.103, the additional linear stiffness matrix associated with web 
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deformation can be derived. The following equation shows the additional stiffness 
matrix: 

 
[ ] dKddVeeEdV sw

T

VV
ww ∆∆∆=∆∆=∫∫ δδεδσ αα

00              5.52a 

[ ] [ ]∫ ′×′=∆
L

sTs
swsw dzNNIEK 55                 5.52b 

Where: 

∫

















=

A
sw dAx

d
yI

2

212                            5.52c 

[ ]swK∆ is the additional linear stiffness matrix 
0
αe∆  is the component of linear incremental strain of the web, Eq. 4.102 

 
It is noted that the shape function with superscript “s” and subscript “5” in Eq. 5.45 to 
Eq. 5.52 indicates sectional deformation and shape function of sectional deformation.  
 
So far, incremental stiffness matrixes for seven and eight DOF are developed. The 
total incremental stiffness matrix is the sum of linear, geometric and stress incremental 
stiffness matrixes and can be expressed as the following. 
 

• For a seven DOF element 
[ ] [ ] [ ] [ ]sgTotal KKKK ∆+∆+∆=∆  

 Where  
[ ]TotalK∆  is the total incremental stiffness matrix 

[ ]K∆  is the incremental linear stiffness matrix, Eq. 5.39 
[ ]gK∆  is the incremental geometric stiffness matrix, Eq. 5.42 

[ ]sK∆  is the incremental stress stiffness matrix, Eq. 5.44 
 
• For a eight DOF element 

[ ] [ ] [ ] [ ] [ ]sws
s

g
ss

Total
s KKKKK ∆+∆+∆+∆=∆  

 Where  
[ ]Total

sK∆  is the total incremental stiffness matrix for eight DOF element 

[ ]Ks∆  is the incremental linear stiffness matrix for eight DOF element 

[ ]g
sK∆  is the incremental geometric stiffness matrix for eight DOF element 

[ ]s
sK∆  is the incremental stress stiffness matrix for eight DOF element 

[ ]swK∆  is the additional incremental stiffness matrix, Eq. 5.52b 
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5.3.2 Unbalanced Matrix  
Because of the approximation used in linearization, the solution may have an error. 
The magnitude of error can be checked by evaluating the unbalanced forces based on 
Equation 4.81. The unbalanced forces can be adjusted to within tolerance by updating 
the incremental displacement through iteration. The detailed procedure of iteration is 
presented in Section 5.4. 
In Section 4.5.1, the error in virtual work by external load was expressed by Eq. 4.77. 
The first term of the equation is a known value. In the second term, the variation of 
total strain at position t+∆t, ( )ktt ∆+εδ , is equivalent to ( )kte ∆δ because at position t 
equilibrium is already satisfied and there is no variation of strain. Therefore the 
equation can be expressed as the following. 
 

( ) ( ) ( ) dVSeHerror
V

kTkk tttt

∫
∆+∆+

−=
0

δ                            5.53 

where k is iteration number  
 
By using the incremental strain, the second term of equation 5.53 can be written as:  
 

( ) ( ) ( ) ( )( ) ( ) dVSeedVSe k

V

Tkik

V

kTk tttt ∆+∆+

∫∫ +=
0

0

0

δδδ                     5.54 

 
By using the shape functions of Table 5.1, Eq. 5.54 can be interpolated as: 
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

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3          5.57c 




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−′′−=
R
NcNDa 3

4ω          5.57d 







 ′

+′=
R
NcNDsz

a 3
4           5.57e 

When sectional deformation is considered, shape functions, 1N .. 4N  in Eq. 5.57 have 
to be replaced by 1Ns .. 4Ns  and the last term of equation 5.56 need to be modified as 
the following; 

 [ ] [ ]∫∫ +
L

g
n

a
sv

L

g
n

a
sv dzDMdzDM

wwff
                 5.57 

An additional term associated with the sectional deformation moment has to be 
included in Eq. 5.56. 

[ ]∫
L

dzM αα              5.58 

The stress resultant Mα is defined in Eq. 4.96c. 
 
5.4 Numerical Solution Technique for Incremental Analysis 
Several numerical solution schemes for solving nonlinear problems have been 
developed. The characteristics of numerical solution is represented in terms of stability, 
accuracy and efficient for convergence. Originally, incremental analysis starts with the 
“pure” incremental method. The loading is divided into small steps. Within each step, 
structural behavior is considered linear. In this method, no iteration for reducing the 
unbalance forces from linearization is performed. The accuracy of the pure 
incremental method depends on the size of steps. In Newton-Raphson method, 
constant load steps are used with iteration for reducing the unbalance forces and error. 
The limitation of this method is that when the structural member becomes “unstable”, 
i.e. singularity in stiffness matrix when the load-deflection curve reaches the maximum 
point and starts to unload, convergence problem occurs. As long as the structural 
member has a positive stiffness matrix, this method is relatively simple and efficient. 
In this study, this method is adopted as a checking tool. 
In order to circumvent the singularity problem, the displacement control method and 
the arc-length method have been developed. In the displacement control method, 
constant displacement steps instead of constant loading steps are used. When the 
structural response changes sharply, e.g. a snap-through behavior of an arch type 
structure, the displacement control method may have difficulty in convergence. A 
snap-through behavior can be handled by considering the variation of nonlinearity in 
each incremental step. The arc-length method adopts variable loading and 
displacement steps based on the response of the previous incremental step. And 
orthogonal condition is applied for the convergence. The arc-length method is chosen 
for the current study. 



 129

The nonlinear equation for incremental analysis of a structure can be expressed as the 
following: 
 

( )[ ] ( ) ( ) ( ) 1−∆+∆+∆+∆+ −=∆ kttkttkttktt FHuK                 5.59 
Where ( ) kttu ∆+∆ is the incremental displacement of the kth iteration in incremental 
position t+∆t, ( ) 1−∆+ kttF  is the internal stress resultant forces of the kth iteration in 
incremental position t+∆t, and ( ) kttH ∆+  is the external nodal load applied on the 
structure. 
The initial conditions of equation 5.59 are 

( )[ ] ( )[ ]ttt KK =∆+ 0                    5.60a 
( ) ( )ttt uu ∆=∆ ∆+ 0                  5.60b 

( ) ( )ttt FF =∆+ 0                   5.60c 
The external load ( ) kttH ∆+  is composed of two components; 

 
( ) ( ) ( ) HHH kttkttktt ∆+−∆+∆+ ∆+= λ1                   5.61 

Where ( ) ktt ∆+∆λ is the load increment factor for the kth iteration in incremental position 
t+∆t and H  is the reference external load that should be decided in the beginning of 
the incremental step. After the kth iteration, the total displacement can be calculated by 

 
( ) ( ) ( ) kttkttktt uuu ∆+−∆+∆+ ∆+= 1                   5.62 

Another expression for the incremental displacement ( ) kttu ∆+∆  is the summation of the 
reference displacement and the unbalance displacement;  

 
( )[ ] HuK kktt =∆−∆+ 1                    5.63 
( )[ ] ( ) ( ) ( ) 1111 −∆+−∆+−∆+−∆+ =−=∆ kttkttkttkktt rFHuK &&&                5.64 

Where ku∆  is the reference displacement, ku&&&∆  is the unbalance displacement and 
( ) 1−∆+ kttr  is the unbalance force at the (k-1)th iteration in incremental position t+∆t. 

With the reference and unbalance displacement, the incremental displacement can be 
expressed by the following equation; 

( ) ( ) kkkttktt uuu &&&∆+∆∆=∆ ∆+∆+ λ                  5.65 
A numerical solution technique is characterized by the procedure of calculating the 
incremental load factors. In the following, the procedures of calculating the load 
factors by Newton-Raphson method and by the arc-length method are shown. 
 

• Newton-Raphson Method 
In the Newton-Raphson method, the incremental load factor is set for a constant value. 
Equation 5.65 in Newton-Raphson method can be written as the following equation;  

( ) ( ) kkttktt uuu &&&∆+∆∆=∆ ∆+∆+ λ                   5.66 
 
Figure 5-3 illustrates the process of solution by Newton-Raphson method. 
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• Arc-Length Method 

The arc length method considers the constraint condition for determining the first load 
increments in each step and makes the solution converge to equilibrium by using the 
orthogonal condition. This is illustrated in figure 5-4. The following constraint 
condition is used for determining the load incremental factor and for performing 
iterations; 

 
( )( ) ( ) ( ) ( ) 211 suu kttttkttTtt ∆=∆∆+∆∆ ∆+∆+∆+∆+ λλ                 5.67 

Where ( ) 1ttu ∆+∆  and ( ) kttu ∆+∆  are the incremental displacement at the first and the kth 
iteration at incremental position t+∆t, and ∆s is the prescribed arc length. In the 
beginning of each step, the arc length can be calculated from the following equation; 

  

( ) ( )
( )t

L
tt

I
Iss 111 ∆=∆ ∆+                   5.68 

Where IL
 and I(t) is the limitation of number of iteration and the number of iteration on 

the preceding incremental step, and ( )11s∆  is the prescribed arc length at the first 
incremental step. ( )11s∆  can be calculated from Equation 5.69 with the unit incremental 
load factor. 

 
( ) ( )( ) ( ) 1111111 +∆∆=∆ uus T                   5.69 

At the first step of position t+∆t, i.e., k=1, the incremental displacement, ( ) 1ttu ∆+∆  can 
be calculated from Equation 5.66 with no unbalanced forces ( 01 =∆u&&& );  
 

( ) ( ) ( ) 111 tttttt uu ∆+∆+∆+ ∆∆=∆ λ                   5.70 
By substituting Equation 5.70 into Equation 5.67, the load parameter ( )1tt ∆+∆λ can be 
calculated; 

( )
( )

( )( ) ( ) 111

1
1

+∆∆

∆
=∆

∆+∆+

∆+
∆+

ttTtt

tt
tt

uu

sλ                  5.71 

After the first iteration, the iteration path follows the normal vector, Nr, as shown in 
Figure 5.4. This task can be done by letting ( ) 01 =∆ ks  for k > 1.  
By substituting Equation 5.65 into Equation 5.67 and using ( ) 01 =∆ ks , the load factor 
can be calculated; 

 

( )
( )( ) ( )

( )( ) ( ) ( )111

11

ttttTtt

ttTtt
ktt

uu
uu

∆+∆+∆+

∆+∆+
∆+

+∆∆

∆∆
=∆

λ
λ

&&&
                5.72 

With the load factor, the incremental displacement for the kth iteration in position t+∆t 
can be calculated from Equation 5.65. 
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With the establishment of the displacement field, nodal forces and stiffness matrixes, a 
finite line element for curved beam is developed. Different from conventional beam 
element, the curved beam line element incorporates large rotation, large displacement, 
cross sectional deformation and P-∆ effect. Different levels of simplification of strain 
can be incorporated into the line element. The evaluation of the line element will be 
conducted next. 
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 Table 5.1 Nodal Displacement and Shape Function Vector for Seven DOF 
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Table 5.2 The strain terms in the equation 5.41 
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Table 5.3 Additional term of geometric stiffness matrix in equation 5.42 
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Table 5.4 the notation of Ds in the equation 5.44 
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                    Figure 5.1 Nodal Degrees of Freedom and Nodal Loads 
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Figure 5.2 Concentrated Load on Top Flange 
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Figure 5.3 Newton-Raphson Method. 
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6. Load and Deflection Curves 
 
6.1 Introduction 
In the previous chapters, the derivation of equations for analyzing nonlinear response 
of horizontally curved beams has been presented. In Chapter 3, simplified strains 
based on different degrees of approximation that have been used in curved beam 
studies are derived. In Chapter 4, comprehensive nonlinear differential equations 
incorporating large displacement and rotation, simplified strains, P-delta effect and 
sectional deformation are developed. In Chapter 5, a numerical solution tool, the finite 
line element (FLE), for solving those complicated nonlinear differential equations is 
developed. In this chapter evaluation of the derived equations and the finite line 
element is presented.  
The evaluation is conducted through analyzing a number of beams which were studied 
and reported in the literature. Unfortunately, the variations of beam cross sections, 
boundary conditions and loading cases of previous studies are limited. Most studies are 
on doubly symmetric cross sections. The study of singly symmetric and non-
symmetric cross sections with different combination of loading and boundary 
conditions is very rare.  On experimental study, only a few symmetric cross sections 
under pure flexural moment or point loading have been investigated. These very 
limited experimental and analytical data are insufficient for the evaluation of the 
derived equations and the finite line element. To overcome this situation, a three-
dimensional finite element model is developed using the readily available program 
ABAQUS to generate load-deflection curves for comparison. The results of three 
dimensional finite element analyses (3DFEA) are calibrated against existing 
experimental data.  
For the comparison of results from 3DFEA and from the finite line element analysis 
(FLEA), two set of boundary conditions are introduced for transforming the boundary 
conditions of the line element to three-dimensional boundary conditions. The 
evaluation is conducted by comparing load-deflection curves generated by 3DFEA, 
FLEA and experiments. Stress distributions in beam cross sections are also compared. 
Various cross sections and loading conditions are used for this numerical study.  
 
6.2 3D Finite Element Analysis (3DFEA)  
 
6.2.1 Finite Element Model  
The general purpose finite element analysis program ABAQUS is used. The choice of 
mesh size and element type relies on the balance of accuracy of results and the 
required computational time. Because a curved beam member is composed of thin 
plates, shell element is the best fit for the constant or linear stress distribution through 
the plate thickness. The shell element, S4R, a four node shell element capable of 
handling large strains and material and geometrical nonlinearity is chosen in this study. 
Also S4R element is “shear deformable” element, by which transverse shear 
deformation is allowed. Conventionally, the significance of shear deformation of a 
beam depends on the ratio of cross sectional dimensions and span length. It is 
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necessary to find out the limitation of ignoring shear deformation of horizontally 
curved beam, as it is assumed in the development of the finite line element. 
The Riks’ method is used for performing incremental nonlinear analysis in the finite 
element program. Increment of load and displacement is controlled simultaneously 
within the specified error criteria in this method. Because only homogeneous elastic 
material is considered in this study, linear stress and strain constitutive law is used for 
modeling curved beam.  
A horizontally curved beam modeled by S4R shell element is shown in Fig 6.1.  The 
same mesh size is used throughout the span. The curved beam is simply supported 
with the boundary condition of u = v = w = β = 0, θω ≠ 0 at one end and u = v = β = 0, 
w ≠ 0, θω ≠ 0  at the other end, where u, v, β and θω are the lateral and vertical 
displacement, rotation about the longitudinal axis and warping with respect to 
reference line. The cross section of the curved beam is shown in Figure 6.2. For a 
convergence test, two models with 943 and 2371 elements are used. Several loading 
cases are considered including bi-moment, moment about x-axis and about z-axis. 
Results indicate that the model with 943 shell elements is sufficiently accurate. In 
Figure 6.1, the displacement shape of the 943 element model generated by the moment 
about x-axis Mx, is shown. 
 
6.2.2. Boundary Conditions 
In order to compare the results from the three-dimensional model of 3DFEA with 
those from the line element model of FLEA, the boundary conditions of the line 
element have to be translated into those of the three dimensional model. In this study, a 
basic boundary condition of a horizontally curved beam is defined. The basic boundary 
system can undergo the most flexible stable nonlinear response of the curved beam 
system. The basic boundary condition has the displacement u, v, w and β restrained at 
one end section and u, v and β are restrained at the other end section. Warping of cross 
section, θω, is not restrained at the ends. 
The above assumption in three dimensional boundary constraints of two dimensional 
curved beams and the simulating line element is difficulty to interpret for three 
dimensional models. The interpretation of the assumption that plane cross sections of 
beams retain their original shape but can warp in the longitudinal direction is that only 
rigid movement in the transverse and longitudinal direction is allowed of the boundary 
or end cross sections. When external and nodal loads are applied, there may be slight 
or severe local deformation of cross section at the ends of three dimensional models. In 
order to make the assumptions consistent for the line element model and the three 
dimensional finite element models, rigid beams are introduced to the end cross 
sections of the three-dimensional finite element model. The three rigid beams are 
attached into the components of the boundary cross sections, as shown in Fig. 6.3. The 
connections between the flanges and the web are accomplished by a hinge to allow for 
rotational movement of the flanges about the y-axis only for warping distortion.  
Because the reference points of doubly and singly symmetric I-shaped cross section of 
curved beams are in the cross section, external forces and boundary condition can be 
directly applied to the centroid and shear center in the 3DFEA model. For non-
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symmetric cross section as seen in Figure 6.3, the centroid and shear center are not 
located in the cross section. Because there is coupling between displacement and nodal 
forces at the end cross sections, direct transferring of centroidal boundary condition of 
finite line element analysis (FLEA) into 3DFEA of beams with un-symmetric cross 
section is difficult. Further more, when large rotation is considered, transferring of 
rotation may not be done by merely considering rigid body rotation. It may need 
matrix formulation of large rotation (Argyris 1982). In order to overcome this difficult, 
an additional rigid beam is introduced to connect the centroid with a point of the cross 
section, as indicated in Fig. 4.8.  
For comparison purpose, a boundary cross section without the rigid beams is 
introduced, Fig. 6.4 so that the cross section is free to warp and deform. When the 
centroid and the shear center are not in the cross section, transferring of the FLEA 
centroidal restrain into 3DFEA cross sectional restrain is needed. But with coupling 
between the translation and large rotation and the condition of free warping and 
deformation at end cross sections, a method of transfer has not been developed. 
Therefore the free-to-deform boundary condition is limited to cases where the beam is 
fixed against rotation about the z-axis.  The rigid boundary condition is defined as the 
upper bound and the free to deform condition is the lower bound in this study 

 
6.2.3 Comparison with Experimental Results 
The purpose of the comparison is not to reproduce analytically by 3DFEA the results 
of the experiments but to investigate the influence of the significant factors affecting 
the behavior of curved beams. However it is very difficult to obtain detail information 
of the experiments from literature. The behavior of the bearings and lateral bracing 
system is often not reported. Such information is essential for the appropriate analysis 
of beam behavior. Two set of experimental results are compared: test results of Culver 
and Mozer (1971) and by Fukumoto and Nakai (1981).  
 
6.2.3.1 Comparison with Results of Beams Tested as a Pair 
Table 6.1 contains the sectional and geometrical properties of a pair of horizontally 
curved and simply supported beams, L1A and L2A, tested by Culver and McManus. 
The beams were hybrid, consisting of two different grades of steel. The flanges and 
loading stiffeners were made of ASTM-A36 steel. The web and transverse stiffeners 
were fabricated from ASTM-A570 Grade B steel with a minimum yield stress of 30 
ksi. The Loading and bearing stiffeners were attached to both sides of a web and the 
intermediate stiffeners were on one side only. Specimen L1A had full depth transverse 
stiffeners, whereas L2A had cut short stiffeners. Figure 6.5 shows the boundary and 
loading condition. There were a transverse diaphragm at each end and a bracing 
system at each loading point. The vertical, concentrated loads at the third points of the 
beam span generated a constant strong-axis flexural moment between the loads. The 
end diaphragms provided torsional restraint to stabilize the specimen under its own 
weight and under the external loads during testing. The Full depth loading stiffeners 
are considered to be able to restrain warping in the analysis. The lateral bracing system, 
placed symmetrically about mid-span, provided restraint to twist rotation. Because the 
sectional properties, material properties and boundary condition of the bracing system 
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are not known, different schemes are developed to simulate, including one as a beam 
and another one as a direct restraint at the upper and bottom flange. The materials of 
the beams are assumed elastic perfectly plastic in stress-strain relationship. Residual 
stresses and initial imperfection are not included in this analysis. 
The load-deflection curved for specimens L1A and L2A are plotted in Figures 6.6 and 
6.7. Five analyses were conducted to examine the effects of different schemes of 
bracing simulation. These are pin-pin ends (B1) and fixed-roller ends (B2) for the rigid 
bracing beams, direct restraint of nodes at loading point (B3), and sectional properties 
of EA/L=1667 k/in (S1) and 3750 k/in (S2) for the bracing beams. Another curve 
labeled as “Elastic & Geo-nonlinear” in the load-deflection plots is for the case in 
which only the geometrical nonlinearity is considered. 
Figures 6.6a and 6.6b compare the vertical deflection at mid-span. At loads below the 
first yield, the beam behavior is basically linear. The experimental results show a 
“softer” behavior than that from analyses. This response is attributed to the residual 
stresses and boundary settlement and rotation. Near and beyond the ultimate load, the 
load-deflection curves corresponding to the five lateral bracing conditions differ 
slightly. The computed ultimate strength by 3DFEA agrees well with the experiment 
result. 
The load and rotation responses at the end sections of the beams are not computed for 
comparison with the experimental results. Without detailed information of material 
and sectional properties of floor beams and end diaphragms at the end sections and 
loading points, computation can only provide rough estimates. In this part of study, 
only the comparisons of finite element analysis results with different assumed bracing 
condition are examined. 
In Figures 6.7a and 6.7b, the rotation at the mid-span is compared. The computed 
results of the five cases of lateral bracing are somewhat different and are much less 
than the experimental results. Two possible contributions to this large difference exist. 
First, rotation at the mid-span is the sum of all rotations including the twist rotation at 
the end sections. Second, the end diaphragm and bearing system are assumed as rigid 
against rotation and warping in the finite element modeling. This condition strongly 
indicates the short coming of attempting to estimate accurately the magnitude of 
rotation of curved beams. 
It is interesting to find out the degree of warping constraint at bracing points. The 
middle third of L1A was subjected to constant bending moment with the same warping 
restraint at the bracing points. Table 6.2 lists the computed warping moment from the 
finite line element analysis using the fixed-fixed and free-free conditions of warping 
restraint at the bracing points. The warping moment introduced by the lateral bracing, 
as evaluated from the experiment is much closer to that of fixed-fixed than of the free-
free condition of constraint. 
 
6.2.3.2 Comparison with Results of Beams Tested Individually 
Fukumoto and Nakai tested four beams individually (1981). Figure 6.8 shows the 
loading and boundary condition. The beams were simply supported at the ends where 
rotation was restrained but warping was free. A concentrated load at mid-span 
generated large rotation and it coupled with loading. Therefore, the P-∆ effect should 
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be considered. The evaluation of P-∆ effect is presented in Chapter 5 for the 
incremental analysis: 

 
( ) 0yuPuPuPMz ∆∆+∆+∆=                   6.1a 

 
The torsional moment, Mz, is automatically incorporated in the three dimensional 
finite element analysis (3DFEA). This torsional moment is used as an external load in 
the finite line element analysis (FLEA). The comparison between the measured 
rotation and the results of 3DFEA is presented in Figures 6.9 to 6.12. Two boundary 
conditions are used for analysis; one is free-to-warp and the other one is rigid against 
warping. For both conditions, analyses are conducted considering geometric 
nonlinearity in the elastic range. In the inelastic range, elastic-perfectly-plastic material 
properties are used with the geometric nonlinearity (ABQ free_ML in the figures).  All 
rotations presented in Figs. 6.9 to 6.12 are at the mid-span. The magnitudes of rotation 
are much higher than those of beams in Fig. 6.6 and 6.7.  Among the four beams of 
this group, specimen AR1 had an L/b ratio almost half that of the other three and 
above first yielding the computed rotation based on geometric nonlinearity only is 
quite different from those generated by considering both material and geometric 
nonlinearities. The BR series specimens, on the other hand, undergo large rotation and 
displacement before yielding. The specimens exhibit nonlinear behavior from the very 
beginning of loading. From the fact that the BR series beams are within the range of 
dimensional specifications, it is quite evident that nonlinear analysis based on large 
rotations and large displacements is necessary for the evaluation of behavior of curved 
beams.  
Overall, the computed rotations agree well with the experimental results. The three 
dimensional finite element model is to be used for evaluating the results of the finite 
line element procedure. 
 
6.3 Effects of Simplification of Strains 
In Chapter 3, several simplified strains are developed based on the following 
approximations; a) the nonlinear term divided by quantities R2 and higher can be 
ignored, b) (R-x)/R can be simplified as unity, c) the nonlinear term divided by R can 
be ignored,  d) with small rotation, cos(β) and sin(β) can be simplified as their first 

term of Taylor expansion and e) the inextensible conditions; 0≅−
∂
∂

R
u

z
w  and 

0≅∂
∂

z
w . Each simplified strain is used in formulating the finite line element in 

Chapter 5. In this section, the effects of approximation a) to c) are examined using a 
numerical study. As mentioned in Chapter 3, approximation e) vanishes by the 
adoption of approximation a). The effect of approximation d) will be examined in 
Chapter 7.  
The numerical study is accomplished by comparing the results from analyzing a beam 
by the finite line element based on approximations a) to c).  
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The dimensions and sectional properties of the beam are shown in Fig. 6.13. The 
sectional properties L/b=25, L/R=0.1, bf/tf=20, d/tw=165, d/bf=2, tf/tw=3 and Af/Aw=1.3 
are near or at the current limits of AASHTO Specifications. High effects of nonlinear 
response are expected. The basic boundary condition is used that the ends are 
constrained against rotation but are allowed to warp. For the external load, equal 
moments about the x-axis, Mx, applied at the end section. 
The effects of approximation a) that the nonlinear term divided by quantities R2 and 
higher can be ignored are shown in Figures 6.14 to 6.16. Figure 6.14 shows the lateral 
displacement at the mid-span. Two curves are plotted; one is from the analysis in 
which all the nonlinear terms are included and the other is associated with 
approximation a). The two curves are essentially identical. In a similar way, the 
vertical displacement and rotation curves plotted in Figures 6.15 and 6.16 are also 
nearly identical. The effects of approximation a) are trivial.  
The effects of approximations a) and b), in which (R-x)/R are simplified as unity, is 
shown in Figures 6.17 to 6.19. The figures show that for the lateral, vertical and 
rotational response of the curved beam, the difference between the results of no 
simplification and of adopting approximations a) plus b) is very small. Practically no 
difference is founded.  
 
With the approximations a), b) and c), in which nonlinear terms divided by R are 
ignored, the effects of simplification are detectable in Figures 6.20 to Figure 6.22. 
Approximation c) implies that only first order terms coupling with trigonometric 
functions are considered. It is observed that the lateral displacement and rotation are 
slightly higher with the approximations whereas the vertical displacement is slightly 
less. The maximum difference is about 4%, and the effects of approximations can still 
be ignored. 
The results of this case study imply that the benefit of simplification overcomes the 
loss of accuracy. Therefore, from the practical point of view, the usage of simplified 
form of strains based on the approximation a), b) plus c) is justifiable. In the following 
section, simplification using the approximations a), b) plus c) will be used for 
numerical studies of horizontally curved beams.  
 
6.4 Comparison of Deflections by 3DFEA and FLEA 
In previous sections, the three dimensional finite element analysis model is calibrated 
with experimental results and the simplification for the finite line element is 
determined. In this section, the developed finite line element will be evaluated by 
comparing the results from its use with the results from using the three dimensional 
model. Four different shapes of cross section are examined, i.e., doubly symmetric, 
singly symmetric about x-axis (C-shape), singly symmetric about y-axis (I-shape) and 
un-symmetric cross sections. For each cross section, four different external loads are 
used, i.e., Mx, My, Mz and Bi-Moment. Two different boundary conditions are used in 
the 3DFEA model: free-to-deform and rigid boundary condition. For the line element 
analysis, twelve line elements incorporating large displacement, large rotation and 
cross sectional deformation are used. The number of twelve elements is decided by a 
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convergency test. The numerical studies for evaluating the line element are conducted 
within the elastic range of material properties. 
 
6.4.1 Doubly Symmetric Cross Section 
 
6.4.1.1 Load and Deflection Response 
For the geometry and material properties of the doubly symmetric cross section, the 
beam studied by Fukumoto and Nishida (1981) is used. This cross section is shown in 
Figure 6.23. The material properties are E=29,000 ksi and G=12,000 ksi. The beam is 
restrained by the basic boundary condition. The ratio of sectional dimensions are b/tf 
≈12, d/b ≈2.5, d/tw ≈50, L/R =0.008, L/b=27. Among the ratios, the sectional property 
of L/b is significant for the load-deflection behavior of curved beams. With a L/b ratio 
of 27, being slightly higher than the AASHTO limit of 25, relatively severe flexural 
respons is expected. 
 
Moment about the x-axis, Mx 
The vertical end moment, Mx, in the three dimensional finite element model is 
generated from the point loads as shown in Figure 6.24. Because of the boundary 
condition of the model, the point loads may not generate the exact amount of vertical 
moment. In order to check this, it is necessary to calculate the stress resultants at the 
loading section. The resultant forces can be calculated from the stresses obtained from 
the finite element model and the definition of fundamental stress resultants.  

 
dABdAxMdAyMdAFz zizyzxz ∫∫∫∫ ==== ωσσσσ ,,,    6.1 

 
This approach is used in calculating all nodal forces for the line elements at the bracing 
points of curved beams, especially for calculating bi-moments. For a continuous 
curved beam braced by lateral bracing, the segment between the bracing points is 
modeled as a single span with external load. Different from the other six nodal forces 
of line elements, the bi-moment can not be calculated statically. Table 6.4 shows the 
externally applied and resultant forces, which agree well.  
The load-deflection curves at the centroid at mid-span are shown in Figures 6.25 to 
6.27. In all cases, the line element results agree well with the three dimensional finite 
element results. The curves also show that the rigid and free-to-deform boundary 
condition act as the upper and lower bound of deflection response. 

 
Torsion at Mid-span (Mz) 
The point loads for generating moment Mz at mid-span in the ABAQUS model are 
depicted in Figure 6.28a. The deformation of the beam under the torsional moment is 
shown in figure 6.28b.  
Figures 6.29 to 6.31 show that the displacements of the centroid at the midspan as 
generated by the finite line element analysis (FLEA) are in between those by the three-
dimensional finite element analysis (3DFEA) with the rigid and free-to-deform 
boundary condition. 
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Bi-Moment  
The point loading system and the corresponding deformation are shown in Figure 
6.32a and Figure 6.32b. The lateral deflection, vertical deflection and rotation of the 
centroid at the mid-span are shown in Figures 6.33 to 6.35. 
Again, the results of line element analysis are in between those from the upper bound 
and lower bound boundary conditions of 3DFEA. A notable phenomenon is the 
relatively wide range between the results of the upper and lower bound boundary 
conditions.  

 
Moment about the y-axis, My 
The point loading system in the three-dimensional finite element model for generating 
My and the corresponding deformation shape are shown in Figure 6.36a and Figure 
6.36b. Different from other loading condition, lateral bending moment is “in-plane” 
loading for the curved beam. Therefore, there is no coupling of rotation and vertical 
displacement. Only lateral displacement is developed as plotted in Figure 6.37. With 
this loading condition, the horizontally curved beam is transformed into an arch. 
Figure 6.37 shows that the results of finite line element analysis (FELA) agree well 
with that of three dimensional finite element analysis (3DFEA). 
 
6.4.1.2 Stress Distribution 
Two sets of stress calculations are conducted: by linear analysis and nonlinear analysis. 
Calculation of stresses by linear analysis is done by calculating the linear stress 
resultants and plugging into the corresponding parts of Eq. 5.27. The linear part of 
stress resultants, Fz, Mx, My, at mid-span can be obtained from statics. The linear part 
of bi-moment can be calculated by solving the linear differential equation Eq. 4.65 or 
using Table 4.1 to 4.7 for different set of warping boundary condition. Stresses based 
on the nonlinear analysis can be also calculated by using Eq 5.27. In order to use Eq 
5.27 in nonlinear analysis, the linear and nonlinear parts of stress resultants, i.e., Eq 
4.59, have to be calculated. Calculation of the nonlinear part of stress resultants 
requires solving nonlinear differential equation. This task may not be easily 
accomplished. Furthermore, in Eq 5.27, the stress resultants associated with x2, y2, xy 
and xω are not included. In this study, the stresses from nonlinear analysis are 
obtained by substituting total displacement of each incremental step into Eq. 4.9a and 
using the constitutive law. 
The stress distributions in the cross section at mid-span due to two equal end moments, 
Mx, are shown in Figures 6.38 to 6.43 for two different loading stages, Mx=100 k-in 
and 250 k-in, (σmax = 0.3σy and 0.9σy).  The cross section in Figure 6.23 and the basic 
boundary condition are used for calculating the stresses. The stresses calculated by the 
three-dimensional finite element model with rigid and free to deform ends (ABQ Rigid 
and ABQ Free) and by the line element model with linear analysis and nonlinear 
analysis (Linea Anal and Line Ele) are compared. Figure 6.38 to Figure 6.40 show the 
stress distribution along the top flange, web and bottom flange when Mx=100 kips-in 
(σmax = 0.3σy). Figure 6.41 to Figure 6.43 show the stress distribution when Mx=250 
kips-in (σmax = 0.9σy). As seen in Figures 6.38, 6.40, 6.41 and 6.43 for stress 
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distribution in the flanges, the results of the nonlinear analysis from the three 
dimensional finite element model and from the line element model agree quite well. 
On the other hand, even at Mx=100 k-in (σmax = 0.3σy =15 ksi), there are relatively 
large differences between the results from the non-linear analysis and the linear 
analysis. At Mx=250 kip-in (σmax = 0.9σy), the stress at the tip of the top flange 
calculated by the linear analysis is about one third lower and at the tip of the bottom 
flange, about one third higher. Since the contribution of stress resultants, My, on 
longitudinal stresses is not anymore secondary and can not be generated from linear 
analysis, these differences occur. Also the stress resultants, Kxx, Kyy, Kxw, Kyw, can not 
be generated from linear analysis and cause more difference in relatively high loading 
stages. This condition suggests that linear analysis is not adequate for the computation 
of flange stresses of horizontally curved beams.  
 
6.4.2 Singly Symmetric Cross Section (I-Shape) 
The cross sectional shape and dimensions are given in Figure 6.44. The length and 
radius of the curved beam are L=107 (in) and R=1338 (in). The elastic and shear 
modulus are E=29,000 ksi and G=12,000 ksi. The beam has simple boundary 
condition with respect to bending and torsion at ends, where axial rotation is prevented. 
The beam is subjected separately to a vertical moment (Mx), a lateral moment (My), a 
torsional moment (Mz) and a bi-moment (Bi). Both axes of vertical and lateral 
moment pass through the centroid of the cross section. Torsional moment and bi-
moment are applied through the shear-center.  
In the analysis, both the procedures of one-reference line and two-reference lines are 
evaluated. Twelve line elements are used for the line element analysis. For the three 
dimensional finite element model, 943 shell elements are used. External point loads 
similar to those for the doubly symmetric cross section of the last example are used for 
generating Mx, My, Mz and Bi-moment in the three dimensional finite element model.  
 
Moment about the x-axis (Mx)  
For the applied vertical bending moment (Mx) at the end sections, a set of point loads 
similar to that of Figure 6.24 is used. The lateral, vertical and rotational displacements 
are plotted in Figure 6.45 to Figure 6.47. For all displacement, the results of using one-
reference line and two-reference lines are the same. It confirms the fact that if sectional 
properties of any I-shaped cross section are properly introduced, the strain equations 
for the development of partial differential equation of doubly symmetric cross sections 
can be used for non-symmetric I-sections. 
Similar to the case of doubly symmetric cross sections, the results of displacement 
form the line element analysis are closer to the upper bound results from 3DFEA. The 
stress distribution in the unsymmetric I-section is also similar to that of a doubly 
symmetric cross section. The stress distribution at two loading stages are plotted in 
Figures 6.48 to 6.53 for Mx = 100 kips-in (σmax = 0.35σy) and Mx = 220 kips-in (σmax = 
σy). For both the top and bottom flanges at both loads, the stresses calculated by the 
line element model and the three-dimensional finite element model are in good 
agreement. The stress distributions calculated from considering only the linear part of 
stress resultants do not provide accurate results. At Mx =100 kip-in, the maximum 



 154

stress calculated by the linear analysis is about 25% lower and at Mx=220 kips-in, 
about 40% lower than that from the nonlinear analysis. Further more, surprisingly at 
Mx=220 kips-in, the trend of stress distribution in the bottom flange is opposite 
between the linear and the nonlinear analysis. This situation strongly indicates the 
necessity of nonlinear analysis.  

 
Moment about z axis (Mz) 
A point load system similar to that of Figure 6.28 for the doubly symmetric cross 
section is applied at the mid-span of the singly symmetric I-section to generate 
torsional moment in the span. The load and deflection curves for the lateral 
displacement, the vertical displacement and the rotation at the mid-span are presented 
in Figures 6.54 to 6.56. These results are quantitatively identical to the corresponding 
ones in Figures 6.29 to 6.31 for doubly symmetric I-beams. The results from the line 
element analyses are between the lower and upper bound results from the three-
dimensional finite element analysis. 
 
Bi-Moment 
Under an applied bi-moment similar to that of Figure 6.32 for a doubly symmetric 
cross sections, the load-deflection behaviors are also similar. The deflection curves are 
plotted in Figure 6.57 to Figure 6.59. The results of the line element analysis are in 
between those from the upper bound and lower bound boundary condition of 3DFEA. 
Similar to the case of doubly symmetric cross section, the difference between the 
curves of upper bound and lower bound conditions is relatively big when the beam is 
subjected to bi-moment. 
 
My and Bi-moment 
Because the beam cross section is only symmetric about the y-axis, “in-plane” loading 
as shown in Figure 6.32 generates not only My but also a bi-moment. The bi-moment 
can be easily calculated from the sectorial area of the cross section. For the given cross 
section, the magnitude of the bi-moment is 3.5*My. The load and deflection curve 
from the line element analysis of the combination of these two loads is shown in 
Figure 6.60. The results agree well with those by 3DFEA. The magnitudes of the 
vertical displacement and rotation are quite small in comparison to that of the lateral 
displacement, and are not presented.  
 
6.4.3 Singly Symmetric Cross Section about x-axis (Channel Section) 
The axes of centroid and shear center of singly symmetric channel section are out side 
of the cross section.  When a reference line is not in the cross section, special care is 
needed to interpret the warping displacement, as presented in Section 4.6.  
The cross section of the simply supported beam for analysis is shown in Figure 6.61. 
The length of the channel section is L=107 in. The L/R ratio is 0.008. The beam is 
restrained by the basic boundary condition. Two different loads are applied; a vertical 
moment, Mx, and a bi-moment, Bi. For the line element analysis, twelve line elements 
are used.  
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For comparison, a three-dimensional finite element model is again used with 
equivalent external point loads. The boundary conditions as shown in Figure 6.62 are 
used for generating Upper bound and lower bound of load and deflection curves.  
It is noted that for cross sections singly symmetric about x-axis, point loads at beam 
ends usually generate two or more stress resultants. The point loads in Figure 6.62 
generates not only Mx but also Bi. By using the stress distribution from the three-
dimensional finite element analysis, stress resultants can be calculated. The stress 
resultants can be used for checking the external loads calculated by statics. The stress 
distribution along the flanges and the web at the end of the beam are plotted in Figures 
6.63 to 6.65. It is interesting that the stress distribution along the web is not linear. 
Since a fictitious wall is used to link the centroidal reference point to the middle point 
of the cross section in 3DFEA as shown in Figure 6.3, local deformation at the 
junction point is inevitable and may cause nonlinear stress distribution in the web. The 
stress resultants calculated from these stresses and Eq 6.1 are listed in Table 6.5.  The 
external loads and stress resultants are in good agreement. 
The lateral, vertical and rotational deflection curves from the line element analysis and 
those from 3DFEA with upper bound and lower bound boundary conditions are 
compared in Figures 6.66 to 6.68.  All load-deflection curves are in good agreement, 
with the line element results fall in between the upper and lower bound curves of the 
three dimensional finite element analysis. The results generated from using two-
reference lines and using one-reference line produce almost identical results. 
Figures 6.69 to 6.74 show the stress distribution along the top flange, web and bottom 
flange when Mx=1145 kips-in (σmax = 0.35σy) and 3000 kips-in (σmax = σy). Similar to 
the conclusion from the singly symmetric I section, the linear analysis does not 
provide adequate results especially in the flange at relatively high magnitude of 
stresses. 
 
6.4.4 Unsymmetrical Cross Section 
 
6.4.4.1 Deflections  
To evaluate the application of the line element to general thin-walled open cross 
sections, the cross section in Figure 6.75 is selected. The span length, L/R ratio, 
material properties and boundary condition are the same as those used for the singly 
symmetric I-shaped and channel cross sections. From the point loads shown in Figure 
6.75 for a vertical bending moment Mx, a bi-moment Bi is generated. The magnitude 
of the balancing bi-moment is Bi=0.1 Mx. The results of the line element analysis and 
the 3D finite element analysis are shown in Figures 6.76 to 6.78  
As shown in these figures, the lateral deflection and the rotation curves for the centroid 
as produced by the line element analysis agree well with those by the 3D finite element 
analysis. The load versus vertical displacement curve is quite different from the other 
curves. The vertical displacement decreases sharply as the magnitude of Mx increases 
beyond 3000(k-in).  The reasons are the coupling of Mx and bi-moment and the 
relatively rapid increase of rotation under load. The more flexible free-to-warp 
boundary condition permits more rotation than the rigid boundary condition, and leads 
to more reduction of the vertical displacement at centroid. Although general 
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unsymmetrical cross sections are not normally used for structural members, the unused 
behavior warrants more study, particularly in conjunction with material nonlinearity. 
 
 6.4.4.2 Stress distribution 
The stress distributions developed from the line element analysis are compared with 
those from the three-dimensional finite element analysis (3DFEA) and from a linear 
analysis. The stresses along the mid thickness of the section at the mid span of the 
beam are plotted in Figures 6.79 to 6.84 for end moments of Mx=870 kips-in (σmax = 
0.41σy) and Mx=1742 kips-in (σmax = 0.9σy).  
Similar to the cases of thedoubly and singly symmetric cross sections, all results agree 
well at relatively lower loads. In the top flange, the stress distribution by the linear 
analysis deviates from those by 3DFEA and FLEA at moderately high loads.  
 
6.4.5 Comparison of Results from FLEA and Tests 
Until now, evaluation of the finite line element analysis (FLEA) has been done by 
comparison of its results with the results of the three dimensional finite element 
analysis (3DFEA). Direct comparison with test data is needed. The experimental 
results of Fukumoto and Nakai (1981) are used.  
Their experimental results of four test beams have been shown in Figures 6.9 to 6.12. 
These results are compared here with the results of their elastic analysis considering 
geometric nonlinearity and with the results of the line element analysis of this study. 
The load-deflection curves are plotted in Figures 6.85 to 6.88. The analytical results 
from the line element analysis are in good agreement with the test results except for 
beam BR3. With a small curvature, the contribution of geometrical nonlinearity on 
deflections is relatively small for this beam. The computed rotation from the line 
element analysis (Fig. 6.88) and from 3DFEA (Fig. 6.12) are less than those from the 
test. On the other hand, for the other three beams with large curvature, AR1, BR1, 
BR2, the geometric nonlinearity initiate at an early stage of loading, the line element 
analysis provides very good agreement with the test results. Since all sectional 
properties of test specimen are within the practical range of horizontally cured beams, 
it is evident from the comparison that geometric nonlinearity should be included in the 
design and analysis of horizontally curved beams. 
 
6.5 Evaluation of Exact Solution of Some Cases 
In Chapter 4, exact solutions for seven loading and boundary conditions based on 
small displacement and rotation are given. These solutions differ from those 
approximate solutions as is shown in Table 4.8. With the development of the line 
element, direct comparison can be made. Because the differential equations from 
which an exact solution is derived are base on small displacement and rotation, a line 
element formulated with approximations a), b), c) and d) is used. The beam cross 
sectional and material properties of Figure 4.5 are used for evaluation. 
Table 6.6 to 6.12 list the bi-moments at the ends and mid-span for warping boundary 
and loading condition listed in the table 4.1 to 4.7. The bi-moments calculated from the 
expression of exact solution agree quite well with those computed from the line 
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element analysis with the corresponding simplification, confirming the adequacy of 
both the exact solution and the line element. 
However, it must be emphasized again that linear analysis under estimates 
displacement and stresses, and considering geometrical nonlinearity in the analysis of 
horizontally curved beams is essential. 
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Table 6.1 Sectional and Geometrical Properties of Beams, Culver and McManus 
Specimen dw(in) b(in) tw(in) tf(in) L(in) R(in) 

L1A 17.87 5.94 0.12 0.39 180 595 
L2A 17.93 6.0 0.119 0.39 180 606.7 

 
 

 
Table 6.2 Warping Moment at Bracing Points, L1A 

Applied Constant 
Moment(k-in) 

Bi Moment 
Fixed-Fixed 

Bi Moment 
Free-Free 

Bi Moment 
L1A 

665 332 332 0 0 269 269 
1255 628 628 0 0 550 550 

 
 
 

 
  Table 6.3 Dimensions and Sectional Properties of Beams Tested by Fukumoto 

and Nakai 
Specimen d(in) b(in) tw(in) tf(in) L(in) R(in) L/R 
AR1 9.91 4 0.220 0.331 66.93 911.9 0.07 
BR1 9.85 3.96 0.217 0.331 110.24 1336 0.08 
BR2 9.91 3.96 0.224 0.327 110.24 2838 0.04 
BR3 9.86 3.86 0.220 0.327 110.24 19002 0.006 
 

 
Table 6.4 Applied Vertical Bending Moment and Resultant Forces 
 Fz Mx My Bi 

Stress Resultant 0 69.4 0.03 0 
External load 0 70.0 0 0 

 
 

Table 6.5 Stress Resultants at End Sections, Channel Shape 
 Mx My Bi 

Stress Resultant  101.08 -0.00075 67.33 
External load 100 0 66.7 

 
 
Table 6.6 Comparison the results solution for point load (P=10) and end moment 

with fixed-warping boundary condition  
 

 z=0 z=L/2 z=L 
Exact Solution 94.6 -53.9 94.6 
Line Element 94.0 -53 94 
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Table 6.7 Comparison the results solution for point load (P=10) and end moment 
with fixed and free warping boundary condition  

 
 z=0 z=L/2 z=L 

Exact Solution 131.6 -70 0 
Line Element 131 -69.8 0 

 
 
 

Table 6.8 Comparison the results solution for distribute loading (p=0.1) with 
fixed-warping boundary condition  

 
 z=0 z=L/2 z=L 

Exact Solution 60.84 -32.2 60.84 
Line Element 60 -31.4 60.84 

 
 
 
 

Table 6.9 Comparison the results solution for distribute loading (p=0.1) with 
fixed and free warping boundary condition  

 
 z=0 z=L/2 z=L 

Exact Solution 84.5 -42.5 84.5 
Line Element 83.6 -41.8 83.6 

 
 
 
 

Table 6.10 Comparison the results solution for one vertical end moment (Mx=100) 
with fixed warping boundary condition 

 
 z=0 z=L/2 z=L 

Exact Solution 36.97 -14.27 24.1 
Line Element 36.4 -14 23.9 

 
 
 

Table 6.11 Comparison the results solution for two different vertical end 
moments (Mx=100, My=200) with fixed and free warping boundary condition 

 
 z=0 z=L/2 z=L 

Exact Solution 131 -57.3 0 
Line Element 12.9 -56.8 0 
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Table 6.12 Comparison the results solution for one end bi-moment (Bi=100) with 

fixed and free warping boundary condition 
 

 z=0 z=L/2 z=L 
Exact Solution -39 16.93 100 
Line Element -38 16.1 100 
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Figure 6.1 Finite Element model of Horizontally Curved Beams 
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Figure 6.2 Cross section of beam for convergence test 
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Figure 6.3 Rigid Boundary Modeled with Rigid Beams 
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Figure 6.4 Free-to-deform Boundary Condition 
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Figure 6.5   Specimen L1A       
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Figure 6.6a Load and vertical deflection of Specimen L1A  
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Figure 6.6b Load and vertical deflection of Specimen L2A  
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Figure 6.7a Load and rotation of specimen L1A 
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Figure 6.7b Load and rotation of specimen L2A 

  
 
 
 
 
 
 

 
 

Figure 6.8 Boundary and Loading Condition of Beams Tested by Fukumoto and 
Nakai 
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*ML represents material nonlinearity  
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Figure 6.9 Load and rotation of Specimen AR1 
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Figure 6.10 Load and rotation of Specimen BR1 
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Figure 6.11 Load and rotation of Specimen BR2 
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Figure 6.12 Load and rotation of Specimen BR3 
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Figure 6.13 Dimension and Properties of Beam 
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Figure 6.14 Load and Lateral Displacement for Approximation a) 
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Figure 6.15 Load and Vertical Displacement for Approximation a) 
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Figure 6.16 Load and Rotation for Approximation a) 
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Figure 6.17 Load and lateral displacement for Approximations a) + b) 
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Figure 6.18 Load and vertical displacement for Approximations a) + b) 
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Figure 6.19 Load and rotation for Approximations a) + b) 
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Figure 6.20 Load and lateral displacement for Approximations a) + b) + c) 
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Figure 6.21 Load and vertical displacement for Approximations a) + b) + c) 
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Figure 6.22 Load and rotation for Approximations a) + b) + c) 
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Figure 6.23 Doubly Symmetric Cross Section for Numerical Studies 
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Figure 6.24a Model for Mx 
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in the figure 6.25 ~ 6.27

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.24b Vertical Bending Moment and Deformed Shapes 
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Figure 6.25 Lateral Displacement Due to Vertical bending moment 
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Figure 6.26 Vertical Displacement Due to Vertical bending moment 
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Figure 6.27 Rotation Due to Vertical bending moment 



 176

Deformed shape

Undeformed shape

The location of displacement
in figure 6.29~6.31

p

p

ABAQUS modeling for generating Mz

Figure 6.28a Point Loads for Torsional Moment Mz 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 

 
Figure 6.28b Deformation of Curved Beam Due to Mz 
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Figure 6.29 Lateral Displacement Due To Mz 
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Figure 6.30 Load and vertical displacement generated from torsional moment 
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Figure 6.31 Rotation Due To Mz 
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Figure 6.32a The Point Loads for Bi-moment 
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Figure 6.32b Deformation Shape by Bi-Moment 
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Figure 6.33 Lateral Displacement Due to bi-moment 
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Figure 6.34 Vertical Displacement due to Bi-Moment 
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Figure 6.35 Rotation due to Bi-Moment 
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Figure 6.36a Point Loading System for Lateral Bending Moment, My 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 6.36b  Deformation Shape by the Lateral Bending Moment 
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Figure 6.37 Lateral Displacement due to lateral bending moment, My 
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Figure 6.38 Stress Distribution of Top Flange at Mx= (100 k-in)  
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Figure 6.39 Stress Distribution of Web at Mx= (100 k-in) 
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Figure 6.40 Stress Distribution of Bottom Flange at Mx= (100 k-in) 

 
 



 184

-70

-60

-50

-40

-30

-20

-10

0

10

20

30

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

location (in)

st
re

ss
 (k

si
)

ABQ Rigid

Line Ele

ABQ Free

Linear Anal

Mx=250

 
Figure 6.41 Stress Distribution of Top Flange at Mx= (250 k-in) 
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Figure 6.42 Stress Distribution of Web at Mx= (250 k-in) 
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Figure 6.43 Stress Distribution of Bottom Flange at Mx= (250 k-in) 
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Figure 6.44 Singly Symmetric Cross Section and Sectional Properties 
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Figure 6.45 Lateral Displacement due to Vertical Bending Moment, Singly 

Symmetric I-Shape  
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Figure 6.46 Vertical Displacements due to Vertical Bending Moment, Singly 

Symmetric I-Shape  
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Figure 6.47 Rotations from Vertical Bending Moment, Singly Symmetric I-Shape  
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Figure 6.48  Stress Distribution of Top Flange at Mx= (100 k-in) , Singly 

Symmetric I-Shape 
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Figure 6.49 Stress Distribution of Web at Mx= (100 k-in) , Singly Symmetric I-

Shape 
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Figure 6.50 Stress Distribution of Bottom Flange at Mx= (100 k-in) , Singly 

Symmetric I-Shape 
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Figure 6.51 Stress Distribution of Top Flange at Mx= (220 k-in) , Singly 

Symmetric I-Shape 
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Figure 6.52 Stress Distribution of Web at Mx= (220 k-in) , Singly Symmetric I-

Shape 
 



 190

0

2

4

6

8

10

12

14

-4 -3 -2 -1 0 1 2 3 4

location (in)

st
re

ss
(k

si
)

ABQ Rigid

Line Ele

ABQ Free

Linear Anal

 
Figure 6.53 Stress Distribution of Bottom Flange at Mx= (220 k-in) , Singly 

Symmetric I-Shape 
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Figure 6.54 Lateral Displacement by Torsional Moment, Singly Symmetric I-

Shape 
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Figure 6.55 Vertical Displacements by Torsional Moment, Singly Symmetric I-

Shape 
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Figure 6.56 Rotation by Torsional Moment, Singly Symmetric I-Shape 
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Figure 6.57 Lateral Displacements by Bi-Moment, Singly Symmetric I-Shape 
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Figure 6.58 Vertical Displacement by Bi-Moment, Singly Symmetric I-Shape 
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Figure 6.59 Rotations by Bi-Moment, Singly Symmetric I-Shape 
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Figure 6.60 Lateral Displacement by Combined Load My and Bi-moment, Singly 

Symmetric I-Shape 
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Figure 6.61 Singly Symmetric Channel Section 
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Figure 6.62 Point loads and Boundary Conditions of Symmetric Channel Section 
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Figure 6.63 Stress Distributions along Bottom Flange by Vertical Bending 

Moment 
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Figure 6.64 Stress Distributions along Web by Vertical Bending Moment 
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Figure 6.65 Stress Distribution along Top Flange by Vertical Bending Moment 
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Figure 6.66 Lateral Displacement by Mx and Bi-Moment 
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Figure 6.67 Vertical Displacement by Mx and Bi-Moment 
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Figure 6.68 Rotation Induced by Mx and Bi-Moment 
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Figure 6.69 Stress Distribution along Top Flange, by Mx=1145 and Bi 
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Figure 6.70 Stress Distribution along Web Induced, by Mx=1145 and Bi-moment 
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Figure 6.71 Stress Distribution along Bottom Flange, by Mx=1145 and Bi-

moment 
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Figure 6.72 Stress Distribution along Top Flange, by Mx=3000 and Bi-moment 
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Figure 6.73 Stress Distribution along Web induced, by Mx=3000 and Bi-moment 
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Figure 6.74 Stress Distribution along Bottom Flange, by Mx=3000 and Bi-

moment 
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Figure 6.75 Point Loads and Unsymmetric Sectional Properties 
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Figure 6.76 Lateral Displacement by Coupled Loads Mx and Bi-moment 

(Unsymmetric Cross Section) 
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Figure 6.77 Vertical Displacement by Coupled Loads Mx and Bi-moment 

(Unsymmetric Cross Section) 
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Figure 6.78 Rotation by Coupled Loads Mx and Bi-moment 

(Unsymmetric Cross Section) 
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Figure 6.79 Stress Distribution along Top Flange, Mx=870(k-in) 
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Figure 6.80 Stress Distribution along Web, Mx=870(k-in) 
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Figure 6.81 Stress Distribution along Bottom Flange, Mx=870(k-in) 
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Figure 6.82 Stress Distribution along Top Flange, Mx=1742(k-in) 
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Figure 6.83 Stress Distribution along Web, Mx=1742(k-in) 
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Figure 6.84 Stress Distribution along Bottom Flange, Mx=1742(k-in) 
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Figure 6.85 Load and rotation of Specimen AR1 
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Figure 6.86 Load and rotation of Specimen BR1 
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Figure 6.87 Load and rotation of Specimen BR2 
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Figure 6.88 Load and rotation of Specimen BR3  

 
 
 



 208

7. The Sources of Nonlinearity  
 
7.1 Introduction 

In Chapters 4 and 5 differential equations and a finite line element for curved 
beams were developed including the strains of large deflection, large rotation, P-delta 
action and cross sectional deformation. These are the sources of large nonlinearity in 
the load-displacement relationship of curved beams. 

In Section 6.3, it is shown that the commonly adopted approximations, a) 
ignoring 1/R2 terms, b) adopting [(R-x)/R]=1 and c) ignoring 1/R terms in Section 3.2, 
do not have significant effects on the deflection and rotation of the beams. 
Consequently, the major contributors to the high magnitude of displacement most 
likely are the approximation d) that cos β =1 and sin β = β, the P-delta action and the 
cross sectional deformation. Numerical analyses to examine these contributions are 
made in this chapter. 
 
7.2 Large Rotation 
With the adoption of the approximation d) (in Section 3.2) in addition to 
approximations a), b) and c), the condition is that of assuming small rotation in an 
analysis. To examine that, the cross section of Figure 6.2 is used with the boundary 
condition of a simply supported beam with rotational restrain at the end sections. A 
constant vertical Moment, Mx, is applied at the end sections as the external load. 
Figure 7.1 shows the load-deflection curves obtained from the linear analysis, a large 
displacement with small rotation analysis (approximations a), b), c) and d)), a large 
displacement with large rotation analysis (approximation a), b) and c)) and the three-
dimensional finite element analysis using ABAQUS. The material strength of σy=36ksi, 
is need as a reference. All except the linear analysis give almost the same lateral 
displacement when the applied Mx is fairly low. At higher loads, the analysis 
considering large displacement with small rotation underestimates the deflection. The 
analyses by McManus (1971), Yang (1987) and Kang (1992) are in this group. Only 
the analysis considering both large displacement and large rotation can predict the 
load-deflection behavior of the horizontally curved beam adequately. From Figure 7.1, 
it is evident that if the yield point is higher than 36 ksi, the magnitude of 
underestimation by the assumption of small rotation can be quite high even in the 
elastic range of material strength.  
 
7.3 P-Delta Effect. 
When a applied load is not on the centroid or the reference point of a cross section of a 
horizontally curved beam, the load couples with the twist rotation and generates a 
secondary moment by the p-delta effect. Figure 7.2 show the situation. The magnitude 
of the computed secondary moment and its contribution to the estimated load-
deflection behavior of a beam depend on the procedure of analysis. For example there 
is no consideration of coupling between loads and displacement in the linear analysis, 
and secondary moment is not generated. In this section, by using the expressions in Eq. 
5.22 to 5.24 for P-delta effect, it can be investigated.  
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For a numerical analysis, two beams of different cross section are selected: one has a 
flexible cross section and the other is stocky. Figure 7.3 shows the sectional and 
material properties of the cross sections. The sectional properties of both cross sections 
are within the ranges of AASHTO Guide Specification (2003). The basic boundary 
condition is used for the beams. A point load is applied on the top flange at the mid-
span. Figures 7.4 to 7.6 and Figures 7.7 to 7.9 show the load-displacement curves of 
the beams with and without including the P-delta effects. For the beam with the 
flexible cross section, the effect is so significant that the difference of load-
displacement curve starts at the onset of loading. For the stocky cross section, the 
effects of P-delta occur at relatively high magnitude of load. Once started, the p-delta 
effect increases rapidly with the increasing load. Thus, secondary moments generated 
by the p-delta effect must be considered for horizontally curved beams. 
   
7.4 Sectional Deformation 
The sectional deformation caused by the deformation of the web is derived in Chapter 
4 and Chapter 5.  To evaluate the effects of web deformation, the results of analysis 
using the line elements with and without the additional degree of freedom for sectional 
deformation are compared with the results of a three dimensional finite element 
analysis.  
Two different cross sections are selected for this comparison. One is a cross section for 
which the ratio of warping constant Iω and Saint Venant constant KT (Iw/KT) is high 
and the other one has a low ratio of Iw/KT. The sectional dimensions of the cross 
sections are shown in Figure 7.10. The ratios b/tf=6 and d/tw=24 are selected for the 
low Iω/KT ratio cross section and b/tf=10 and d/tw=180 are selected for high Iω/KT ratio 
cross section. For the boundary condition of the beams, warping and rotation about y-
axis at both ends are restrained. Figure 7.11 shows a beam and its boundary conditions. 
In the formulation of equations for sectional deforamtion, it is assumed that the web 
deforms with a double curvature. This assumption is confirmed by the shape in Figure 
7.12 that is generated by the three dimensional finite element analysis.  
The effects of sectional deformation for the cross section with a low and high Iω/KT 
ratio are shown in Figures 7.13 to 7.15 and Figures 7.16 to 7.18, respectively. From the 
figures, it is recognized that overall the effect of sectional deformation is not very 
significant, particularily for the cross section with high Iω/KT ratio. Since only the 
shear strain is changed by the sectional deformation, as seen in Equation 4.97, only 
Saint-Venant torsional resistance is reduced by the web deformation. For cross section 
with relatively low Iω/KT ratio, the twisting moment is mostly resisted by Saint Venant 
action. The reduction of Saint-Venant torsional resistance directly affects the total 
torsional moment resistance. This fact can be seen in the figure 7.15 in which a 
relatively larger difference exist between the rotation curves with and without 
considering web deformation. For the cross section with a high Iw/KT ratio, torsional 
moment is mostly resisted by the warping torsion. The reduction of Saint Venant 
torsional resistance does not affect much the behavior of the deflection curves of 
Figure 7.18.  
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It should be noted that in the H type of beams with the horizontal web in the plane of 
curvature, the web deformation affects warping resistance also. The web-deformation 
of H-beam changes not only the shear strains but also the longitudinal strains, both the 
resistance of warping torsion and Saint-Venant torsion are changed corresponding to 
the web deformation. 
From the examination of the sources of nonlinearity, it is evident that the contributions 
of large rotation, p-delta effect and deformation of cross section need to be considered 
in the analysis of horizontally curved beams. 
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Figure 7.1 Lateral Displacement by Different Approximation 
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Figure 7.2 P-Delta Effect 
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Figure 7.3 Sectional and Material properties of Cross Sections for P-Delta Effects 
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Figure 7.4 Lateral Displacement by Point Load, Flexible Cross Section 
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Figure 7.5 Vertical Displacement by Point Load, Flexible  Cross Section 
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Figure 7.6 Rotation by Point Load, Flexible Cross Section 
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Figurer 7.7 Lateral Displacement by Point Load, Stocky Cross Section 
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Figurer 7.8 Vertical Displacement by Point Load, Stocky Cross Section 
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Figurer 7.9 Rotation by Point Load, Stocky Crosss Section 
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Figure 7.10 Cross Sections with Low and High Iω/KT Ratio 

 



 216

 
Figure 7.11 Boundary Condition of Beam for Analysis of Sectional Deformation 

 
 
 
 
 
 
 

 
Figure 7.12 Deformation Shape of Beam Segment at the mid span 
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Figure 7.13 Lateral Displacement of Cross Section with Low Iω/KT ratio, Effect of 

Sectional Deformation 
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Figure 7.14 Vertical Displacement of Cross Section with Low Iω/KT ratio, Effect 

of Sectional Deformation 
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Figure 7.15 Rotation of Cross Section with Low Iω/KT ratio, Effect of Sectional 

Deformation 
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Figure 7.16 Lateral Displacement of Cross Section with High Iω/KT ratio, Effect 

of Sectional Deformation 
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Figure 7.17 Vertical Displacement of Cross Section with High Iω/KT ratio Section, 

Effect of Sectional Deformation 
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Figure 7.18 Rotation of Cross Section with High Iω/KT ratio, Effect of Sectional 

Deformation 
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8. Equation for Maximum Stress of Symmetrical I-Beams 
 
8.1 Need for an Equation 

In both the procedure of traditional allowable stress design and the procedure 
of load and resistance factor design (LRFD), an equation for maximum stress in the 
flange of beams is required. Current equations for flange stresses of curved beam do 
not include the effects of large displacement, large rotation and P-∆ effect. A new 
equation is needed. 
 An ideal equation should include all the relevant parameters which affect the 
determination of stresses, yet the equation should not be too cumbersome to use. One 
relatively simple form of the equation is to apply an amplification factor for a curved 
beam to the stress equation of the corresponding straight beam. However, due to the 
complexity of internal forces in curved beams, the expression of the amplification 
factor can not be derived directly from the strains of Chapter 3 and the differential 
equations of Chapter 4. Consequently, it is most efficient to adopt the procedure of 
conducting a parametric study using the line element of Chapter 5 and then deriving a 
stress equation through a regression analysis. But because external applied loads to 
curved beams usually generate coupled moments of Mx and Bi-moment, and their 
proportion depends on the beam geometry, it is almost impossible to derive a single 
stress equation. At the least, a set of stress equations for Mx and Bi-moment are 
needed. In the following, the procedure of developing a stress equation for a beam 
with a doubly symmetrical cross section under Mx is presented. 
The primary assumption used in parametric study and regression analysis is that the 
parameters are independent and a simple equation can be derived by linear regression 
as: 

K++++= 3322110 XbXbXbbY                         8.1 
 
Or by non-linear regression as: 

K311321123322110 XXbXXbXbXbXbbY +++++=          8.2 
Where: Xi is an independent parameter 

      bi is coefficient of  the parameter 
 
 
8.2 Selection of independent Parameters 
Seven parameters are considered for the equation of maximum stress of curved beams 
with a doubly symmetrical cross section. These parameters are the flange width and 
thickness (b and tf), the web plate depth and thickness (d and tw), the span length and 
radius (L and R) and the yield strength of the beam steel. The geometrical parameters 
are rearranged as non-dimensional parameters. 

L/R, the ratio of length to radius,  
L/b, the ratio of length to width of flange 
d/b, the ratio of depth of web to width of flange 
b/tf, the ratio of width to thickness of flange, b/tf and 
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d/tw, the ratio of depth and thickness of web  
Through the preliminary case study, it is determined that the primary parameters for 
nonlinear behavior are L/b and L/R. The ratio d/tw of depth to thickness of web is not a 
dominant parameter from the results of Chapters 6 and 7, and is not considered in the 
parametric study. 
The ranges of major parameters L/R, L/b, d/b and b/tf for the parametric study are 
listed in Table 8.1. These values are derived from design specifications and practical 
considerations. 
To investigate whether the selected parameters are independent, several basic cases are 
analyzed first. The sectional properties of the basic beams are listed in Table 8.2. The 
basis beam has the most stocky cross section in the range of parameters in Table 8.1. 
Beams Lcomp1, Lcomp2, Lcomp3 and Lcomp4 have the same parameter values but 
different cross sectional dimensions. Beam Lcomp5 has a high value of d/b ratio for 
comparison. Results of analyzing these five cases are shown in Figure 8.1. The 
ordinate Mx/Mx_y represents the external bending moment normalized by the yield 
moment Mx_y of the cross section produced by vertical bending moment only. Since 
additional normal stresses are generated by warping, radial bending and sectional 
deformation, the amplification analyses are continued until the maximum normal stress 
reaches 1.2σy. The abscissa Snl/Sl is the ratio of stress calculated by the nonlinear and 
the linear analysis. The stress Sl by the linear analysis is calculated from equation 8.3. 
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As shown in Figure 8.1, the curves of stress amplification for beams Lcomp1, Lcomp2, 
Lcomp3 are practically identical and that for Lcomp4 is very close. This means that 
the major parameters L/R, L/b, d/b and b/tf in table 8.1 are independent for the 
parametric study. Another notable result in Figure 8.1 is that these beams with the 
lowest value of parameters of Table 8.1 generate very low amplification of stress. The 
highest is being about 1.3%. The difference between linear and nonlinear analysis for 
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the basis beam is less than 0.5%, and for the next four reference beams is only about 
0.8%. All these can practically be ignored. 
 
8.3 Parametric Study 
Since the ratio L/b is the dominant parameter on the nonlinear behavior of horizontally 
curved beams, the regression analysis is started with L/b. Other parameters L/R, d/b 
and b/tf are examined in order. 
Table 8.3 lists the geometric dimension of five beams with L/b equals to 7, 12, 17, 21 
and 25 and L/R, bf/tf and d/b at their basic values. The results of analysis by the line 
element are shown in Figure 8.2. As the value of L/b ratio is increased, the 
amplification of stress increases rapidly. At the maximum value of L/b=25 for beam 
L_b4, as the external moment is increased towards the yield moment, the stress 
calculated by the nonlinear analysis is 35% higher than that by the linear analysis. This 
result is for the lowest values of the other parameters in their respective range. When 
the value of these other ratios increased, the amplification is even higher than 35%.  
For a systematic study on the effects of all parameters, the five values of L/b ratio, 7, 
12, 17, 21, 25, are combined with the following set of values of parameters in this 
study.  
 
L/R = 0.1, 0.077, 0.054, 0.031, 0.008 
bf/tf = 10, 12.5, 15, 17.5, 20 
d/b = 2, 2.5, 3, 3.5, 4.0. 
 
The combinations of these values of parameters are listed in Tables 8.4 to 8.18. Tables 
8.4 to 8.6 are for L/b=7, Tables 8.7 to 8.9 for L/b=25; and so on. The characteristics of 
amplification of flange stresses in curved beams as listed in Tables 8.4 to 8.6 are 
shown in Figures 8.3 to 8.5. The maximum amplification is less than 3.5%. At the low 
value of L/b=7, the effects of curvature (L/R) on the character of amplification are 
significant, as seen in Fig. 8.3. This implies that L/R ratio is also a primary governing 
parameter. The effects of d/b are less prominent as shown in Figs 8.5, and  the effect of 
b/t are even less as shown in Fig. 8.4.  
Similar characters are observed in the case study for other sets of values of the 
parameters. Figures 8.6 to 8.8 are for L/b=12 with values of other parameters listed in 
Tables 8.10 to 8.12; Figures 8.9 to 8.11 are for L/b=17 with values of other parameters 
listed in Tables 7.13 to 7.15, and son on. The notable character is that when L/R is 
0.008 (LR4 in Figs. 8.6, 8.9, 8.12 and 8.15), the amplification of stress increases 
nonlinearly with respect to increase of moment. This nonlinear behavior of curved 
beams with relatively small curvature points out the necessity of considering large 
displacement, large rotation and P-∆ effects. 
From the results of the parameter study, it is confirmed that all four parameters, L/b, 
L/R, b/tf and d/b are independent parameters affecting the nonlinear behavior of curved 
beams. 
 
8.4 Equation for Maximum Stress 
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After a regression analysis of the data generated by the parametric study, the following 
equation is derived for calculating the maximum stress in doubly symmetrical curved 
I-beams under end moment Mx. 
 

































∗∗+=

yx

x

l

nl

M
M

BA
S
S

_

sinh1                             8.5a 

 
Where: 









+






∗+= 0136.0097.0411.0

R
LLnA                  8.5b 

2

002.0/7.8

129.01









+








+−=

b
L

B                  8.5c 







 −



















−







+−= 20
16.3/198

1031.02
t
b

b
L

B                 8.5d 







 −



















−







+−= 4
503.0/28

1218.03
b
d

b
L

B                 8.5e 

 
B=B1+B2+B3                                8.5f 

 
In order to evaluate Equation 8.5, a comparison between the results generated by 
Equation 8.5 and by the line element analysis is conducted for three beams with 
different cross sections: cross section 1 for a stocky section, cross section 3 for a 
slender section and cross section 2 for a section in between. The values of the 
parameters for the cross sections are the following. 
  

Cross Section 1: L/b= 7, L/R=0.08, b/tf=10, d/b=2, L=35 
Cross Section 2: L/b=16, L/R=0.08, b/tf=15, d/b=3, L=160 
Cross Section 3: L/b=25, L/R=0.1, b/tf=20, d/b=4, L=125 
 

The comparison is made in Figures 8.18 to 8.20 for beams with cross section 1 to 3. As 
can be conclude from the figures, the developed equation predicts the maximum stress 
well. Equation 8.5 is developed based on large displacement, large rotation and 
sectional deformation analysis of horizontally curved beams with doubly symmetric 
cross sections which conform to AASHTO Specifications. Thus, the equation can 
readily be used for calculating the maximum stress of such beams under equal end 
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moments Mx. Similary, an equation can be developed for the bi-moment. The same 
procedure of analysis can be applied to singly symmetrical I-shapes for developing 
corresponding flange stress equations. 
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Table 8.1 Range of Parameters 
Parameter Range 

L/R 0.008 ~ 0.1 
L/b 7 ~25 
b/tf 10 ~ 20 
d/b 2 ~4 

 
 

Table 8.2 Reference Cases 
 b d tf tw L R L/b L/R bf/tf d/b 
Basis 20 40 2 0.4 140 17500 7 0.008 10 2 
Lcomp1 20 60 2 0.6 140 17500 7 0.008 10 3 
Lcomp2 5 15 1 0.3 70 8750 7 0.008 10 3 
Lcomp3 5 15 0.5 0.15 35 4375 7 0.008 10 3 
Lcomp4 10 30 1 0.2 70 8750 7 0.008 10 3 
Lcomp5 10 50 1 0.5 70 8750 7 0.008 10 5 

 
 

Table 8.3 Value of L/b ratio 
 b d tf tw L R L/b L/R bf/tf d/b 

Basis 20 40 2 0.4 140 17500 7 0.008 10 2 
L_b1 11.67 23.34 1.167 0.234 140 17500 12 0.008 10 2 
L_b2 8.24 16.48 0.824 0.16 140 17500 17 0.008 10 2 
L_b3 6.67 13.34 0.667 0.13 140 17500 21 0.008 10 2 
L_b4 5.6 11.2 0.56 0.11 140 17500 25 0.008 10 2 

 
 

Table 8.4 Values of L/R ratio L/b =7 
 b d tf tw L R L/b L/R bf/tf d/b 

Ref. 20 80 1 0.8 140 1400 7 0.1 20 4 
L_R1 20 80 1 0.8 140 1818 7 0.077 20 4 
L_R2 20 80 1 0.8 140 2593 7 0.054 20 4 
L_R3 20 80 1 0.8 140 4516 7 0.031 20 4 
L_R4 20 80 1 0.8 140 17500 7 0.008 20 4 

 
 

Table 8.5 Values of bf/tf ratio with L/b =7 
 b d tf tw L R L/b L/R bf/tf d/b 

Ref. 20 80 1 0.8 140 1400 7 0.1 20 4 
b_t1 20 80 1.25 0.8 140 1400 7 0.1 17.5 4 
b_t2 20 80 1.5 0.8 140 1400 7 0.1 15 4 
b_t3 20 80 1.75 0.8 140 1400 7 0.1 12.5 4 
b_t4 20 80 2 0.8 140 1400 7 0.1 10 4 
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Table 8.6 Values of d/b ratio with L/b=7 
 b d tf tw L R L/b L/R bf/tf d/b 

Ref. 20 80 2 0.8 140 1400 7 0.1 20 4 
d_b1 20 70 2 0.7 140 1400 7 0.1 20 3.5 
d_b2 20 60 2 0.6 140 1400 7 0.1 20 3 
d_b3 20 50 2 0.5 140 1400 7 0.1 20 2.5 
d_b4 20 40 2 0.4 140 1400 7 0.1 20 2 

 
 

Table 8.10 Values of L/R ratio with L/b =12 
 b d tf tw L R L/b L/R bf/tf d/b 

Ref. 11.67 46.7 0.58 0.47 140 1400 12 0.1 20 4 
L_R1 11.67 46.7 0.58 0.47 140 1818 12 0.077 20 4 
L_R2 11.67 46.7 0.58 0.47 140 2593 12 0.054 20 4 
L_R3 11.67 46.7 0.58 0.47 140 4516 12 0.031 20 4 
L_R4 11.67 46.7 0.58 0.47 140 17500 12 0.008 20 4 

 
 

Table 8.11 Values of bf/tf ratio with L/b =12 
 b d tf tw L R L/b L/R bf/tf d/b 

Ref. 11.67 46.7 0.58 0.47 140 1400 12 0.1 20 4 
b_t1 11.67 46.7 0.67 0.47 140 1400 12 0.1 17.5 4 
b_t2 11.67 46.7 0.78 0.47 140 1400 12 0.1 15 4 
b_t3 11.67 46.7 0.93 0.47 140 1400 12 0.1 12.5 4 
b_t4 11.67 46.7 1.17 0.47 140 1400 12 0.1 10 4 

 
     

Table 8.12 Values of d/b ratio with L/b =12 
 b d tf tw L R L/b L/R bf/tf d/b 

Ref. 11.67 46.7 0.58 0.47 140 1400 12 0.1 20 4 
d_b1 11.67 40.9 0.58 0.41 140 1400 12 0.1 20 3.5 
d_b2 11.67 35 0.58 0.35 140 1400 12 0.1 20 3 
d_b3 11.67 29.2 0.58 0.29 140 1400 12 0.1 20 2.5 
d_b4 11.67 23.3 0.58 0.23 140 1400 12 0.1 20 2 

 
Table 8.13 Values of L/R ratio with L/b =17 

 b d tf tw L R L/b L/R bf/tf d/b 
Ref. 8.24 33 0.41 0.33 140 1400 17 0.1 20 4 

L_R1 8.24 33 0.41 0.33 140 1818 17 0.077 20 4 
L_R2 8.24 33 0.41 0.33 140 2593 17 0.054 20 4 
L_R3 8. 24 33 0.41 0.33 140 4516 17 0.031 20 4 
L_R4 8.24 33 0.41 0.33 140 17500 17 0.008 20 4 
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Table 8.14 Values of bf/tf ratio with L/b =17 
 b d tf tw L R L/b L/R bf/tf d/b 

Ref. 8.24 33 0.41 0.33 140 1400 17 0.1 20 4 
b_t1 8.24 33 0.47 0.33 140 1400 17 0.1 17.5 4 
b_t2 8.24 33 0.55 0.33 140 1400 17 0.1 15 4 
b_t3 8.24 33 0.66 0.33 140 1400 17 0.1 12.5 4 
b_t4 8.24 33 0.82 0.33 140 1400 17 0.1 10 4 

   
 

Table 8.15 Values of d/b ratio with L/b =17 
 b d tf tw L R L/b L/R bf/tf d/b 

Ref. 8.24 33 0.41 0.33 140 1400 17 0.1 20 4 
d_b1 8.24 28.8 0.41 0.29 140 1400 17 0.1 20 3.5 
d_b2 8.24 24.7 0.41 0.25 140 1400 17 0.1 20 3 
d_b3 8.24 20.6 0.41 0.21 140 1400 17 0.1 20 2.5 
d_b4 8.24 16.5 0.41 0.17 140 1400 17 0.1 20 2 

 
Table 8.16 Values of L/R ratio with L/b =21 

 b d tf tw L R L/b L/R bf/tf d/b 
Ref. 6.67 26.7 0.33 0.27 140 1400 21 0.1 20 4 

L_R1 6.67 26.7 0.33 0.27 140 1818 21 0.077 20 4 
L_R2 6.67 26.7 0.33 0.27 140 2593 21 0.054 20 4 
L_R3 6.67 26.7 0.33 0.27 140 4516 21 0.031 20 4 
L_R4 6.67 26.7 0.33 0.27 140 17500 21 0.008 20 4 

 
 

Table 8.17 Values of bf/tf ratio with L/b =21 
 b d tf tw L R L/b L/R bf/tf d/b 

Ref. 6.67 26.7 0.33 0.27 140 1400 21 0.1 20 4 
b_t1 6.67 26.7 0.38 0.27 140 1400 21 0.1 17.5 4 
b_t2 6.67 26.7 0.44 0.27 140 1400 21 0.1 15 4 
b_t3 6.67 26.7 0.53 0.27 140 1400 21 0.1 12.5 4 
b_t4 6.67 26.7 0.67 0.27 140 1400 21 0.1 10 4 

 
     

Table 8.18 Values of d/b ratio with L/b =21 
 b d tf tw L R L/b L/R bf/tf d/b 

Ref. 6.67 26.7 0.33 0.27 140 1400 21 0.1 20 4 
d_b1 6.67 23.3 0.33 0.23 140 1400 21 0.1 20 3.5 
d_b2 6.67 20 0.33 0.2 140 1400 21 0.1 20 3 
d_b3 6.67 16.7 0.33 0.17 140 1400 21 0.1 20 2.5 
d_b4 6.67 13.3 0.33 0.13 140 1400 21 0.1 20 2 
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Table 8.7 Values of L/R ratio with L/b =25 
 b d tf tw L R L/b L/R bf/tf d/b 

Ref. 5.6 22.4 0.28 0.22 140 1400 25 0.1 20 4 
L_R1 5.6 22.4 0.28 0.22 140 1818 25 0.077 20 4 
L_R2 5.6 22.4 0.28 0.22 140 2593 25 0.054 20 4 
L_R3 5.6 22.4 0.28 0.22 140 4516 25 0.031 20 4 
L_R4 5.6 22.4 0.28 0.22 140 17500 25 0.008 20 4 

 
 

    Table 8.8 Values of bf/tf ratio with L/b =25 
 b d tf tw L R L/b L/R bf/tf d/b 

Ref. 5.6 22.4 0.28 0.22 140 1400 25 0.1 20 4 
b_t1 5.6 22.4 0.32 0.22 140 1400 25 0.1 17.5 4 
b_t2 5.6 22.4 0.37 0.22 140 1400 25 0.1 15 4 
b_t3 5.6 22.4 0.45 0.22 140 1400 25 0.1 12.5 4 
b_t4 5.6 22.4 0.56 0.22 140 1400 25 0.1 10 4 

     
 

Table 8.9 Values of d/b ratio with L/b ratio =25 
 b d tf tw L R L/b L/R bf/tf d/b 

Ref. 5.6 22.4 0.28 0.22 140 1400 25 0.1 20 4 
d_b1 5.6 19.6 0.28 0.196 140 1400 25 0.1 20 3.5 
d_b2 5.6 16.8 0.28 0.168 140 1400 25 0.1 20 3 
d_b3 5.6 14.0 0.28 0.14 140 1400 25 0.1 20 2.5 
d_b4 5.6 11.2 0.28 0.112 140 1400 25 0.1 20 2 
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Figure 8.1 Amplification of Reference Beams 
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Figure 8.2 Amplification Character of L/b 
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Figure 8.3 Effects of L/R on Amplification, L/b=7 
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Figure 8.4 Effects of b/t on Amplification, L/b=7 
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Figure 8.5 Effects of d/b on Amplification, L/b=7 
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Figure 8.6 Effects of L/R on Amplification, L/b=12 
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Figure 8.7 Effects of b/t on Amplification, L/b=12 
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Figure 8.8 Effects of d/b on Amplification, L/b=12 
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Figure 8.9 Effects of L/R on Amplification, L/b=17 
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Figure 8.10 Effects of b/t on Amplification, L/b=17 
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Figure 8.11 Effects of d/b on Amplification, L/b=17 
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Figure 8.12 Effects of L/R on Amplification, L/b=21 
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Figure 8.13 Effects of b/t on Amplification, L/b=21 
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Figure 8.14 Effects of d/b on Amplification, L/b=21 
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Figure 8.15 Effects of L/R on Amplification, L/b=25 
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Figure 8.16 Effects of b/t on Amplification, L/b=25 
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Figure 8.17 Effects of d/b on Amplification, L/b=25 
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Figure 8.18 Comparisons of Line Element and Regression Analysis, Section 1 
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Figure 8.19 Comparisons of Line Element and Regression Analysis, Section 2 
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Figure 8.20 Comparisons of Line Element and Regression Analysis, Section 3 
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9. Summary and Conclusion 
 
9.1 Summary 
In this study, an analytical study associated with the nonlinear response of thin-walled 
open-section horizontally curved beam has been conducted. In chapter 3, simplified 
strains based on various levels of commonly used approximations have been derived. 
The approximations are following:  
 

a) The nonlinear term divided by R2 and higher can be ignored. 
b) (R-x)/R can be simplified as 1.0. 
c) The nonlinear terms divided by R can be ignored 
d)  With the assumption of small rotation, trigonometric functions can be 

simplified by the first term of Taylor expansions.   
 
A sensitivity study has been conducted to investigate the effects of different levels of 
approximation. Since the inclusion of rotation is essential in attaining an acceptable 
accuracy for curved beams, considering the effects of large displacements and large 
rotations is necessary. In Chapter 4, an incremental analysis for large deflection is 
developed using total Lagrangian formulation. The analysis includes warping of the 
cross section, sectional deformation and p-delta effect. In order to overcome 
difficulties in the derivation of differential equations with reference to both centroidal 
and shear center axes, formulas based on a single reference line are developed through 
proper rotational transformation. Exact solutions of displacement and warping have 
been obtained for linear differential equations for beams under several loading and 
boundary conditions. 
The solution of nonlinear differential equations is impossible for spatially curved 
beams under general loading and boundary conditions. A finite line element with a 
suitable form of governing equation is established in Chapter 5. In an effort to 
overcome numerical difficulties for an efficient interpolation function, a shape 
function has been developed for the line element based on generalized linear strains. 
The line element has eight modes of deformation including stretching, twisting, 
bending, warping and sectional deformation. 
For the evaluation of the line element, load-displacement curves of several beams with 
different cross sections and under several loading cases have been developed and 
compared with those by a three dimensional finite element analysis in Chapter 6. To 
transform the classical boundary conditions into the three-dimensional finite element 
model, two boundary constraints for rigid systems and free-to-deform conditions have 
been developed. These boundary systems provide upper and lower bound load-
deflection curves. In Chapter 7, the contributions of large rotation, sectional 
deformation and p-delta effect on the non-linear behavior of horizontally curved beams 
are investigated by using the line element. In Chapter 8, an equation for calculating the 
maximum stress in the flanges when the beam is under equal end moment Mx is 
developed from regression analysis. This equation includes the effect of large 
displacement, large rotation and sectional deformation. 
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9.2. Conclusions 
Based on the analysis and comparison of results from large rotation analysis, small 
rotation analysis, linear analysis and finite element analysis, the following conclusions 
can be made. 

(i) The different levels of approximation do not affect much the load-
displacement behavior of horizontally curved beams (Chapter 3 and 
Chapter 6). Therefore, simplified strains can be used for derivation of 
equations. 

 
(ii) In the flange, computed stresses considering large displacement and 

large rotation are much higher than those based on linear analysis far 
before yielding. The difference can be as high as one third or more. 
Sometimes the signs of stresses are even reversed (Chapter 6). 
Therefore linear analysis is not adequate for stress calculation of 
horizontally curved beam. 

 
(iii) For beams with cross section of low Iw/KT ratio, the reduction of Saint-

Venant torsional resistance caused by the web deformation directly 
affects the total torsional moment resistance. The magnitude is 
dependent on the cross sectional properties (Chapter 7). Therefore the 
effects of sectional deformation should be considered for such beams. 

 
(iv) Twist rotation and the associated P-delta effect of curved beams occur 

as soon as an external force is applied. This effect on the behavior of 
horizontally curved beams is very significant and induces large 
displacement of the beam (Chapter 7). Therefore P-delta effect has to 
be considered. 

  
(v) By introducing proper rotational characteristics of cross sections, 

equations based on one reference line produces results identical to those 
based on two-reference lines (Chapter 4). Therefore, with additional 
cross sectional properties, the equations for doubly symmetric sections 
can be used for non-symmetric cross sections.  

 
(vi) The primary nonlinear behavior comes from the coupling between 

displacement and twist rotation. Analysis based on small rotation and 
large displacement does not provide accurate results (Chapter 7). In 
order to predict accurately the nonlinear behavior of horizontally curved 
beams, large rotation analysis has to be used.  

 
(vii) The line element for analysis of curved beams can be used for any thin-

walled open cross section and beam boundary conditions to provide 
accurate results (Chapter 7). Also, since the line element is formulated 
considering sectional deformation, the element can be used for both 
stocky and slender cross sections. 
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(viii) As an example of procedure, an equation is developed for maximum 

stresses in thin-walled, doubly symmetric, open cross section of 
horizontally curved beam under vertical bending, (Chapter 8). The 
equation is derived by a parametric study using the line element and a 
regression analysis. 

 
 

 
9.3 Potential Future Work 
 

(i) In the current study, the equation for maximum stress in curved beams 
handles only doubly symmetric cross sections under vertical bending. 
The modification of this equation for singly symmetric cross sections 
should be examined. Modification of the equqtion or development of 
new equations should also be made for beams under different loading 
cases. 

  
(ii) All the derivation and analysis in the current study are within the elastic 

range of material properties. Studies based on not only geometrical 
nonlinearity but also material nonlinearity are recommended 

 
(iii) Since the design of horizontally curved beam is governed not only by 

deformation but also by ultimate strength, studies on ultimate strength 
considering displacement, rotation, and cross sectional deformation, are 
necessary. 

 
(iv) Only limited experimental studies have been conducted and most are on 

horizontally curved beams with doubly symmetric cross section. 
Additional experiments as well as studies on beams with singly 
symmetric cross sections are necessary. 
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