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Abstract

The formulation of large strains and displacement relations and equilibrium
equations for evaluating nonlinear behavior of horizontally curved beams is presented.
An examination is conducted to investigate the effects of approximations used in
existing studies on curved beams. Justification of simplified approach is reviewed
based on results from this study. Solution of equations is obtained by the development
and use of a line element which incorporates the characteristics of displacement field
and shape function of curved beams. The results from analysis are compared with
those from three-dimensional finite element models of example beams and from test
data. Beams with doubly and singly symmetric I-section, symmetric C-section and
general cross sectional shape are examined. It is determined that analyses considering
only small displacements and small rotations or large displacements and small
rotations underestimate deflections and stresses. The effects of p-delta and cross
sectional deformation on the load-displacement behavior and stresses of horizontally
curved beams are investigated with the result that nonlinearity due to these effects is
significant. An equation for maximum stress in curved beams is developed through a
parametric study using the line element incorporating the effects of large
displacements, large rotations and sectional deformations.



1. Introduction

1.1 Background

Current practice of designing horizontal curved beams is based on the concept
of amplification. That is the application of a multiplication factor to stresses of straight
beams provides adequate values for horizontally curved beams. This concept is
derived from the correlation between flexural and shearing strengths in the plane of
loading and out of plane, lateral tosional buckling of straight beams.

However, there is a strong difference between the behavior of straight and
curved beams. For straight beams, the in plane behavior and the out of plane buckling
are considered independent in the theory of small displacement. For horizontally
curved beams, the primary loading is perpendicular to the plane of curvature of the
beam. The vertical or out of plane displacement starts at the onset of load application.
The vertical displacement is coupled with a horizontal displacement and twisting of
the beam, making the behavior of the beam nonlinear with respect to the applied load.
Therefore the evaluation of displacement and stresses of horizontally curved beams
should take into consideration of vertical displacement, horizontal displacement and
twisting of the beam simultaneously.

There have been numerous studies on the buckling and deflection of curved
members. Some considered the in-plane and out of plane behavior of arches with the
applied loads in the plane of the arch curvature. Some evaluated the out of plane
nonlinear behavior of horizontally curved beams. All of these studies used various
degrees of simplifying assumptions, rendering most of these studies as nonlinear
analysis which incorporated large displacement in the derivation of governing
differential equations. But none of these studies has been evaluated analytically for
accuracy.

1.2 Objective and Scope

The objectives of this study are 1) to develop a procedure for examining the
results of existing studies; 2) to formulate equations for calculating accurately the
displacement and stresses of horizontally curved beams; and 3) to explore the
development of an equation, or a set of equations for estimating maximum stresses in
the beams for design purposes. To achieve these goals, the following steps were
followed in the course of this research.

(1) investigate the effects of simplifying assumptions used by previous studies.

(2) derive equations for analyzing the effects of large displacement, of large
rotation and of other possible factors such as cross sectional deformation and p-
delta effect.

(3) examine the difference equations for beams with doubly symmetric, singly
symmetric and unsymmetrical or general cross section.

(4) develop a procedure for solving the derived differential equations for
displacement and stresses

(5) check the accuracy of the solution



(6) explore the procedure for developing an equation of maximum stresses in
horizontally curved beams

2. Brief Review of Previous Studies

2.1 Background

Previous studies on curved structural members can be categorized as buckling analyses,
deflection analyses and strength analyses of arches and horizontally curved beams.
Arches and horizontally curved beams are characterized by the loading condition.
When loads are applied in the plane of curvature, a member is an arch, and
horizontally curved beam can be subjected to any load transverse to the plane. Arches
resist applied loads by longitudinal axial forces and in-plane bending moments.
Horizontally curved beams resist external loads by torsion about the longitudinal axis
and bending about the strong axis and the weak axis. In analysis, whether a member is
horizontally curved beam or an arch, the fundamental principles leading to the
governing differential equations are the same. The formulation of equilibrium has to
handle both in plane and out of plane forces. However, since previous studies were
mainly conducted either on arches or curved beams, these studies are reviewed
presently in two different section; behavior of arches and behavior of horizontally
curved beams. Even though previous studies have dealt with several subjects in the
analysis, the work on specific aspects are extracted and reviewed for convenience.

2.2 Studies on Behavior of Arches

2.2.1 In-plane behavior of Arches

Previous studies related to in-plane behavior of arches mostly concentrated on global
buckling and large displacement behavior. Global buckling can be defined as when an
arch moves from one equilibrium position to an adjacent equilibrium position without
load change and cross-sectional deformation. The early stages of studies were done by
Timoshenko and Gere (1961). They studied the instability of arches in bifurcation and
snap-through buckling by formulations of equilibrium in-plane. Warping of the arch
cross section was not considered. The bifurcation buckling associates with
inextensibility of the centroidal axis under internal axial force whereas the snap-
through buckling is analyzed assuming extensibility of the centroidal axis. Since the
effects of prebuckling displacement are not included in their studies, the results are
approximate solutions.

The nonlinear load and displacement behavior of deep circular arches was investigated
by Huddleston (1968). Using a numerical analysis based on a standard predict-and-
correction method, the characteristics of bifurcation and snap-through buckling were
investigated. Several parametric studies were conducted to examine the effects of
height-to-span ratio and of the compressibility on the load and in-plane large
displacement.



Austin (1971) studied extensively the buckling of symmetric, circular, two-hinged
arches with concentrated vertical load at the crown. It was found that the critical axial
thrust for a symmetrically loaded arch is rather insensitive to the type of loading and
unsymmetrical loading produces instability at a much lower value of thrust than does
symmetrical loading. In 1976, he extended his previous study of in-plane buckling to
include the prebuckling effects. Numerical analysis was conducted for an accurate
solution of the “exact” theory in which moments were computed for the displaced
configuration and displacement was computed from changes in curvature by a
numerical technique considering large deflection. Comparison was made with the
classical theory. The critical load was calculated in either a symmetrical buckling
mode or an antisymmetrical buckling mode by both the “exact” method and the
classical method. It was founded that the critical loads and the corresponding
horizontal reactions for antisymmetrical modes are rather insensitive to the
prebuckling displacements and the classical theory provides a practical way to estimate
the buckling load for the symmetrical modes.

DaDeppo and Schmidt (1974) studied the buckling behavior subsequent to large
prebuckling deflection of hingeless circular arches subjected to a downward load at the
crown as well as their own dead weight. Euler’s nonlinear theory of the inextensible
curved elastica was used. Interaction curves of the critical values of the two loads were
developed. It was founded that non-shallow hingeless arches buckle in-plane by either
asymmetrical sideway or symmetrical snap-through, depending on the relative
magnitudes of the point load and the weight of the arches.

A study of the in-plane inelastic strength of steel arches was studied by Harrison
(1970). He investigated analytically the ultimate strength of pin-ended parabolic steel
arches of rectangular and circular cross section and considered the effects of the
prebuckling deformation and the spread of yielding.

Shinke et al. (1975) investigated analytically the effects of residual stresses and initial
crookedness on the in-plane strengths of arch ribs. He concluded that the effects of
initial crookedness are not important on the in-plane strengths.

Pi and Trahair (1996) investigate the in-plane inelastic buckling and strength of
circular steel I-section arches using a finite element method for nonlinear inelastic
analysis. The elastic-plastic-strain-hardening character of steel was considered. The
behavior of arches was analyzed by considering the effects of the arch curvature, large
deformations, material inelasticity, initial crookedness, and residual stresses. Radial
loads uniformly distributed along the arch axis, concentrated loads, and loads
distributed along the horizontal projection of the arch were investigated. For the
numerical method, the total Lagrangian formulation was used for nonlinear elastic
large-deformation analysis.



2.2.2 Out-of-Plane Behavior of Arches

The early pioneering work for buckling analysis of thin-walled curved members was
done by Saint-Venant (1843). Since then, a number of others have contributed to the
understanding of behavior of curved beam. Timoshenko and Gere (1961) investigated
the behavior of arches and derived linear differential equation for in-plane and out-of -
plane buckling. In their analysis, warping effects was not considered.

A more through analysis was given by Vlasov (1961). He derived linear differential
equations for curved member with a thin-walled open cross section subjected to
warping. From a unit length of the line of centriod, six equilibrium equations were
developed. Three differential equations are for the axial force and the perpendicular
forces in the directions of axis normal to the longitudinal direction. The other three
equations are for the moment about axis normal to the longitudinal axis and the total
tosional moment. The total torsional moment is composed of St. Venant torsion and
the warping torsion. In order to drive a set of differential equations, Eq. 2.1, Vlasov
used constitutive relationship of straight beam, Eq. 2.2. He replaced kinematic terms of
a straight beams with those of curved beams.

¢ Differential equation

wo oo U U I _
Ely(u +2F+?j—fr+?—0 2.1a
]zu iv GKT " E]a) iv E1x+GKT "
—E(1x+?jv + e V' — z g+ p'+f, =0 2.1b
—(E%’jv” +EI%FI<TV”—(EIW)IBW +GKT,B”—E%ﬂ+mZ =0 2lc

(The terms in the equation are defined later in Chapter3)

e Constitutive relationship of a straight beam

F.=Ee. 2.2a
M_=EI x, 2.2b
M,=-EI k, 2.2¢
M, =-Elx"+GK,«x' 2.2d

In comparison of the kinematic terms, corresponding strain and curvature terms are
listed in Table 2.1. With the developed linear differential equation, Eq. 2.1, Vlasov
derived buckling strength of curved member.

Vacharajittiphan and Porpan (1975) derived differential equations for analyzing the
flexural-torsional buckling of curved member by extending the methods established
for straight members and plane frames. They presented numerical solutions obtained
by a finite integral method.



In all the aforementioned studies on out-of-plane buckling of curved members, the
equilibrium approach was used. By the equilibrium method, a equilibrium equation is
derived with the curved member in a displaced position. Another approach for
obtaining equilibrium equation is to use the method of minimum total potential energy.
In the energy method, equilibrium equation is obtained by the calculus of variation of
total potential energy.

Yoo (1982) presented a set of stability equation derived by the energy approach in
which the curvature terms of curved member were incorporated into the energy
functional expressions. The closed form solutions of critical loads for some specific
loading and boundary conditions were presented. Yoo compared his critical loads with
those of Timoshenko and Vlasov. His results were different from Vlasov’s and
Timoshenko’s in certain loading cases. Yoo suspected that the differential equation of
Vlasov may have an error. The error may be attributed to the fact that Vlasov
substituted the curvature terms of curved members (Table 2.1) into differential
equation for stability of straight members. This contradiction triggered a lot of
controversy and called attention to the study of curved members.

Trahair and Papangelis (1987, 1987a, and 1987b) published a series of papers on
flexural-torsonal buckling and experiment of buckling of curved members with doubly
symmetric and mono-symmetric I-shaped cross section. Nonlinear expressions for the
axial and shear strains were derived from the consideration of displaced geometry. By
using the second variation of total potential energy, the buckling equation was
obtained. Closed-form solutions were derived for critical loads for arches in uniform
bending and uniform compression. They compared their numerical results with the
results of Vlasov (1964), Yoo (1982) and the experiment, and showed that the
experimental results agreed better with their theory than with those by Yoo (1982) and
Vlasov (1964). They concluded that the disagreement is caused by the substitution of
curvature terms of curved members into the governing equation of straight members.

Usami and Koh (1980) developed a large displacement theory in which the
displacement components of an arbitrary point on a cross section was derived by
integrating the nonlinear strain-displacement equation for thin-walled curved members
expressed in the cylindrical coordinates. They derived the governing equation for
lateral-torsional buckling of arches by using the derived strain-displacement relations
through the Euler method in a variational principal.

Another important contribution on the buckling analysis on the curved members was
made by Yang and Kuo (1987). Nonlinear differential equation based on the principle
of virtual displacements was derived. The effect of curvature was included on the
sectional properties, stress resultants and radial stresses. They showed that each of
these factors affects the critical loads significantly and concluded that for correct
results, all the factors have to be included in the buckling analysis of curved members
under general loading.



Later the concept of radial stress factor used by Yang was critiqued by Kang (1994).
Kang pointed out that the radial stress has to vanish when the fundamental assumption
is considered. The mathematical interpretation of the assumption that cross sections do
not distorted is that the transverse strain and shear strain in the plane of a cross section
equal to zero. The radial stress associated with transverse strain and shear strain
therefore has to vanish. Also he doubted about using two shear forces, noting that
Saint Venant shear stresses do not form shear forces.

Pi and Trahair (1994) presented the effects of prebuckling in-plane displacement on
the elastic buckling of mono-symmetric arches. Nonlinear displacement-strain
relationship was derived by using position vectors. They studied the discrepancies
among theoretical solution of Yoo (1984), Yang and Kuo (1986) and Rajasekaran and
Padmanabhan (1989). They found out that an inconsistency in the treatments of the
effects of the initial curvature and the using of different displacement transformations
in deriving the displacement-strain relationship caused the discrepancies. The
rotational transformation matrix [Tg] has to satisfy the condition [Tr]*[Tr]"
=[Tr]"*[Tr] =1 and Def[Tg] = 1.

2.3 The Behavior of Horizontally Curved Beam

Previous studies on the behavior of horizontally curved beams can be categorized as
buckling analysis, amplification analysis and strength studies. Buckling analyses has
been conducted to understand the buckling characteristic of small curvature curved
beam through an eigenvalue analysis of the linear differential equations. Amplification
analyses of horizontally curved beams have been conducted for studying nonlinear
behavior of horizontally curved beam, either by the assumption of small deflection or
large deflection. Strength studies have been made to investigate the relationship
between the strength and curved beam parameters which includes the geometry of
beam cross section, span length, boundary conditions and material properties. From
parametric studies, simplified equations for estimating the strength have been derived
for designing horizontally curved beams.

2.3.1 Buckling Analyses of Horizontally Curved Beams

When horizontally curved beams with small curvature are subjected to external forces
out-of-plane of the curvature, out-of-plane displacement in the vertical direction and
twist-rotation takes place (the in-plane displacement is not considered in many
previous studies). This condition implies that bifurcation type of out-of-plane buckling
can happen.

Ojalvo (1968) presented differential equations and boundary conditions from which
the small-deflection static instability analysis for arbitrary cross beam sections and
loads can be accomplished. He considered two different stages of equilibrium, the
reference stage and the departure stage. These stages can be interpreted as the un-
deformed stage and the pre-buckling stage under load. Because of the displacement
from the reference stage due to loading, the equilibrium equations at the stage of
departure become nonlinear. In order to solve the nonlinear equilibrium equations,
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linearization is necessary. Linearization was accomplished by the assumption that in
the departure or perturbation stage, the variation from the reference stage is small and
the coupling terms associated with the variation are negligible. Similar linearization
can be applied to the associated boundary condition, displacement-curvature relations
and the constitutive equations which relate the internal stress resultants to deformation
quantities. The equilibrium equations in the departure stage are expressed as

AF — _
%—/@m@ — F Ak, +k,AF, + F Ak, +Af, =0 2.3a
4
d(AF, _ _
(d ) +k AF, + F Ak, —k AF, — F.Ak, +Af, =0 2.3b
Z
LAFZ)—kAF—FAk +k AF. +F Ak_+Af. =0 2.3¢
dZ y X X y X y y X z
% — k. AM | —M Ak_+k AM_+M Ak, —Af, —Am, =0 2.3d
Z
dlaM _ _
u+ k.AM , + M Ak, —k AM . —M Ak, +Af, +Am, =0 2.3e
. )
@+ k, AM , +M Ak, —k AM —M Ak, +Am, =0 2.3f
Z

Where ki, ky, k, are curvature about x, y and z axis. Fy, Fy and F, are concentrated
internal forces. My, My and M, are internal moments. f,, f, and f, are distributed
internal forces, and my, my and m, are distributed internal moments. The terms with A
and  are quantities representing the departure stage and the reference stage. For the
constitutive relationship between stress resultants and displacement, Equation, Eq.2.4
was used.

AM , =EI (Ak,) 2.4a
AM, =E1 (Ak,) 2.4b
AM, = EK ,(Ak.) 2.4¢

The curvature terms in Equation 2.4 and the longitudinal strains were derived by the
position vector and the assumption of inextensibility conditions. The moment AM, in
Equation 2.4¢ represents the twisting moment about longitudinal direction. As seen in
Eq. 2.4, only one sectional property, Saint-Venant constant Kt was used; warping
torsion was not included. For thin-walled-open-sections, torsional resistance is primly
through warping torsional rigidity and has to be considered. This task was
accomplished by McManus and Culver (1971).

McManus and Culver derived second order differential equations for thin-walled open
sections under normal stresses due to bending and torsion by using the method of

8



Ojalvo. In the formulation by McManus, constitutive relationship of force-
displacement was derived by replacing curvature terms of straight beam with
corresponding curvature terms of curved beam, Table 2.1. For buckling analysis, the
second order differential equations were linearized by ignoring higher-than first order
terms under the assumption that the variation from the reference stage is small. In
order to investigate the effect of the significant parameters on the critical loads, they
conducted numerical analysis by using the finite difference method. They found that
“the buckling loads determined for a curved beam loaded normal to the plane of
curvature are essentially the same as those for a corresponding straight beam”.

Kang and Yoo (1992) studied buckling behavior of horizontally curved beam and
found that large variations of torsional rigidity have little effect on the buckling
strength of horizontally curved beams loaded by vertical bending moment and that the
subtended angle is the main parameter for buckling strength. From the parametric
study accomplished by finite element analysis, a reduction factor was developed which
reduces the buckling strengths for an equivalent straight beam to that of the curved
beam.

Pi and Trahair (1996) investigated the bifurcation buckling strength of horizontally
curved beam. Using a strain-displacement relationship derived by position vector and
the energy method, they derived nonlinear governing differential equations. Buckling
load was obtained by solving nonlinear differential equation numerically. Among the
numerical methods, finite element method was used. They compared their result with
that of Yoo et al and found that their buckling moments are lower than those obtained
by Kang and Yoo (1992), particularly for curved beam with large substended angles.

2.3.2 Amplification Analysis of Horizontally Curved Beam

For any horizontally curved beam, the buckling load provides a reference but the
analysis does not predict the behavior of curved beam. As soon as a load is applied to a
curved beam, the beam undergoes out-of-plane displacement, rotation and associated
in-plane displacement. Thus, bifurcation type of out-of-plane buckling does not
happen. For a meaningful study on the strength of curved beam, amplification analysis
characterized by load-deflection behavior is necessary. The amplification analysis of
curved beams can be classified as small displacement-small rotation analysis, large
displacement-small rotation analysis and large rotation-large displacement analysis.

A theoretical treatment on amplification analysis is traced back to Gottfeld (1932). He
studied two beams supported by cross bracings and subjected to loads transverse to the
plane of curvature on both beams. Umanskii (1948) investigated a curved beam with a
doubly symmetrical I-shaped cross section with a more complete analysis which
included the bi-moment in the I-beam which was supported by point-type bearings and
was subjected to a load perpendicular to the plane of curvature.

Early big contribution on the amplification analysis of curved beams was made by
Dabrowski (1968). He studied the bending and non-uniform torsion of continuous

9



curved beams of thin-walled, singly symmetric, open cross section. He derived the
fundamental equations for the non-uniform torsion of curved box girders with non-
deformable asymmetric cross section. He also derived closed-form solution to the first
order linear differential equations for curved beam of thin-walled, non-deformable,
doubly and mono symmetric open cross-section, with different loads perpendicular to
the plane of curvature and “basic boundary condition”. The bi-moment and deflection
of beams were derived by linear differential equations. Because his studies on load-
deflection behavior were based on linear differential equations in which the out-of-
plane displacement is not coupled with the in-plane of displacement, lateral
displacement was not generated by the vertical loads.

All the studies done by Gottfeld (1932), Umanskii (1948) and Dabrowski (1969) were
based on the assumption of small displacement and small rotation.

With the assumption of large displacements and small rotations, McManus (1971)
derived linearlized differential equation for curved beam by superimposing two
differential equations representing the reference stage and the departure state. Using
the “basic boundary system”, McManus investigated the amplification behavior of
horizontally curved beams under flexural bending and bi-moment loads. He interpreted
restraint provided by lateral bracing in bridge system as a bi-moment loading to a
beam. With various combination of vertical bending moment and bi-moment and
different curvature of beams, several numerical case studies were conducted by using
the finite difference method. He compared his results with those of Dabrowski and
showed that the lateral deflection and lateral bending moment occurred immediately
upon loading of a curved beam and grew nonlinearly and quite rapidly as the
magnitude of load increased. He also showed that the flange stresses caused by bi-
moment were higher than those computed by linear analysis. To take into account the
results that the angle of twist and the bi-moment increased nonlinearly as the applied
end moment was increased, he developed an amplification factor.

1-0.86M" +0.4M"

Amp

1-M" 2.5
Where:
. M
M = X 2.6a
(MCV )St
(M), = % \/E Iy(;rz % + GKTJ 2.6b

This amplification factor can be applied to the bi-moment at the mid-span and at the
end sections, M,,, and to the lateral bending moment, M.
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M o= —Rrl M sin¢_sinh(kR(p) M sin(p’_sinh(kRgo') 5 8a
O e sin(k L) *sinT  sin(k L) .

M, =B M, +wM, 2.8b
K
k= |G p=—L1 _ 2.8¢
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The notations in the Eq. 2.8 are shown in Figures 2.1 and 2.2. The subscript 1 and 2 in
Eq. 2.8b indicate the quantities at the reference stage and the departure stage. Equation
2.8b is the simplified equation derived by using the direction cosine. The fundamental
assumption and its application will be presented in next section for strength analysis.

A series of extensive investigations on the behavior of horizontally curved beam
considering large rotations and large displacements was made by Fukumoto and
Nishida (1981). They derived second-order equilibrium equations for curved beams
based on the nonlinear strains derived by adopting assumption for classical thin-walled
open section. By using a transfer matrix, they presented the nonlinear elastic loads and
deflection of a curved beam with the basic boundary condition and under a point load
and constant moment. Six welded, curved I-beams were tested under point loading to
investigate the load and deflection behavior and the ultimate load. The ratio of span
length to radius, L/R, was a parameter of study. They compared their test results and
the results of their large-displacement analysis. The agreement was quite good. The
interesting phenomenon of their analytical result is the lateral deflection. As the lateral
deflection at the mid-span increased with load and became large, the direction of
lateral displacement was reversed. This phenomenon has been used for checking the
outcome of many subsequent finite element analyses by others. It is noted that in the
formulation by Fukumoto and Nishida, the effects of curvature on the sectional
properties, e.g. R/(R-x) were not included and only doubly symmetric cross section
was considered.

Gendy (1992) conducted a study for developing equation based on one reference line
for curved beams. He developed a finite element formulation for non-symmetric cross
sections based on generalized strains. Rotation about the radial axis and the vertical
axis were treated independently with vertical and lateral displacement. His numerical
results were compared with those generated from strains used by Yoo (1980) for
doubly symmetric cross sections. In order to use the strains of doubly symmetric cross
sections for non-symmetric cross sections, transformation was needed: from two-
reference lines to one-reference line. He used rigid boy rotation for transformation,
which is not generally applicable. Furthermore, even though single reference line
formulation is derived based on the generalized strain, transformations for radial and
vertical displacements are still needed.
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With the assumption of large displacement and small rotation, Kang and Yoo (1994)
developed equilibrium differential equations using the nonlinear strains that were
developed from similar procedure by Usami and Roh (1980). In the formulation of
finite line element to solve the equations and to investigate the large deflection
behavior of horizontally curved beams, Kang and Yoo used the theory of Total
Lagrange. In order to simplify the complexity of nonlinear strains associated with large
rotations, conventionally only the first term of Taylor’s expansion of trigonometric
functions is used. On the other hand, they used the first and second term to improve
accuracy of their differential equation.

Another important contribution to the static analysis of horizontally curved beams was
made by Pi and Trahair (1996). They investigated the second-order coupling between
the vertical and horizontal deflection and twist rotation in the nonlinear range of
behavior of doubly symmetric cross section. By using a finite line element formulation
base on the nonlinear strains developed from the position vector, they studied the
linear and nonlinear elastic equilibrium of horizontally curved I-beam under vertical
loading. They found that when the curvature of a curved beam is small and the beam is
nearly straight, the primary coupling is small and bending is the major action. If the
curvature of curved beam is not small, torsion is a major component of deflection. The
nonlinear behavior develops very early and no flexural torsional buckling behaviors
occur.

Most of the previous amplification analyses were on doubly symmetric cross sections.
In the cases of large displacement and rotation analysis, consideration of singly or
general cross section were very rare. Because of the complexity of the nonlinear
differential equations, simplification was always made for solution. However little
study on the effect of simplification on the behavior of horizontally curved beam was
conducted. Nor was the contribution of sectional deformation or P-A effect on load-
deflection behavior included in any of these previous studies.

2.3.3. Flexural Strength of Horizontally Curved Beam

No guideline or equation for design of curved beam is based on the ultimate carrying
capacity of these beams. Buckling and limiting stresses are the references. The current
AASHTO Guide Specifications provide equation for computing the flexural stress of
horizontally curved beams with rectangular flanges and a vertical or inclined web
attached at mid-width of the top flange. The span length is between lateral bracing
points. For design load, factored constant moment and bi-moment at the end sections
are considered. The equations for curved beams are modified from that for an
equivalent straight beam by using the reduction factors. Two reduction factors, p,p,

and p,p, , are specified for compact and non-compact cross sections.

For a Compact section:
Fcr :Fbsﬁbﬁw 2.9
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Where:
F,, = F,(1-32)

F

a1l 5

b\ E

_ 1

2
1+12—L 1+2L (L—O.Olj
b/. bf R

N
D, = O.95+18(0.1—£j /i !

+ —

2
fb1+12—L 14 2L (L—o.(n)
bf bf R

Fys is ultimate bending stress of a curved beam compression flange
F.: is maximum average stress in curved flange

Py 1s curved beam reduction factor to account for bending

Pw 1s curved beam reduction factor to account for warping

L = distance between brace points

R= radius of curvature

f;= total factored lateral flange bending stress

f, = factored average flange stress

p, P, < 10

For a non-compact section:

Fcr = Fbspbpw
where:
B 1
ATy
1+ ———
R bf
1
pwl =
_ S| o 12L
Iy 75bf
12L
b,
0.95 + /

L 2
30+ 8000(0. 1- j
R

pr =
1+0.6£

b
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when: Ju >0, p, =p,, orp,,, whichever is smaller
b

S

b

when: <0, p, =P,

These flexural design criteria are based on the analytical work of McManus (1971)
who developed an amplification model based on small rotation and large displacement.
He conducted a parametric study for the relationship between sectional properties and
flange stress with warping moment increased by amplification factors. In the
derivation of the reduction factors, secondary moment (lateral bending moment) was
considered. Lateral bending moment generated by the coupling effect was calculated
by the simplified Equation 2.8b. The un-simplified or complete form of Equation 2.8b
is Equation 2.15.

M,=pM, +v,M, 2.15

Where v, and f3; are displacement and rotation calculated from the departure stage,
Figure 2.2. The symbols v; and ; in Eq. 2.8b are displacement and rotation obtained
from the reference stage. With this approximation, the coupling between in-plane
displacement and out-of-displacement is eliminated. This approximation is valid
within small rotation and small displacement.

An interaction formula for allowable stress design of horizontally curved I-beams was
proposed by the Hanshin Expressway Public Corporation of Japan (1988).

s +£ <1.0 2.16
F'sal//l Fua

Where Fg,W; is the allowable lateral torsional buckling stress, F,, is the allowable
upper limit flexural stress and f;, and f;, are bending and warping stress. This equation
represents interaction between the warping stress and lateral buckling strength of the
beam which is reduced by the curvature effect. The specification is derived from the
theoretical and experimental study of Nakai et al (1988).

Fukumoto and Nishida (1985) presented an approximate strength equation based on
the second order deflection of the compression flange. The equation takes into
consideration the plastic moment capacity, the elastic buckling moment of equivalent
straight and the elastic buckling load with respect to weak axis of the curved beam.

Yoo and Davidson (1996) proposed an interaction equation based on the static analysis
of I-shape beams under vertical end-moments. This equation can be used for singly
symmetric composite and non-composite I-shape in both the positive and negative
region of beam bending moment. For compact sections, complete plasification is the
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limit and for non-compact section, first yielding at mid-span or end-section is the
reference.

As a summary of the review on previous studies, it is determined that although a
number of buckling analyses related to in-plane and out-of-plane behavior of curved
members have been conducted, investigation considering large rotation and large
displacement of horizontally curved beams is needed. The treatment of the nonlinear
terms in the strains is inconsistent, and no numerical study on this effect has been done.
For horizontally curved beams with moderate curvature, the behavior is not governed
by the buckling phenomenon but by the relatively large out of plane and lateral
deflection or the flange stresses. An adequate procedure for calculating flange stresses
associated with large displacement, large rotation and cross sectional deformation is
needed.
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Table 2.1 the longitudinal strain and curvature of straight and curved beams

8Z KX Ky KZ
Straight Beam w —y" u" e
!
n 14 u ! v
Curved Beam — -y +é u'+— - B ——
R R R
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NN

Boundary
Boundary Condition
Condition
u=v,=6=0

W= Vo =W~ 180:0

Figure2.1. the curved beam subjected with constant moment and bi-moment with
basic boundary condition system.

U2

-

Reference State

Figure 2.2 the deflection of the beam in x, y and z direction and twist rotation
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3. Strain and displacement relationship

3.1 Introduction

In the previous chapter, literature on the analysis of a curved member was reviewed.
Many studies on the behavior of horizontally curved beams dealt with the buckling
strength. Since horizontally curved beams subjecting to vertical loads sustain vertical,
horizontal and rotation of beam cross sections, the behavior is three dimensional and
nonlinear even in the elastic range of material properties. As soon as an external force
is applied to a curved beam, all displacements take place. Bifurcation type of buckling
does not happen. Therefore it is necessary to study the behavior of horizontally curved
beams based on an analysis considering large displacement and rotation. This task can
be started with developing the relationship between strains and displacements of the
beams. Because of the coupling between displacement and twist (rotation of cross
sections), complex nonlinear strain-displacement relation is inevitable. The
development of a strain and displacement relationship for the spatial behavior of a
horizontally curved beam with an arbitrary prismatic cross section is accomplished by
conducting the following two stages.

a) The development of the kinematics and strain-displacement relationship which
include fourth order terms of displacement and strains. In this stage, no
approximation is attempted.

b) The simplification of the complex fourth-order strain equation based on
different levels of approximation.

3.2 Strains and Displacement
3.2.1 Assumptions

In order to derive a strain-displacement relationship, several assumptions are adopted
in the present study, and are listed below.

1. The shear strains due to change of normal stresses (flexural and warping normal
stresses) are negligibly small.

2. The displacements are finite.

3. The thin-walled cross section retains its original shape (cross sectional
deformation is treated in Chapter 4)

4. The span length of beam is much larger than any cross sectional dimension.

Shear strains in planes normal to the middle surface of the thin wall can be

neglected.

e

The longitudinal displacement of the reference line of the beam cross section can be
derived by the assumption 5. The displacement at any point on the beam cross section
can be expressed in terms of the reference line displacement and rigid cross sectional
rotation and warping, based on the assumption that the cross section retains its shape.
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3.2.2 Longitudinal and Shear Strains
A cross section of a curved beam is shown in Fig 3.1. The general strain-displacement
relations, in curvilinear coordinate system, are given by the following equations [73].

ou 1 (8u)2 [8wj2 (8\/)2
E=—+—|—| +| —| +| =— 3.1a
ox 2|\ ox ox Oox
o 1l(ou) (aw) (ov)]
g,=—v+— Ry I L 3.1b
ooy 2| oy y y
R \ow u 1 R Y ou wY ow u ? 6\)2
g, = — = +— — = | === +| = 3.1¢
R-x)0z R-x 2\R—x 0z R 0z R oz
ow R oOv
= +

8 PR R
¥ 0y R-x0z
{ R Ou ou w  Ou R oOwow u ow R ov 8\/}
+ + + —— 3.1d

__+ —_ JRN—
R-x0yo0z R—-x0y R-x0y 0z R-x0y R-x0yoz

Oov Ou |Ouou Ovov oOwow
E, =—+—+|——+——+—— 3.1e
Y Ox Oy |oxoy Oxody Ox Oy
R oOu w ow
ST R xoz R-x or
x 3.1f

R—x0x oz R—xa R—x0x oz R—xg R—x0x 0z

[ R Ouou w  ou R owow u ow R Gv(iv}
+ — + + —

Where u, v and w are the displacement in the horizontal, vertical and longitudinal
direction of an arbitrary point (x, y, z) of the cross section; &, €,, €, are normal strains;
€xy, Exx and €,y are the shear strains and R is the radus of curvature of the beam.

From the assumption that span length is much larger than any cross sectional
dimension, it is implied that the displacement of u and v are much large than w and
nonlinear terms associated with derivation of longitudinal displacement can be ignored.
Thus, Eq. 3.1 can be expressed as the following equation.

2 2
£, :%+l {a—uj +(@] 3.2a
ox 2|\ ox ox
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2 2
& :@+l u + Ll 3.2b
Yooy 20\ oy Oy

R \ow u 1( R Y|(ou wY (u) (ovY
g, = - +— —t—| +| = | +| = 3.2¢
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g, = —+ +—+ ——+ —+ —— 3.2f
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Based on the assumption that the cross section retains its original shape, the strains &,
€y and &,y are zero.

2 2]
JPRCUAPN | (CUR R (CUR I R 3.2¢
ox 2|\ ox ox
2 27]
& :@4_1 a_u + @ =0 3.2h
Yooy 2|\ oy Oy
8‘(,2@4-8—”4- a_u%_F@@ =0 3.2i
Yo ox Oy |oxdy Oxoy

The solution of differential Eq. 3.2g and Eq. 3.2h leads to the following lateral and
vertical displacement equations.

u=u,—(y—y,)sinB—(x—x,)1-cosp) 3.3a
v=v, +(x—x,)sinf—(y—y, J1-cosp) 3.3b
where X and y; are centroid distances of the shear center, usand vy are the horizontal

and vertical displacement of shear center and B is the angle of rotation about z-axis as
defined in Figure 3.1.
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The shear strains on surfaces parallel to the middle surface of the cross section, €,5, and
the shear strain on the planes normal to the middle surface, €,,, in a curvilinear
coordinate system can be related to the shear strains €, and €,, by the following
formulas.

. :a—ygz +8_xgzx 3.4a
os 7 0Os
:G—yg —@g 3.4b

zn aS zX aS zy
where s is contour ordinate along the middle surface of thin-wall shown in
Figure 3.1 and n is the axis normal to s

The mathematical interpretation of the assumption that the shear strains due to change
of normal stresses and shear strains in planes normal to the middle surface of thin wall
are small and negligible is the following:

e, =0 3.5a
g,=0 3.5b

where &_ denotes the shear strain at middle surface of z-s plane.

With Eq. 3.4 and Eq. 3.5, and Eq. 3.2, the longitudinal displacement can be solved and
is expressed by the following equation:

! ! ! !
w:wc+x(b7s cosf+v, sinﬂ+%(ﬁs sinff—v, cosﬁ))

!

—y(vs cos S —u, sin,[i’)—a) /3'+‘;‘; cosﬂ—%sinﬂ 3.6a

Where w is the longitudinal displacement of an arbitrary point on the section.
w, is the displacement of centroid.

!

0, =u +2e 3.6b
-

N

= jpds 3.6¢
0

The terms ® and p are the normalized sectorial area and distance of contour tangent
from the reference point. The normalized sectorial area satisfies the

condition L wdA =0 . In Equation 3.6a, two reference lines (shear center and centroid)

are used. If only the centroidal axis is used as the reference line, all displacement
components must refer to the centroid.
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By substituting the above displacement field of Eqs. 3.3 and 3.6 into the non-zero
strains in Eq. 3.1, the following equations for longitudinal and shear strain are obtained.

E, =Y+ XY AV Y, HQOY, X Y+ Y Y, F Xy, FXx0Y,, + Yoy, 372
E,.=2ny, 3.7b
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n 1s direction coordinate which is normal to the middle surface and
defined in Figure 3.1

The strains in Equation 3.8 are too complicated to use. Various levels of simplification
have been made in different studies based on the assumption that nonlinear terms
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which are believed to have minor effects can be ignored. These approximations can be
categorized as the following.

a) The nonlinear terms divided by R” and higher can be ignored.

b) R / (R-x) can be approximated to be unity.

C) All nonlinear terms divided by R can be ignored

d) With the assumption of small rotation and displacement, trigonometric

functions can be approximated by the first term of Taylor expansions

. . ” . ow u - ow - .
e) The inextensible conditions: E—E:O or AZZO, depending on

interpretation of the inextensible condition.

Although simplifications based on these approximations have been made, not much
effort has been attempted to examine their effects on the behavior of load and
deflection of horizontally curved beams because the complete strain and corresponding
differential equation are too complicate. In order to examine the effects, the
longitudinal and shear strain of Equation 3.7 are simplified based on each category of
approximation above.

If approximation a) is adopted that the nonlinear terms divided by R* can be ignored,
the strains of Equation 3.8 can be simplified as listed in Table 3.1. It is to be noted that
by adopting the approximation that the nonlinear term divided by R* can be ignored,

. . : . . .. ow u
the difference on the interpretation of inextensible conditions; P =0 or
4

a%z =~ 0 in Eq. 3.1c and 3.2c¢ vanishes. Thus, approximation ¢) is at the same level as

approximation a). Therefore no examination is needed on approximation e). The next
approximation is on R/(R-x). There are two ways of treatment. One is that R/(R-x)is
approximated as 1+x/R. The other one is that x/R is much smaller than 1 and R/(R-x)
can be approximated as one. The former makes the differential equation of curved
beams more complicated. So, the latter, which is approximation b), is adopted. With
that, the strain equations in Table 3.1 are simplified to those of Table 3.2. Another
level of simplification can be made by using the approximation that nonlinear terms
divided by R are small and can be ignored. The terms of strains in Table 3.2 are then
further simplified and are shown in Table 3.3. Finally if the assumption of small
rotation and small displacement is adopted, the strains may be further simplified. Table
3.4 show the simplified terms of strains based on this approximation. The equations in
Table 3.4 are of 4™ order. If only 2™ order terms are considered, the equations are
simplified as listed in Table 3.5.

Equation 3.8 contains fourth order nonlinear differential terms for the longitudinal
strain and shear strain of Equation 3.7. This set of equations is formulated with two
reference lines, which are the centroidal axis and the axis of shear center. The
derivation of longitudinal and shear strains based on one reference line (centroid) can
be done by simply replacing the terms associated with X, and y,. Special care is needed
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when the reference line is not on the cross section of the beam. This will be discussed
in chapter 4. In the one-reference-line system, the differential equation for longitudinal
and shear strains for both doubly symmetric and non-symmetric cross sections have
identical terms except that the sectional properties are different. Table 3.6 shows the
strains associated with the one reference line formulation, corresponding to those
given in Eq. 3.8 for two reference lines. The simplification of the equations associated
with one reference line formulation can be done with the same procedure adopted in
the two reference line formulation.

3.2.3 Comparison of longitudinal strains

The simplification of longitudinal strains for doubly symmetric cross sections was
done in all previous studies based on the interpretation of insignificant contribution of
the nonlinear terms. Dabrowski (1968) derived the longitudinal and shear strains with
the assumption of small rotations and small displacements. Fukumoto and Nishida
(1981) derived the equation for longitudinal strains based on large rotation theory and
incorporated no higher than second order terms. Kang and Yoo (1994) developed the
equation for longitudinal strains by using first and second terms of Taylor’s expansion
of trigonometric function. These equations and that of the current study are compared
below.

(1) Current Study

The simplified equation for longitudinal (normal) strains in beams with a doubly
symmetric cross section is shown as Equation 3.9. It is derived from longitudinal
strains listed in Table 3.1 by considering the approximating level a) through e) on page
39 and ignoring the third and fourth order terms.

~ 1o 1 ~
W=+ v+ x(=a"- V)

c A 2 N
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(2) By Dabrowski (1968)
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Equation 3.10 is developed with the basic assumption that beam cross sections can not
deform and the shear strain at the middle surface of the thin-walled beam can be
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ignored. The simplification was accomplished by a mixture of approximations a)
through e). In comparison to Equation 3.9, it can be seen that terms with R? in the
denominator exists in Equation 3.10 while many other terms in Equation 3.9 are
missing in Equation 3.10.

(3) By Fukumoto (1981)

~7 1 ~r2 1 12 1 ~n 1 . "
E. =W, +— +—v_ +Xx| —+COS —u, —— |+Ssin -V
z { c 2 N 2 N (R ﬁ( S R] ﬂ( S)]

of Vo o1,
+ X (E(ﬁ )jer (E(ﬂ )ﬂ 3.11

The equation for longitudinal and shear strains by Fukumoto are the basis for Japanese
specifications for curved beams. Equation 3.11 is derived from last assumption in
Section 3.2.1 and using approximation a) through c). All strain terms by Fukumoto are
the same as those from the current study simplified by a) through c) except the terms
related to warping:

e Current study
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If approximation d) is imposed on the Equation 3.11, it results in an equation almost

identical to Equation 3.9 except the underlined term ( fu. ) in Eq. 3.9 is missing.

(4) Kang (1994)
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With the inclusion of the first and second terms of Taylor’s expansions in the
derivation, Equation 3.13 contains more terms than Equation 3.9 of the current study.
The effects of the approximations for simplifying the equations for complex and
nonlinear longitudinal and shear strains are examined later in Chapter 6.
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Table 3.1 Simplified Strain Terms by Neglecting Nonlinear Terms Divided by R’
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Table 3.4 Simplified Strain Terms Approximated by a), b), ¢) and d)
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S (Xs,y5)
o (Us, Vs, Ws,3)

(Ue, Ve, We, 3)

n

Figure 3.1 Coordinate System of Curved Beam

C and S are centriod and shear center

Us, Vs, W are displacement of shear center in x, y, z direction
U, Ve, W, are displacement of centroid in x, y, z direction

B is rotation of the cross section about z axis
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4. Formulation of Differential Equation for A Curved Beam

4.1 Introduction

In this chapter, a formulation of differential equation for the analysis of arbitrary thin-
walled spatial curved beams under general loading and boundary condition is derived
by using the principle of minimum total potential energy. The formulation includes six
modes of stretching, shearing, twisting and bending with non-uniform warping being
an important mode of displacement. Flexural behavior of horizontally curved beams
represented by large rotations and large displacements is modeled on the basis of
incremental formulation for un-deformable cross-sections.

For the singly-symmetric and non-symmetric cross sections, two reference lines (the
axes of centroid and shear center) are needed in the conventional beam theory. Two-
reference-line system generates many disadvantages caused by the coupling associated
with the distance between the two reference points. In order to overcome these
difficulties, one-reference-line system is developed by transferring all displacements to
one-reference point.

For investigating the effects of sectional deformation of I-shaped cross sections, a
formulation is derived based on the assumption that the flanges retain their original
shape and the web can deform. The shape of web deformation depends on the external
load. In-plane loading and out of plane loading generate different shape. In this study,
only the shape of web deformation by out-of-plane loading is considered. The
formulation of differential equation with sectional deformation starts with introducing
a relative rotation between the flanges and the web. The additional strain terms
associated with sectional deformation are derived from the relative rotation. For large
rotation and displacement analysis, formulation is modified for incremental step
analysis.

Solving linear differential equation for arbitrary boundary conditions with specific
loading is difficult. Dabrowski (1968) derived the exact solution for one specific
boundary condition, which is defined here as the “basic boundary system”. With
similar approach, exact solutions of linear differential equation are derived for a set of
different boundary conditions including those of free-free and fixed-fixed against
warping at the ends of a curved beam.

4.2 Application of the Principle of Stationary Total Potential Energy to Curved
Beams

When an elastic system is subjected to conservative forces and is in equilibrium, the
total potential energy of the system must be stationary. The essence of using the
principle of stationary total potential energy to solve problems of load and
displacement is to calculate the total potential energy Il at different stages and to
invoke stationary IT.

In a linear elastic continuum with zero initial stresses, the total potential energy of the
system is the following:
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1— — —T 7 st s
H:.!EgT[C]ng—lquBdV—g[u Fds 4.1
f

Where: ¢ is strain vector
Tis transpose
V' is volume of curved beam
[C] is material stiffness matrix;
u 1is displacement vector;

/% is body force vector per unit volume;
Sy is surface area of beam

'’ is displacement vector of u corresponding to surface Sy
/*' is surface traction vector per unit surface area (S

The first term in Equation 4.1 for the total potential energy is the strain energy stored
in the elastic body. The Second and third terms are the loss of potential energy of the
system.

The mathematical statement of the principle of stationary total potential energy can be
expressed asdll = 0. By invoking the stationary total potential energy with respect to
the displacements, the equilibrium equation can be obtained as the following equation;

M= [5"seav - [sa" fav - [su"! f*ds =0 4.2

4 4 s,
For equilibrium Equation 4.2, it is assumed that constitutive law in Equation 4.3a, the
strain-displacement relationship in Equation 4.3b and the displacement boundary
conditions in Equation 4.3¢ are satisfied.

S=[c]e inVolume ¥ 4.3a
£=0u inVolumeV 4.3b
u —u =0 onthe surface S, 43¢

Where S, is surface area of support, #* is displacement component corresponding to
the surface S,, u is the prescribed displacement components and S is stress vector.

Since in this study, the non-zero strains and stresses are €,, €,5 and ©,, O, the strain
and stress vectors in Eq. 4.2 can be expressed by the following equations.

e=le.e. | 4.3d
S={o..0.} 4.3e¢

For the horizontally curved beam, only homogeneous material is considered. Thus,
material matrix [C] is
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[c]= E g} 4.3f

In order to account for the effect of curvature of curved beam on the volume, the
differential of volume, dV, is expressed in cylindrical coordinate as:

dV = pdedpdy 4.4
Where: p is R-x
¢ is enclosed angle defined in Figure 2.1

In Cartesian coordinates, Equation 4.4 can be transformed to the following equation;

ay = B=*

dx dy dz = % dAdz 4.5

Where dA is the differential area of the beam cross section A

It should be noted that integration of the term [(R-x)/R] dA causes new sectional
properties for the curved beams. These new properties generally can be expressed by

R—x

: 1
the two conventional sectional properties, i.e., O, =L X( )dA =0, —Ey where
O,  is first moment of area about y-axis for curved beams. Qy and Iy are first moment
of area about y-axis and moment of inertial about y-axis respectively. The effect of
sectional properties associated with x/R can be examined by comparing the results of
ignoring and including x/R in the calculation.

4.3 Derivation of Components for Differential Equations

The individual components of the equilibrium equation, Eq 4.2, need to be expressed
in strains and displacements for solution. Any of the simplified strains from Chapter 3
can be used. With more elaborate expression for strains, better solution of load-
displacement relationship will be the outcome. However, solving of complicated
differential equation is still often not achievable. The equilibrium equation based on
the assumption of small rotation is derived in this section and further simplified as
linear differential equation from which exact solution is derived for a specific loading
and boundary condition in the following section. The governing differential equation
based on large rotation and displacement will be derived in Chapter 5 and solved for
specific loading and boundary conditions using the numerical procedure in Chapter 6.

4.3.1 Variation of Strain Energy

In the variational formulation, the symbol & is used for variation of variables. The
expression JoF is similar to the differential dF. The law of variational sum and products
are the following:

5(F(2)+G(z)) = OF (z) + 6G(2) 4.6a
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5(F G)= GoF + F&6G 4.6b
S(F) =n(FY~oF 4.6¢

One of the important laws of variation is that the operator of variation can be translated
in and out of an integral sign:

5j F(z) dz =j SF (z) dz 4.7

A simplified nonlinear equilibrium differential equation for small displacement and
rotation is derived using the longitudinal strain and shear strain in Eq. 4.8. which is
simplification of Eq. 3.7 based on the the assumption of ignoring the terms with //R’
and higher than 2™ order.

E.=V AXY Yy, vy, + Xy + Yy vy, Fx0y,, +yoy,, 4.8
E,=2ny, 4.8b

Where n is direction coordinate which is normal to the middle surface and
defined in the Figure 3.1

For convenience, the components of strains are divided into linear and nonlinear terms,
e and n.

£ =e +1,
(e +70)+x(e, +7,)+ v e, +1, )+ @ e, +7,)+ 2 (e, +71,,) + 4.9a
[ (e + nyy) (exy + nxy)+ xole, +1.,)+ ya)(eyw + 77},(”) ]
&, =e, +n, =2nle, +7,) 4.9b
where
e +1, = (a(VVL —%)} + Gaz((ﬁ; +y, BV +( —xsﬁ')z)j 4.10a

} [ S - pir)- v;ﬂ'—ﬂv;'}
a{—%+v§ﬁ"—%ﬂ'u; —xsﬂ'zj
e, +1n, = [a(— v!+%D+ (a(us'ﬂ'+ﬂz7s")+ az(—ﬁ;ﬁ'—ys ,B’ﬁ’)) 4.10¢

o)
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2
e+, =0+ %(ﬁz)J 4.10e
a2 12
e, +1, =0+ 7(ﬂ ) 4.10f
a2
e, +1, =0+ ?(,B'u;)J 4.10g
exa) + 77)((() = 0 + 0 4.10h
2
€ T, = 0+(%(ﬂ’2)j 4.10i
v u.p .
e +n =a|l B +—= |+a =& 4.10
o (ﬂ Rj ( R j )

e, and e, are linear parts of longitudinal and shear strain

1. and 7, are nonlinear parts of longitudinal and shear strain
a=R/(R-x)

With the strains in Eq. 4.9, the first term in Eq. 4.2 can be expressed as the following:
[$7 szav =[[5" s(e+7)v
Vv Vv

= v[[O-Z 5(62 +772 )]dV + J‘[O-ZS 5(623‘ +77 zs )]dV 4.11a
Vv Vv
Where
S={o.,0.} 4.11b
e= {ez,ezs }T 4.11c
7={n.n.} 4.11d

The strain energy, Eq. 4.11a is composed of longitudinal and shear strain energy. The
strain energy associated with longitudinal strain can be expressed as the following
equation

I[JZ 5(60 txe, +ye +w ew)]dV

v

+I[02 gy +xn, +yn, von, +x*n, +y*n, +xvn, +yon,, WV 4.11d

v

Equation 4.11d is expanded by using the stress resultants defined in the following
equations.

F. =|o. d4 4.12a
A
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M, =[o.ydd 4.12b

M, =~[o. xdA 4.12¢
A
M, =[c.0d 4.12d
A
K, =|o.xd4 4.12¢
A
K, =[o.yd4 4.12f
A
K, =[o. xpda 4.12¢g
A
K, =|o. xwd4 4.12h
A
K,,=[o. yodd 4.12i
A

Equation 4.12 applies to two groups. One group of resultant is from the traditional
form of F' = Ia(x, y,@)dA . The other is associated with curvature of the curved beam.
F* =.[G(x, y,a))R/(R—x)dA. Those resultants with the superscript “a” can be

expressed by just multiplying the additional term R/(R-x) to those shown in Eq. 4.12.
With the stress resultants, Eq. 4.11 associated with longitudinal strain is expanded to
the following.

F25€0 _My &x +Mx &y +Mw &w +K:ac &xx +KW &W +

[lo.5(e. +n.)lav = av

v
K xycSeXy +K o cSeyw

F;§770 +My 577): _Mx 577y +Ma) 577(0 +Kxx577xx +
+| dv 4.13
' K)/)/ 577}’)’ + nyénxy + K yo 577)/6()

Using Eq. 4.5 and substituting the expression for linear and nonlinear strains, Equation
4.13 can be expressed as the following equation:

F oe, —My oe +M . §ey +M, oe,+K_ oe_ +Kyy 5eyy +
j dv =
4 K, de, +K,, oe,
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I|:F;5( (Wé - M_S _ﬂi)j _ MV 5((_ M: _K:, n yy_vz’jJ:|dZ
R R ) R >

e g

e[| o3 e oY 40 )j_dz

+
BN C—y
1

- Mya‘[%(—ﬁ;/f'—ﬂﬁ;’)—v;ﬂ'—ﬂv: }dz

a u’2 (o] ys ror 12
__!. My 5(_?+vsﬂ _?ﬂ us_xsﬂ dZ

s @p v punem s (CaB -y, BB
L

K.“ 5(%(32 )j +K," 5(%(32 )ﬂdz

+
B~ C—y

+ ! {ny“a(% (B'u! )j +K," 5(% Vi )ﬂdz 4.14

By using Eq. 4.15, the expansion of variation for the nonlinear longitudinal strain
terms of Eq. 4.14 results in the following:
_F25n0 +My 577): _Mx 577)1 +Ma) 577(0 +Kxx 577)0: +

| dv =
)
_Kyy 577W + nyénxy + KW 577ya)

I (an((u: +%+ys ﬂ'j5(u; +%+ys ﬂ'] +(v‘; —xS,B')5(v; —xsﬂ')D:ldz
- My%(_ 5[%', +%jﬂ' —55(u;'+ v;éj—éﬂ(u; + ng—aﬁ(uﬁ vgjﬂdz

_ I[ M (-6 B -8BV —v.5 — B o7z
[l o5
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o2 2o
-V, 5ﬁ’{ﬂ' +%j - ¥, ﬁ’é(ﬂ’ +%mczz

; J'{Mw(&‘;ﬂ' B opul ﬁ&t;’ﬂ .

T R R R R

e 2o s

+| [ K. (5,B’ﬂ’)+KW“(5,B’ﬁ’)+%ya(5ﬂ’ u + fSul)+K,," (5ﬂ',8’)]dz 4.15

L

Equation 4.14 can be divided into two groups of variational strain energy. One is for
the strain energy associated with linear strains. The other one is for the strain energy
associated with nonlinear strains. From this separation, linear and nonlinear terms for
the equilibrium differential equation can be developed. By integrating by parts and
grouping the strain energy with the same variational terms, the strain energy associated
with linear strains can be expanded as the following.

e Variational energy strain terms associated with ous is

J.[— 5 ou,+ M 5uf’}dz 4.16
R K y K
L
Integration by parts:
L L L
L ' " F
M ou. | —M Ou, +IM ou, dz —j- 2ou, dz 4.17
y 0 y 0 0 y o R
e Variational energy strain terms associated with ow, is
M
[| 7. +=2|ow! az 4.18
i R
Integration by parts:
M. S V
F+—2> 0w, | —[| F. +=2| 6w, dz 4.19
R oo R
e Variational energy strain terms associated with dvy is
M
I —Mx—yq—y—% ov! dz 4.20
) "R R
Integration by parts:
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L
M ' M
—| M, +y,—=+ M, OVl | +| M, +y — Mo oV,
’ R R . ’ R R
0 4.21
I " M v n
—.[ M, +y — +M—“’ ov, dz
0 R R
e Variational energy strain terms associated with df is
F M
J —(ys Z ——"jﬂ)’—Mﬁﬂ” d: 422
) R R
Integration by parts:
f F M L 4 A L ”
—J. (ys RZ_ij&ﬂ -M, 08" |, +M,6pB |O—IMw opdz 4.23
0 0

Similarly, the strain energy associated with nonlinear strains can be expanded as the
following:

e Variational energy strain terms associated with dus is

o oW, , NE Vol nertp of AOU, Vi o
(FZ (us-i-R +ysﬂ)5(us)J [My(R( 2§us,6’))+My( 2—R R,b’&usj]

N [Mx(gu;ﬁ'+ﬂ§(u§’))+Mf (‘ 5”‘;('3'+%DJ

+ M“(M+%j+MZ[_MJ +Kj[(ﬂ5u5)) 4.24
R R R Y R
Integration by parts:

!

(Fz“(ub’, + v;;” +y, ,B'D ou, dz

L

L
Wc

Fhlu +—<+y B |ou.
Z(b R ybﬂjb

]

0

y ! ’ a u’ y ’
M |22 B60u’ [+ M?| 2=+ ou
(25 macfoar{a o5 o

L
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L

+ (v, (M, B) ou

—L’UMX ﬂ'—M:m-wx o .

+((Mw —Mwa)’%,jﬁu —j‘[(Mw —Mwa)%,j ou, dz

(M, ﬁ)é‘u'

L

0
'

L L "
+ Mwﬁéu; —(Mwﬁj ou, |\ +J(Mw£j Suu, dz
R, R o IR
' L ' '
vk P s OL—.[(KW“EJ Su, dz
Y R W R

Variational energy strain terms associated with dw is

o oW y LW w )]
F, + O—=5|+M | =51 200—<+2B5—=
O SRV C B2

w w ViYow

M |6—=<p+L06—=|-M"|p+-+|6-=
_ ( ( Rb’ B Rj x(ﬂ Rj Rj
Integration by parts:

(e
0 R

dz

~ —

!

—J;L [Mx%j ow, dz

Variational energy strain terms associated with dvy is

[ (b, —Mx“)% Sw, dz + ngéwc :

(F20 = x B)6, )+ M, (88 + BV!)— M B&.

B w. )V V'
M| —|u+—= 02— "5~
( ( (u Rj N v B RD
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Integration by parts:

E—x ), |- ] {F;<v; o) o,

- B(M! - M ))5v dz

M B (M ﬂ)

— M (i+ v, ﬁj&s +[ 1M (&+ v, ﬁj Sv.dz 429
R CR)| AT R R

e Variational energy strain terms associated with df is

] {F(y () + %) —x v+ (x + yf)ﬂ')&ﬁ'

L

—M (- V! —V.5p') - M;(vzéﬂ' —&(u; + 2xsﬂ')5ﬂ’]

{3 o)

Mw(@+M]+M;( WOl _p 2 ,B’éﬂj
R R R

R

+ (K + K+ K )BSB)+ K, (“E 5/3') }dz 430
Integration by parts:

Fo (@)= x v+ (2 + BB |

@ x4 7+ 3,8 9 d

V' B dz — ((M;‘ ~M,V - M, %(u; +2x, ,B’)j

4] fm,
{ (M¢—M V. - “;;(u£+2xsﬂ')j}5/” dz
Mo dz — (M2~ )i+ M2y, B+ ) B |

(a2 —m i+ Moy, (B +ﬂ))}5,6’dz
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+f {Mw L;g }5,3 dz + [(Mw - M;)”—Ié ~2M%y, %jéﬂ :
- LL{(Mw _M;;)“;;" —2My, %j} 5P dz
Ko Ky + KL )B B +K§y’“‘;} Y :
- IOL (ke +xe + K2, )ﬂ) 5B dz - jOL (K ;}%ﬁ" ) 6p dz 4.31

In a similar way with regard to shear strains, the last term of Equation 4.11a can be
expressed as the following:

Jlo. (e, +n.)lav =[lo., 2n 8(e, )lav + [[o.. 2n 8(n, kv 4.32

14

By using the definition of stress resultants, Equation 4.32 can be expanded as the

following:

[ (e, )av + (M5, )dv 4.33a
Vv

4

Where M, = [2n(c.,)dA 4.33b
A

Substituting the expression for linear and nonlinear strains from Eq. 4.10j and sorting
out same displacement field, Equation 4.33a can be expressed as the following:

[l M, (5ﬂ'+%) dz+[| M, (—&‘Sﬂ L j dz 4.34
) R ) R R
e From variational energy strain terms associated with dus and integration by
parts;
Bl 1y B)
M, Zou| [\ ML | bu, dz 4.35
R |, o R

e Variational energy strain terms associated with ovy:
M
SV 5‘}3‘

L
—jL%w dz 4.36
R o R
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e From variational energy strain terms associated with 6f and integration by
parts, the expression associated with linear and nonlinear strains are the

following
M Bl - [ M, 5 d= 4.37a
!’ L 1 '
u L u
M Ysp [ 2| opa 4.37b
N4 R ﬂ‘o J.O[ % Rj ﬂ Z

4.3.2 Variation of Potential Energy due to Applied Load
For the analysis of load and deflection behavior of curved beams in this study, the
external loads include distributed loads and concentrated loads. The body forces are
not included. The variation of potential energy due to applied loads, as expressed by
the third term of Eq. 4.2, can be expressed as the following:

[ou" fdz+Y 57, F, 4.38
L J

Where f and # are the vector of distributed loads and displacements along the span
length L as defined in Figure 4.1, and have the following components:

f={ Soo Sy oo my, omy, m, mw}T 4.39a
I/_tz{ U, Vo W Hx’ eya ﬂa Hw}T 4.39b
0,.=v, 4.39¢
0, =u; + u 4.39d
R
V’
0,=8+— 4.39¢
, =B 2
Where:

fy is distribute shear loads applied to shear center in direction x-axis
fy is distribute shear loads applied to shear center in direction y-axis
f, is distribute axial loads applied to centroid in z-axis

m, and my are distribute moment applied to centeroid

m, and m,, are torsional and warping moment applied to shear center
w, 1s longitudinal displacement of the centroid

B, and Oy are rotation about x- and y-axis

0, is warping rotation

Fiof Eq. 4.38 is the equivalent concentrate force vector defined in Figure 4.2, and

q,1s the displacement vector at the location of the applied loads FJ
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F.iz{ ij’ ij’ Fz/’ ij’ MJ’J" M

T
s M) 4.40a
— T
q; = {usl" Vs Weio exj’ eyja ﬂ_/ > ij} 4.40b
where j is load number

With the orthogonal condition and by integration by parts, Equation 4.38 can be
expanded as the following expression:

!

( f- my,Jé'us + ( f,-m, - '%’”Jc?vs + ( i+ %}Wﬁ (mz—mw'}sﬂ dz

O ey

L

+ (mxé'vs +m, G, +m, S +%5ij

0

+ S (E, S, + F, 00, + F.5w, + M50, + M 60, + M_5p, + M,56,)

J

L./

4.41
Where L; is the location of applied load number |

4.3.3 Components of Governing Differential Equations and Boundary Forces
The governing differential equation can be derived by substituting the strain energy
expressions developed in preceding sections into the equation of total potential energy.

For axial deformation ow,:

! !

L M, Jfu ' \f
[or S onGpon )b o] o

L m
= | p.+—> | ow.dz 4.42
) R

For in-plane deformation dus:
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— (an (uz +

O ey

”

= f[(px - my’)c?wc dz
0

s s | _aga[ B L s g
+(My[ 2Rﬂ5u*‘j My[2R+RﬂD

1 a ' V; ”_ _ a ﬁ
—[Mxﬂ -M, (ﬁ TD +(M, B) ((Mw M,") Rj

o] e o
R " R "R

!
w,

R”‘?[]'D

!

ou, dz

!

! !

For out-of-plane deformation dvy:

”n

—M”—
[ X yS R

- IOL[fy _mx’ _%J

For twist rotation df3:

Y, M, j— (F2(v - x ) + (0t - 0,))

(e, B M.
+(Myﬂ) +(Mx (E+y“ RD 2

R
ov. dz

4 ’

ov. dz

S
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M, - (y I;Z B A}? ) My, (e, @) -+ (7 + 3,08

! !

" a / S ! ! ~n a u:
M,V +((My — M, —My%(us +2x,f8 )j +M i —(KWE j

”

e i sty (B B )+, (ke v K+ K0)R)

~Ji(m

—mw'j S d

op dz

4.45

Since the displacements dus, dvs, OW, and O are arbitrary, the terms in the brackets on
both sides of Eq. 4.42 to 4.45 must be equal. The resulting differential equations for

horizontally curved beams are the following.

!

=4
(e,

M-S p) —(Fz 1+

jJ +(M _[j _( Xy“_lé,j

%J (o)

0

_Mx”—ysj\% _Mz; (O —x ) + (gt —n )
+(Myﬂ)”+[M:[u_R;+ys%)J_ _{fy_mx’_m?uJo

M, - ( ¥, 1;’2 - == j -M,, - (F (ys @) —x +(x,” + ysz)ﬁ"))’
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MV ((M; M,V - M, %(u; +2x, ﬂ’)j +M G- (ij% j
el —m i+ iy, (B4 B )+, - (K4 k5 + K2 )B)

- (M %j _ (m—mw) ) 4.46d

As a check of correctness of Eq. 4.46, a set of differential equation is reduced from it
for a straight beam with a doubly symmetrical cross section. By letting the radius of
curvature R approaching infinity and centroidal distance xs and ys of the shear center
equal to zero, Equation 4.46 is simplified to the following set of equations.

F +f =0 4.47a
M, (0, B = (Faf (£ -m, ) =0 447
(— M ) ~(Fv, )' + (M B ) - [fy - m) =0 4.47¢
—Mw” +M v+ M u] —(mz—mw’j =0 4.47d

This set of equations is that of straight beams given by Galambos (1968). Further
verification of the adequacy of Eq. 4.46 will be conducted in Chapter 6 with a
numerical examples.

The application of the principle of variation of total potential energy generates
boundary forces at both ends of the curved beam in association with the equilibrium
equations. The force boundary conditions related to the differential displacement
components are:

e For ow,
M ! !
Falo gy, Py Loy 4.48
R R 'R R
e For duq

! a ! w ! y ! ! a u’ y !
-M +F|u +—=+ +M | 2==pB0u |+ M| 2=+
y z( s R ys ﬂj y( Rﬁ sj }( R Rﬂj

!

ot g2, (1, - .05 ) (1, 2
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+K “£+M %—m =0 4.49

MV M a ! ! ! a
M, &yt FI =2 B) = f (M- M,)

—(Myﬂ)’—Mf[”—I‘éws%}%—Mﬁ%:O 4.50
e For 30y
M, +(M, p-MB M, ﬂ)+Mw§+%:O 4.51
e For 00,
M, M
—(Mﬁys R)+ 2 —Myﬂ]=0 4.52
e Forop

MM ot 7,0 ), 2

+ ((M; M)V, =M+ 2xsﬁ')) ~ (v - i+ M2y (B4 ) )

/

a Z/l; a ' a a a ' a us
+((Mw —MW)E—ZMwys%)+(KXX LK +K")B +KL S om, =0 453

[2]

e For warping 60,,

M M
-M,—-—+—2>=0 4.54
R R

The above force boundary conditions are in addition to the geometric boundary
conditions.

Sw, = Su, = 6v, = 50, =60, = 3 = 66, = 0 4.55

With regard to each of the differential displacement, either the force boundary
condition or the geometric boundary condition should be satisfied.

4.4 Differential Equations for Curved Beams
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4.4.1 Linear and nonlinear Components

Solving of the governing differential equations with complicated terms of stress
resultants is very tedious if at all possible. Even when relatively simplified forms of
strain-displacement relationship are used, Eqs 4.46 are still unmanageable when there
are linear and nonlinear strain terms in the stress resultants. While a solution technique
is to be presented later in this study for general cases, the solving of linear parts of the
differential equations is made here for a few load cases.

The linear differential equations expressed in terms of stress resultants can be derived
from Equation 4.46 by mealy removing the coupling terms.

!

r M m
_FZ -7 - fz + 4.56a
R R
" an '
M, ——=f -m, 4.56b
" M M ' ' m '
—_ M — Y — z = —m — @ 4.56C
P Ty Ty T
i F M i
_Mz — y9 z __x =mz_mw 4.56d
"R R

The total torsion-moment, M,, is the summation of Saint-Venant torsion and the
warping torsion, which can be expressed as the derivative of warping moment.

M.=M, +M, 4.57

By using the constitutive laws, cross sectional properties and the complete strain-
displacement relationship, the stress resultants in Equation 4.56 can be expressed by
the displacement field.

The constitutive laws expressed in Eq. 4.3a can be decomposed as the following
equations:

o. =E(s.)=Ele. +7.) 4.58a
r,=Gle.)=G2nle, +n,) 4.58b

Where E and G are the elastic modulus and the shear modulus.

By substituting Equation 4.58 and the strain-displacement relationship of Equation 4.8
into equation 4.12, the stress resultants can be expressed in the following forms.

F.=|oc.dA=[E(e.+n.)dA=F+F;
A A
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M, ja ydA = jEem)ydA M+ M"

e I a ~ ﬂy a NII y a( 14 ﬂ”j a n v”
M =E W, ————|+1 =+ | =y, + +I | = =
X _Qx( c s R X s R yo ﬂ R
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M,=[o.0dd=[E(e.+n.)odd=M,+M,
A A
me=Eg| 0w LY [—are 2
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a " ﬂ a " v”
+0L, | —vi+—= |+ |-p" ——=
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M, =[z,2ndA={Gle,+n,)2ndd=M,+M,
A A
=)
M! =GK! [%j 4.59j

The superscript “e” and “n” in the stress resultants denote linear and nonlinear. In
Equation 4.59, the sectional properties associated with second and third order units are

defined as
A= j dA
Ay
0, = [ yda
4
0, = [xad

4.60a

4.60b

4.60c

A, Qy and Qy are the area and the first moment of area about the x-axis and the y-axis

respectively.

The sectional properties associated with fourth order units are;
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I, =y 4.61a

Ay

I, = [x’dd 4.61b
4o

I, =[xyda 4.61c
4o

K, =[(@n) tds 4.61d

0, = SJ-a) dA 4.61e

4y

I, Iy and I, are moment of inertial about the x-axis and the y-axis and the cross
product of inertia. Kt is the Saint-Venant torsional constant and Q,, is the warping
static moment. Since normalized warping function is used in this study, the warping
static moment of 4.61e vanishes.

The sectional properties associated with fifth and sixth order unit are;

I, =|xwdi 4.62a
AO

1,,=[yod 4.62b
4y

I,=[wd4 4.62¢

Ay

The I, I, and I, are warping product of inertia about the x-axis and the y-axis and
the warping moment inertia. It is to be noted that in the differential equations based on
two reference lines, (shear center and centroid), the quantity of /., or 1,, can be made
to vanish by using normalized warping function for singly symmetric cross section, but
this can not be done in the equation based on a single reference line at the centroid.
This fact also applies to other sectional properties associated with warping sectorials.
The other sectional properties in equation 4.59 are defined by the following equations.
The sectional properties associated with fifth order units are:

I =[xd4 4.63a
4y

I, =[x"yd4 4.63b
4y

I,, =y 4.63¢

The sectional properties associated with sixth order units are:
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The sectional properties associated with higher than sixth order units are:

I, =[yo’d4
4y

Lo, = [0d4
4y

I, =[x0di
Ay

I = Ixza)z dA
4

I = jxyza)dA

xyyw
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I 00 = J.)cya)2 dA
4
10w = Ixaf dA
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4y
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= Iw dA
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}ymw

ywww
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4.64a
464b
4.64c
4.64d
4.64¢
4.64f
4.64¢g

4.64h

4.65a
4.65b
4.65¢
4.65d
4.65¢
4.65f
4.65¢g
4.65h
4.65i

4.65j



In Eq 4.59, the sectional properties have super script a, q or r, which represent

2 3
multiplying R , ( R ) or ( R j to the integrand in Equations 4.60 to 4.65.
R—x \R—x R—x
2 3
eg. I = I( R Jysz, 17 = J.( R j y’dA and I = J‘( R j y°dA . Because
% R—x % R—x % R—x

of these terms, the quantity of Qy, Qy, Qu, Lxy, Ixw and Iy, can not be made to vanishe in
formulation; the orthogonal condition can not even be applied to a symmetrical cross
section.

The linear differential equations in terms of displacement can be derived by
substituting Equation 4.59 into Equation 4.56. If the approximation a) and b) in
Section 3.2.2 is adopted, the resulting equations are the following.

I ~n Vs ' 1 yo.m 1 Xy _m 1 xw pm m y
E|-A W ——=p|+Zu"+-2V"+ 22 p" | = f + 2~ 4.66a
( c R ﬂ} R s R s R ﬂ f; R
T Ay 1 v A '
Ellu"-—=p"+1 p"—|—L-1 —-22Wp"—-=w |=f-m,  4.66b
y s R ﬂ xwﬂ [ R Xy R ] s R c:| j;c y

E yq—y+[xv—]x—’” u"+EI W'+ E| [ +22—-2 "
‘ R ) Y R R |

R
I, Lo I, ) (1. _K Cm,
+E| I +y e+ 222 8" VE2X+G—L|p"=f -m ——2 4.66¢c
(”’ »R TR R]ﬂ (R Rjﬂ Jymme =
A | T
Ela"+|El,~Eytovple) " (1) )" —E2w | EL v g B |y
’ R R R R R
]w ]w 14 A ! !
—|E=+GK, +E>|f"-Ey,—W.=m_—m, 4.66d
R R R

4.4.2 Exact Solution for Linear Differential Equations

For some loading and boundary conditions and cross sectional shapes, the stress
resultants for horizontally curved beams can be clearly derived based on the first order
analysis. Conventionally the “basic” loading and boundary condition of Figure 4.3(b)
were used for deriving exact solution of stress resultants along the beam span. In the
two dimensional beam model of Figure 4.3(b), u and v are lateral and vertical
displacement of the shear center, w is the longitudinal displacement of the centroid, 6y,
8y, B are rotation about x, y and z axis, 6, is warping rotation, ® and ®’are angles to
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the point load measured from the left and the right end, Z' is the longitudinal
coordinate from the right end and I is the enclosed angle of the curved beam.

From static equilibrium, the vertical flexural bending moment Mx and the axial force
Fz along the span for any cross sectional shape can be determined. Thus, Eq 4.56d are
independent with the other differential equations, Eq. 4.56a, Eq. 4.56b and Eq 4.56c.
With the assumption of small displacement and small rotation, the approximation
R/(R-x) =1 and the orthogonal condition of singly symmetric cross sections about y-
axis, the linear part of M, and My, of Eq. 4.59 can be simplified as

M,=-E1,(B") 4.67a
M, =GK,(7) 4.67b

and Eq. 4.56d becomes

E]w Eiv_GKT(E”):(ySI;Z _Aéxj-i_mz_m(u 4'68

This equation is identical to that derived by Dabrowski (1964). The torsional moment
and bi-moment in a curved beam must be determined by solving the differential
equations in conjunction with boundary conditions. The determination of stress
resultants for seven example cases is considered in this section. The loading and
warping boundary conditions of these cases are the following. The curved beam is
simply supported for flexural loading.

1. Point loads and equal end moment, P and M Fixed — Fixed
2.Pand M Fixed — Free
3. Distributed vertical load and moment, p and m Fixed — Fixed
4.pand m Fixed — Free
5. Moment at one End, M Fixed — Fixed
6. Moment and both ends, My and Mg Fixed — Free
7. Bi-moment at one End, Bi Fixed — Free

The resulting expressions for stress resultants are listed in Table 4.1 to 4.7 for the
above seven example cases. The expression of stress resultants for the seven loading
cases and free-free warping boundary condition can be founded in Dabrowski (1968).
With given numerical values of beam dimension and applied loads, the expressions in
Table 4.1 to 4.7 permit the calculation of forces, stresses and displacements under the
assumption of linear behavior

4.4.3 Comparison of Results

There are no available analytical results for evaluating the exact solution listed in
Table 4.1 to 4.7. Only an approximate solution has been derived by simplified analysis,
(Xanthakos, 1994). The evaluation of solution is conducted by comparing the results
from exact solution and approximate solution.
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Figure 4.4 shows the procedure of the simplified analysis in which the Bi-moment of
the horizontally curved beam under point load P is calculated. The first step of the
simplified analysis is to isolate a flange from the curved beam and treat it as a straight
beam which has length L=RI". The boundary condition of the equivalent straight beam
is in compliance with the warping boundary condition of curved beam. Figure 4.4(b)
shows the example of fixed-fixed warping boundary condition. The next step is to
derive the lateral distributed loads along the span. These loads can be obtained from
the beam bending moment diagram by equilibrium of a free body of a small segment
of the curved flange, Figure 4.4(a). The last step is to calculate lateral bending moment
from the laterally distributed loads. Then, the bi-moments can be obtained by
multiplying web-depth to the obtained lateral bending moment, e.g., M0 =Mah, M,
w=Mgh, M,, 1.2=Mch. These approximated bi-moments M), Mww2) and My for a
curved beam with the cross sectional geometry shown in Figure 4.5 are compared with
those calculated from the equations presented in Table 4.1 in which exact solution of
bi-moment for fixed-fixed boundary condition is listed. Table 4.8 shows the results for
computation. The approximated bi-moments are fairly close to the exact value at the
end sections. But at the mid-span, the results are quite different. So, the evaluation of
the equations in Table 4.1 to 4.7 can not be achieved by comparing with the
approximate solution. Evaluation of solution will be made by using the finite line
element for the curved beams, which is developed in Chapter 5, and by using the
numerical method in Chapter 6.

4.5 Method of Solution by Incremental Total Lagrangian Formulation

4.5.1 Derivation of Equilibrium Equation in Incremental Formulation

In preceding sections, linear and nonlinear differential equations are developed
with the assumption of small rotations and displacements. For certain loading and
boundary conditions, closed form solutions of linear differential equation are also
developed. Since in general curved beams can undergo large displacement and large
rotation, precise load-deflection behavior can only be obtained from solving nonlinear
differential equation. An approximate solution of nonlinear differential equation for
large displacement and rotation analysis can be derived by the incremental analysis. In
incremental analysis, the governing equations in each incremental step are linearized
and equilibrium is maintained at the beginning and the end of each discrete increase of
displacement.
Three equilibrium positions are schematically shown in Figure 4.6 - the initial and two
consecutive positions. For convenience, these are designated as position 0, t and t+At,
although no dynamic effect is considered. In each incremental step, it is assumed that
the displacement, rotation and strains are small enough for the adoption of
conventional small displacement beam theory, with high order terms ignored and
trigonometric functions represented by the first term of Taylor expansions. Depending
on the choice of reference position and configuration, two formulations can be made;
total Lagrangian and updated Lagrangian formulation. In the total Lagrangian
formulation, all static and kinematic variables are referred to the initial position and
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undeformed configuration. The updated Lagrangian formulation uses the last position
and configuration of equilibrium. Both the total Lagrangian and updated Lagrangian
formulation include all kinematic nonlinear effects due to large displacement and large
rotation. In practice, these two formulations give identical results. The only advantage
of one over the other is in the numerical efficiency (Bathe 1982)

In this study of horizontally curved beams, the total Lagrangian formulation is

adopted. The updated Lagrangian formulation needs the modification of beam
configuration based on the character of external forces which are displacement and
rotation dependant. Also, to update the beam configuration, an equivalent stiffness
matrix has to be added to the beam stiffness of the last step. This causes the system
stiffness matrix to be non-symmetric when non-conservative moment is considered
and require more processing time.
One disadvantage of the total Lagrangian formulation is the complexity of the
geometric stiffness matrix and the stress stiffness matrix. Each stiffness matrix
includes the total displacement and trigonometric expression associated with large
rotation which can not be simplified by taking only the first term of Taylor series.

To deriving the equilibrium equation of the curved beam at a discrete position
by using minimum total potential energy, the first step is to evaluating the incremental
displacement and rotation. Minimum total potential energy at the position t+ At is
expressed as the following.

ST = J.(é‘EI+At)T§t+Ath _ ﬁ’*m -0 4.69
Vo

B = [ (7Y awav+ [ (7 faras 470
Vo S0

Where Vjyand Sy are the volume and surface of the undeformed body, S is the stress
tensor at position t+ At, H is the loss of potential energy, and f® and f°/ are

components of the externally applied forces per unit volume and externally applied
surface traction per unit surface.

The following relations can be expressed between two adjacent positions.

UM =g+ Al 4.71a
gM =g+ AE 4.71b
SN =S+ AS 4.71¢c

The incremental form of the principal of minimum total potential is

O AIT = ST — ST 4.72
64



In the configuration position t+At, JI1" is already satisfied. That is, the variation of
total potential energy at position t is equal to zero.

Al = [(sz')S'av-H =0 4.73
Vo

By substituting the incremental values of Eq. 4.71 into Eq. 4.69 and using Eq. 4.73, the
variation of incremental total potential energy is

sAN = [(52° ] ASav + [(5Az) §'av ~H"** =0 4.74
Vo Vo

Equation 4.74 can be further decomposed by noting that a strain tensor can be
expressed in linear and nonlinear terms, £ = e + 77 , and that the variation of total strain,

S equals to SAZ ;

IV AS SAZdV + jVE ‘SATAY =17Af+[17f - jVE ‘5AEdV) 4.75a
where:
a2 = [ oY slam)ar + [ (a7 [ ol hs 4.75b
Vo N
" =77 staa)ay + [ (7 ) slaa s 4.75¢
Vo SO0

By considering the equilibrium state at position t, the terms within the parentheses on
the right hand side of equation 4.75a can be removed.

No approximation has been made in the formulation of Eq 4.75a. However, because
the first term on the right hand side of the equation is nonlinear, thus no solution can
be derived directly. Approximation must be introduced. By neglecting the high order
terms, and using the linear constitutive law between incremental stress and strain

tensor, S = C Az , the following linear equation is obtained.

jVO s(ae) [cls(ae)av + jVO STS(AF )V =H™ 476

Where [C ] is the material stiffness vector

Equation 4.76 is the governing equation at position t+At for incremental loading H .
The incremental displacement can be obtained from Equation 4.76 corresponding to
position t+At. The total displacement, total stress and total strain at that position can
easily be calculated by adding incremental displacement, stress and strain onto the
respective values which have been evaluated at position t.
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Because of the approximation used in linearization to arrive at Eq. 4.76, the
incremental displacement may not be correct. Therefore it is necessary to check the
difference between the exact solution and approximated solution. With the computed
approximate displacement, stresses and external forces at position t+At, the error can
be defined as the following equation.

error = ﬁ(,w )k B J~( s E(HA, )k)/§(1+A/ )de 4.77
Vo
Where k is an iteration number

Iteration will be performed until the error is negligible. Several iteration schemes will
be exam and employed in the next chapter.

4.5.2. Incremental Strain of Large Total Rotation

The procedure to develop large rotation incremental strain is basically the same as that
for small rotation. The difference is in handling the trigonometric functions. In large
rotation incremental analysis, the total rotation can’t be approximated by the first term
of Taylor series. But the incremental rotation AP at each incremental load step can be
made small so the higher order terms of Taylor series of cosine function can be
ignored. Thus, the trigonometric functions may be assumed as the following.

cos(B+Ap) = cos(f)—sin(B)AS 4.78a
sin(8+ AB)=sin(B)+cos(8)AB 4.78b
cos(B+AB) = cos(B)’ —2cos(B)sin(B)AS 4.78c¢
sin(8+ApB) =sin(B)’ +2cos(B)sin( )AL 4.78d

sin(B + AB)cos(B + AB) = sin(B)cos(B)+ cos(B)’ A —sin(B)’ AB 4.78e

Consequently, the incremental strains of large rotation can be derived by using the
following relation;

_ AFAL t
Ae, =™ —&] 4.79a

As, =gl —¢! 4.79b

By substituting the total displacement at positions t+At and t, & and %', into any
strain-displacement equation derived in Chapter 3, the incremental strain Eq. 4.74 can
be expressed in terms of the displacement. In this chapter, incremental strains based on
Eq. 3.8 only are derived. Because Eq. 3.8 has not undergone simplification, the derived
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incremental strain will be used for developing the complete incremental stiffness
matrix later in Chapter 5.

The incremental strain can be decomposed into three parts; linear incremental strain,
incremental strain associated with initial displacement at the beginning of the
increment and quadric incremental strain terms. However, in all the strain parts, certain
terms are coupled with trigonometric functions (as seen later in Eq. 4.81, 4.82 and
4.83). Thus, strictly, dividing incremental strain into three parts can not be done. But
for comparison with the results from considering only small rotation and for the
convenience of examining the contribution of initial displacement and stress at the
beginning of the increment on the total behavior of horizontally curved beams, the
incremental strain is decomposed.

Ae.=Ae, +An, =(Ae’ + Ael )+ An, 4.80a

A‘C"zs = Aezs + A77zs = (Aegs + Aeis )+ Anzs 4'80b

Ae? = Aeyy, + (Ae?n)x + (Aefn)y + (Ae?w))w
+ (Ae(oxx) )"2 + (Ae(oyy) )y i+ (Aefxy) )xy + (Ae(“m) )’“" + (Ae?ym )y @ 4.80c

Ae; = Aejy, + (Aeéx))" + (Aeén)y + (Ae(im)“’
+ (Ae(iXX) )Xz + (Ae(iyy) )y2 + (Ae(iw) )Xy + (Ae(ixw) )Xw + (Ae(iyw) )ya) 4.80d

An. = An) + (A’7<x))x + (N?(y))y + (A%))“’

+(A Tl(xx))xz + (A n(yy))yz + (AI](Xy))xy + (AT](XM))XCU + (A Tl(yw))ya) 4.80e¢
Ael =2nAe’ 4.80f
Ael, =2nAe, 4.80g
An., =2nAn, 4.80h

Where: Ae! is linear longitudinal incremental strain
Ae! is incremental strain associated with initial displacement
An_ is quadric longitudinal incremental strain
Ae’ is linear incremental shear strain
Ae!. is incremental shear strain associated with initial displacement
An_. is quadric incremental shear strain

A
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The linear incremental strain terms in Equation 4.80 are as expressed by Equations
4.81a to 4.81e for doubly symmetric cross sections. The additional incremental strain
terms associated with non-symmetric cross section are listed in Table 4.9.

Aegy, = a[AwL - Au‘j 4.81a
R
2
Ael, = [% Au(c—1)+ca(- Aﬁ;’)] 4.81b
Ae)) =c a( —AV! + ﬁj 4.81c
: "R
Ael, = a[— AB" + c[— Ags D 4.81d
AV
Ae) =a| AS +c—= 4.81e

The incremental strains associated with initial displacement in equation 4.80 are goven
below as Egs. 4.82a to 4.82j for doubly symmetric cross section. The corresponding

additional incremental strain terms associated with non-symmetric cross section are
listed in Table 4.10.

Aejy, = a(s X, ﬁjﬁ- a2(+ 2Au" ul + AVIV + Au—‘zu‘j 4.82a
" R ‘ R
i ~n 1 (Ae1i 2 1’7;2 I/ls ! '
Ae,, =—sAB| a| —u; —E—Vsﬂ +a’| - R + e +v. S
+ c[a(— AV B VAL )+ az(— —ZuSRAuS +AV. S+ v‘iAﬂ'D
+sla(@Ap i + p Al - &)+ @ 8 B - AR 4.82b

Al = ca(ATf +iAR )’ (AT +TAB )~ saBa(-v+i)
+sAﬂazb?‘f/?'+sa(Aﬁ;'+(Av;ﬂ'+V;Aﬁ'))+sa2(—m;ﬁj

~2

, Au ]

-sa R;—(Avé’ﬂ'+v;Aﬂ')+cA,8[a(L7s"+v;ﬂ')+a2(?—%—ﬂ'v:}} 4.82¢

~1 ! ~ ! ~ ! ~ ! ~r_! ~ !
P Au! B +u' Ap +ca(Aus B +uAS j"‘ az(— Au/v, +u] Avsj
(o)

R R R?
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A A RN G iR ovpY  Lfu”?
=SAf| a| ——=+—"—|+a"| ——> | |+ cAf| a| = +—"— |+a’| =5
ﬂuR Rj (RD ﬂ[(R R] [RJ]

+ (s{a( Aif + AV B +vAB ,j + az(—zi" ?LNI‘;D 4.82d
R R R
=[5 ) s o ol -7
2 ~
N cs[—(Aﬁ'iz; ; ﬂ'Au;)J 4.82¢

Ae(w) Aﬂ'N’+,B Au! —s —(Au ,8 +u E')

217'AL7’

+csa (2,H'A,6’ —Zﬂ'Aﬂj 4.82¢g

2

Ael,,, =c¢ ( ﬂ'N'+ﬂ'Aﬁ;)+s“—2(Aﬂ'ﬁ'+/3'A/7')—s“—2(/3'fa:)Aﬂ
+cAﬂ (,Bﬂ)+c R—(Av u'+v.Au, )+s R_2< Aﬁ'ﬂ ﬂ;Aﬁ')

+cs£ Av’ﬁ'Jrv'A,g'—M 4.82h
R2 N K R .
2
i a ' A D a 1~ ot Nl
A, =c}(Aﬁ B+ BAB )+SR—( AB'T — AT (,H VA
c a’ ~ ~ a2
2 1~ 2 ’ ’ r D! 2 ~1AT
+Fa (—ﬂ uS)Aﬂ-i-c F(\@Aﬂ +Av. B )—i—s F(Zu‘v Aus)
—CSGZ(AVS usi-;vs Au N Ausﬂ];us Ap j 4.82i
; u’ Au! .
Ae,y=al — S—Aﬂ + c—Aﬂ s 7 4.82j

The quadric incremental strain terms are shown in Eq. 4.83a to 4.83j. The
corresponding additional incremental strain terms associated with non-symmetric cross
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section are listed in Table 4.11. The 4™ order terms are included in the quadric

incremental strain, for later examination of effects of high order terms on the load-
displacement behavior.

Any = L2l Ara + AV AV + A Au 4.83a
(0) 2 s s s K R2 s s
! ! 2 AES’AES’ ! ! ~n (el ! ’
Anm =c| —aAv,Af +a —R +AV.AL | |+ 5AS a(AuS +AV. ' +VIAL )

(2R B g [+ salop - )

—s@ATABCAB +(a(AB'T + B AT - AV)+ a* (- AT B ~TAB)  4.83b

+sABa’

Ay, =-sABlal- & + (8T + AR - a* (8B + AP
+ c(a(Aﬁs'Aﬂ')+ a2<— Aﬁ;AﬂN'))+ S[a(Av;A,B')+ az(—AiSf; —Ap'A V;D

+ cAﬁ(a(Aa;'+ AV B +VAB)+a (M _ Ay, —VAB' D 4.83¢

R R’

R R R?

vd 4 Au!Ap L AuSZAvS +d 4 AV AP i Ausgus
R R R R

N (cAﬂ{a(A]Z“ N AV. B+ VAP j+ 2 2u] ?uS]

Al = sA,B( ( Av;  Aup +M3Aﬂj 2 AV + T AV J

4.83d
R R
2 ~PA )
Al 202%(“‘ Au, AﬂAﬁj+s Z_ABAB' +csEA/3AN' 4.83¢
, AT AT =, AT'AB'
An,, = A/?A/? 5 ( R2 AﬂAﬂj—csaz‘Tﬁ 4.83f

2 2 ~1 A~
a DA f AM AM ,
An(xy) = Cz EAﬂ Au —s ?Au Aﬂ +csa (Aﬁ Aﬂ Aﬂ 2) 4,83g
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2 2 2
a AT a N1 a 1~ A~
Allsoy = € AB' AT+ 5= AB'AB —sA,HF(A,B i+ BAT)

2

2 2
+ cAﬂ%(A,B’ B+ B AR )+ %AV;M; e %AE;A,B’

2 ~IA T
+csa—2 AVLA,B'——A““A“S 4.83h
R | R
a’ ~ a’ a’ ~ ~
An,, = c?(A,B’ AF)- s A A sAﬂ?(Aﬂ' B+ AR
dz a2 ~ 612
r~r A 1 2 ' i 2 ~PA
—cAﬂF(Aﬂ u, +,BAuS)+ c F(AVsAﬂ )+s F(A%A”s)
o | AnA  ALES 4.83i
R R
AV Au'
A =a| —sA £ —cA s 4.83j
e ( o) R S R J ]

Incremental strains from simplified strain-displacement equations, Table 3.1 to Table
3.8, can be obtained from Eq. 4.81, 4.82 and 4.83 by using the approximation a) to e)
shown in Section 3.2.2.

4.6 Formulation with Respect to One Reference Line

4.6.1 Reference Lines

Conventionally, the beam theories have been formulated based on two reference lines:
the centroidal axis and the axis of shear center. In previous sections, the equation for
curved beams were also developed using two reference lines. Using two reference
lines has the advantage of making the governing differential equations independent
and utilizing the orthogonal condition for symmetric cross sections. However, this
advantage disappears in analysis with large displacement and rotation or in analysis of
non-symmetrical cross sections. Furthermore, there are apparent disadvantages. First,
in the two-reference line formulation, external loads act through two different points of
beam cross section: torsional moment and shear force on the shear center and flexural
moment and longitudinal axial force on the centroid. Because of this, coupling
between external loads and the distance of two reference points in deformed
configuration can be occurred. With small rotations, the coupling is easily expressed
by rigid-rotation. But with large rotations, the uncoupling may not be possible.
Secondly, there are degenerate cases where the shear center is not defined or is
difficult to find. Therefore, there is strong advantage in developing a formulation
based on one reference line.
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The reference line could be any line that passes through the plane of cross section. The
centroidal axis is chosen as the reference line in this study, because it utilizes sectional
properties corresponding to those for conventional beam theory and provides
orthogonal character in the formulation. The centroidal axis is within the cross section
for doubly and singly symmetric I-sections and is out side of the cross section for un-
symmetric cross sections. Depending on whether the location of the centroidal axis as
the reference line is inside or outside of the cross section, different procedure is needed
for the deriving differential equation of curved beams.

4.6.2 Reference Line in Cross Section

When the single reference line is in the cross section, Figure 4.7, the longitudinal and
shear strains can be derived by modifying the corresponding ones of two-reference
lines. The terms associated with distances x5 and y; in the strains of the two-reference
line formulation are replaced. Thus, the set of equations in Eq. 4.9 is modified as the
following equations.

’ ” w 1
52=(Wc —&j—x u, +— —y(vc —éj—a) ﬂ"+v;' 4.84a
R R R R
Y
£y = 2n(ﬁ + 7} 4.84b

Where u., v, and w, are the displacement at the centroid. For simplicity and
convenience, only the linear parts of strains are presented.

By using the longitudinal strain and the shear strain of Eq. 4.84, the variation of strain
energy in minimum total potential energy, Eq. 4.2, can be expressed as the following

equations.
!

L ! u ! u n W 1 W
[o.0c.av=]E A(wc ——"j5(wc ——"j+ly u, +— |8|lu, +—
) 0 R R R R

+1 | u, 4+l 5(‘% —E}LIW u, + e s prate
! R R R R

(v -2) ( 1[5 <E)ofs <)
’ R R ) R R

" ﬂ " V n V " W
+1 v, —=|0| B+~ |+1 +—<|o0lu, +—=
”’( ° R d R wo| P R ° R
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" ” ”

v " p v v
+1 "+—=|O|lv, —= |+, | "+ |o| "+~ | |dA
yo ﬂ R (C Rj [2] ﬂ R ﬂ R

4.85a
r % \%
0. dV=GK "5 B+~ || d 4.85b
.I[st 825 T'(|)-|:(ﬂ Rj (ﬂ Rj:| 4

The loss of potential energy expressed by Eq. 4.38 can be modified as the following
equation;

[ou fdz+Y 53, F, 4.86a
L J

Where:

' T
u, = uc,vc,wc,ﬁx(:vc),ﬁy (zuc +%),ﬂ,ﬁw(—ﬂ+‘;"eJ 4.86b

, T

— ! ! Wc' vc"
9ej = ”cj’Vc_;’Wcj’ex_i(z‘%_/)’eyj(zucj + RJ j’ﬂj"gwj =ﬁ,+7] 4.86d

It is noted that all external forces ( f and}_?_/.) in Eq. 4.86a are applied through the

centroidal axis.

4.6.3 Formulation for One-reference Line not in Cross Section

When the reference line is not in the cross section, Figure 4.8, one-reference line
formulation cannot be developed by mealy replacing terms containing X and y;s as it is
done in the previous section. This situation comes from the condition that cross
sectional rotation is composed of two parts. One is associated with Saint-Venant
torsion and the other one, with warping torsion. If the centroidal reference line is in the
cross section, rotation of the reference line includes the contribution from both
warping and pure torsion. When the refernce point is not in the cross section, warping
displacement does not occur at the refernce point and only Saint-Venant torsion
contributes to the rotation. The magnitudes of rotation angles 6y, 6y, B and 6, of shear
center and the centroid in Fig. 4.8 have to be same respectively. In Figure 4.8 the
fictitious wall linking the centroidal line to a lonigudinal line at a point in the cross
section is not subjected to warping displacement. Consequently, the equations of the
minimum total potential energy expressed in Eq. 4.85 and 4.86 have to be examined.
For the strain energy in the total potential energy, Equation 4.85 can be used. However,
the loss of potential energy as expressed by Eq. 4.86 has to be changed. In Eq. 4.86,
the reference point rotation of 6y, 0, and warping rotation 0, contain the B' term which
represents warping torsion, as shown below

6 =V, =vV.-xf 4.87a
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0, =u, + \2" =(u +y, ,B')+% 4.87b

V’c _ (V; — X ﬂ')
0,=p+ R g+ 2 4.87¢
Because the reference point is outside of the cross section and only rigid body rotation
is contributing, the rotation generated by warping should be removed. Otherwise the
magnitudes of roation angle 6y, 0y, § and 0, at shear center and centroid in Fig. 4.8 are
different. Therefore, the proper expression for rotation of any point in the cross section
can be expressed as the following set of equations.

!

6. =v, +x, f 4.88a
' , Wc
0,=u, -y p+ 2 4.88b
(v +x5)
6,=p+ B a— 4.88¢c

By using Eq. 4.88, the complete nonlinear equation of a horizontally curved beam can
be formulated based on centroidal reference line, and is used for formulating the finite
line element for solution in next chapter.

4.7 Effect of Sectional Deformation of I-Beams

4.7.1. Slander and Stocky Cross Sections

When a horizontally curved beam is subjected to vertical load, the beam deflects
vertically, laterally and twists. Associated with these displacement are internal radial
forces between the flanges and the web. Figure 4.9 shows schematically the distributed
internal radial forces in the top flange of a curved beam under equal end moment. In
conventional beam theory, the sectional deformation is not considered, implying
stocky beam cross section and that the web can resist the distributed internal radial
load without deformation. For the slander cross sections with relatively high
slenderness ratio of web depth to web thickness, deformation of the cross section is
inevitable. The upper flange deflects outward in the plane of beam curvature and the
bottom flange deflects inward corresponding to the radially distributed loads on the
flanges. The shape of the deformed cross section is sketched in Fig. 4.10. The internal
bending moment associated with the deformed web is shown in Fig. 4.11. The amount
of web deformation depends on the rigidity of the web. If the web is rigid, it deforms
very little, the torsional moment associated with twisting is resisted by Saint-Venant
torsion and warping torsion as assumed in conventional beam theory. If the web is
very flexible and deforms, the contribution of the web in resisting torsional moment is
small and it can be assumed that torsional moment is only resisted by the warping
action.
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In this section, strains based on web deformation and associated flange rotations are
derived. By using the variation of total potential energy, nonlinear differential equation
including the effect of sectional deformation will be developed.

4.7.2 Strains from Deformation

Strains based on sectional deformation can be formulated by modifying the third
assumption in Section 3.2.1 as “the cross section of I-beam can deform but the amount
of deformation is small”. It is assumed that the flanges are rigid enough to remain flat
and that only the web deforms as shown in Figures 4.10 and 4.11. The strains in the
web in the direction of its depth can be expressed in terms of rotation ,a, between the
flanges and the web.

g, = a(;—zzjx v 4.89
where: g, is strain of web in direction of y-axis
d is the depth of web

a is relative rotation of flange as defined in Fig. 4.11

The relative twist rotation of flanges, a, generates additional shear strains in the
flanges. The total shear strains, including the additional strains by web deformation,
are expressed by the following equations:

g, =2n ﬁ'+ﬁ—a +2n usﬂ—usa 4.90a
/ R R R
, vV u.fp
g, =2n| '+ |+2n| == 4.90b
o R R
where:

Sz

&, is shear strain of flange associated with web deformation

&, 1s shear strain of web associated with web deformation

The additional longitudinal strain can be derived from the assumption that shear strain
in planes normal to the middle surface of the thin wall can be neglected. By the same
procedure that is used in Chapter 3, the additional longitudinal strain associated with
web deformation is derived as the following.

!

J d —sina «
€z=—(— cosa a'jx—(— sina a'jy+ 2 id 4.90c
2 2 R
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The sectional rotation, a, is considered to be small based on the assumption that the
amount of deformation is small. Therefore, Equation 4.90c can be simplified as the
following.

g, = —(% a’jx + (a’)a) 4.90d

Because the sectorial area of flange for thin-walled I sections can be expressed as ®=
(d/2)x at flange, and x and ® equal to zero at web, the right hand side of Equation
4.90d vanishes. Therefore no additional longitudinal strain is generated from web
deformation.

With the shear strains of the web and flanges, Eq. 4.90a and 4.90b , the first term of

the equation for variational total potential energy, Eq. 4.2, can be expressed as the
following.

Iazs os. dV
7

+ {M [ 5(ﬁ’ + VEJ - 5(”55 j }dz 4.91a

M, = j[amf 2 n] dA 4.91b

Ar

M, = [lo., 2n]da 491c
A,

Vi, At is the volume and area of flange
Vw, Ay 18 the volume and area of web

By integration by parts, Equation 4.91a is re-organized as the following.

For variation v
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’ L MS‘V +M§‘V
- j M | Sy de 4.92a

0

Mvv»+Mvv
T sy

For variation o3

M, +M, Vop — [, +m, J5pd-- L&u; B dz 4.92b
(v, +n,, Jogl - [ (o1, +n,, L=
For variation da
L L ' M,
-M, o | + [ M, oa dz+] b dz 4.92¢

For variation dug

o (1)

L
—IL(MW ﬁj du, dz
(Mg )

The strain energy of the web and its variation form are expressed as the following.

4.92d

+M ﬁ&u

sV, K

L
! o, e, dV = ! {aw (12%}&1 }dV = [ M, o0l 4.93a

Where:

M, = {O‘W[IZ%jx} dA 4.93b
A

Oy 1s the stress in direction of y-axis at the web

Because the variation terms associated with rotation o are additional terms, the
modified differential equation for horizontally curved beams including web
deformation can be developed by just adding the additional terms into the original
differential equation.

With this incorporation of the additional terms for the variation of da, 6, dus and Ovy,
the differential equations for deformable curved beam are the following.

!

r M m,

SF s fat 4.942
n F“ '

M~ fm, 4.94b
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-M_ -y, 2 —Tzzfy—mx - I; 4.94c¢
—MZ”" —(ys ];Z —A;[;}:mz—mw’ 4.94d
M, +M,=2m, 4.94¢

Where:
M =M, +M, +M,, 4.94f

m, is distribute moment from sectional deformation, Figure 4.11

In Equation 4.94, the sectional rotation, a, due to web deformation is considered being
the same for the flanges. However, because of the arch effect and the direction of the
internal distributed radial forces, the rotation at the top and bottom flanges is slightly
different. In the present study, the effect of this difference is not considered.

4.7.3 Differential Equations Incorporating Sectional Deformation
The constitutive laws associated with sectional deformation can be expressed by the
following equations.

o, = Ea(;—zzjxy 4.95a

o =Glon[ p+ts —o' |1on| BL 1 4.95b
/ R, R R

o =Gl 2n| g+ )san 4P 4.95¢
v R R

By using Eq. 4.95, the stress resultants associated with sectional deformation in
Equation 4.94 can be expressed in terms of displacement.

M. =GK, (/3’+La’j+ up _na 4.96a
f f R R R
M, =GK, (ﬂ’ +3j +(ﬁj 4.96b
R R
M,=Ela 4.96¢
Where:
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tf
KT = 2 b? 4.96d

K, = d? 4.96¢
t 3
1, = 2 4.96¢

b and d are the width and depth of the beam
tg, and t,, are thickness of flange and web

By substituting the stress resultants in Equation 4.96 into Equation 4.94, the linear
differential equations in terms of displacement are obtained:

~n Yy ' I yom 1 Xy _m 1 xo M y
E|—A W ——p"|+2u"+ZV'+ 22 p" = f 4+ 2 4.97a
( C R ﬂj R S R S R ﬂb »f‘Z

| ~ v Ix " iv ys‘[ I iv A ’ !
E|1 u, —?yﬂ +1.,0 —[Ty—lxy—ﬂ]vs _EWC}:fx_my 4.97b

1 ; 1 1 :
E|y,~+1. L u"+EI W'+ E| [+ -2 " — Lk il
‘ Y R )7 ! R R R R

I, Lo I, | GKy v Com,
+E [ +y e+ 22— fV+—Lqg =f-m ——2 4.97¢
( vo T s R R R ] R Sy "R

pe)

| | T
Ela"+|El,~Ey o yglo o (51 )p" —E 2w —| By g Koy
’ R R R R R

] ] A " !
~|E22+GK, +E22 |p'~Ey,—wW +GK, a0 =m_—m 4.97d
( R r R]ﬂ Yoy e s o
GKT( TR j+E1aa Com, 4.97¢
, R

Equations 4.97 apply to curved beams with a thin-walled cross section. If the
orthogonal condition for doubly symmetric section is utilized, the linear equations Egs.
4.97d and 4.97e can be simplified to the following equations:
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' € i

ElB"-(GK,)B"+GK, a =—Af; +m,—m 4.98

z w

GK,B"-GK,a +El,a =2m, 4.99

It is noted that M is the linear part of My, Eq. 4.95b, and is simplified from

approximation a) and b) of Section 3.2.2. When only a concentrated external load, My
is applied, Equation 4.99 can be further simplified as:

, EIEI,+GK, GK n GK.I M¢
e [BEEORO8, ox,

a = 4.100
GK,, GK,, R

When the radius goes to infinity, the term M/ Rin Eq. 4.100 vanishes and Eq. 4.100

becomes differential equation of the straight beam. This equation is the same as that
derived by Goodier and Barton (1944). This identity is a check of the adequacy of Eq.
4.97.

The homogeneous solution of Equation 4.100 is
a (z)= Clsinh(k,z)+ C2 cosh(k,z)+ C3 sinh(k,z)+ C4 cosh(k,z) 4.101a

Where:
2
K K 4K .1
PP B WSS SO PSS I Y2 4.101b
V2 EI, EI, K. 1,
2
PP EERCE Sy UL .S s SEP 4.101¢
NG EI, EI, K. 1,

The coefficients C1...C4 are determined by the boundary conditions of the web
deformation angle o at the ends of the beam.

The exact solution for linear and nonlinear differential equation that including the
effect of web deformation for an arbitrary boundary condition and loading condition is
very difficult to obtain. Therefore, a numerical approximation procedure such as a
finite element method or a finite strip method is recommended. In the present study, a
finite line element that included the degree of freedom for sectional deformation will
be developed in Chapter 5.

For sectional deformation associated with large rotation, the incremental analysis is
necessary. This task can be done by deriving the incremental shear strains of Equation
4.90, and adding the incremental web deformation strain of €. By the same procedure
which is employed in Section 4.5.2, the incremental shear strains associated with web
deformation and related strains can be derived as shown below.

The incremental strain from web-deformation is
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Ae, = Ae’ = Aa (uhlzjx 4.102
where Ae! is the component of linear incremental strain of web

The shear strains associated with large rotation are

e, =2nd f-a +é+s 4.103a
/ R R

e, =2na|l f+2c+iss 4.103b
R R

Where §, ¢are cos(B-o) and sin(B-o)

The linear incremental shear strains are

Aezosf =2n Aeff 4.104a
Aefsw =2n Aegw 4.104b
Ae) = a(Aﬂ' ~Aa'+ %éj 4.104c
Ael = a(Aﬂ' + %cj 4.104d

where Ae,?f_ and Ae] are the component of linear incremental shear strain of the flange

and the web. The incremental shear strains associated with initial displacement are

Ae;f =2n Ae}if 4.105a
Ae;w =2n Aef,w 4.105b
| Y/ i All!
Ae! =a| —-s=2(AL—-Aa)+c—=(AL-Aa)+s5s— 4.105¢
=l -5 - aa) ¢ (05 20+
Ael = sV B+t np+ s B 4.105d
R R R

The terms, Aej,/ and Ae, , are the components of incremental shear strain of the flange

and the web associated with initial displacement.
The quadric incremental shear strain associated with web deformation is
An, =2nAn, 4.106a

An, =2nAn, 4.106b

/
Ay,

An, = a(— $(AB—Aa) 7

+é(AB - Aa)A]lZS j 4.106¢
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An,, =a(— s AﬂRA"S + AP RA”S j 4.106d

The terms, Ann/ and Ar, , are the components of quadric incremental shear strain of

the flange and the web.

Precise load-deflection behavior of horizontally curved beam can be obtained when the
nonlinear differential equations are solved. However, it is very difficult or impossible
to derive exact solution for differential equations with sectional deformation, arbitrary
loading and boundary condition. In order to overcome these difficulties, numerical
approximate procedures such as finite element method is necessary.

In the next chapter, formulation of a finite line element will be derived based on the
formulation in this chapter.
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Table 4.1 Exact solutions for point load and end moment with fixed-warping

boundary condition

us =0
vs=10
we©)=0
Boy=0
Ao =0
Ox 0=\=0
Oy =\=0

II

m

For region [
For region II us©=10
b=RJ' vs (=0
By =0
Bo =0
we (0)=\=0
Ox0)=\=0
Oy m=\=0

M sm(F)
’ sin(B) o
I (PR M “in (F) s1n((p )
[ | B,cosh(kz)+T, sinh(k 2) + (PR~ M)77 si.n(ﬂ’) (sinh(k z)— kR sin(p))
M k k sin(T")
I | B,cosh(kz')+T, sinhlkez') , (PR—M) n s1'n(,8) (sinh(k z') - kRsin(¢"))
k k sin(I")
T f12 f14 — f15f11
° Jis fis= Tt
B Suti6e—JisSu
’ flS f13 B f12f16
. . (PR - M)(kR(asin(B’)- B'sin(T))
o = =MD =sinh(kD))+ =L i3 )sinh(k L) sin(T)sinh ()

Ju =

sin(ar)

_ (PR~ M)((— sin(I") +sin(’) + sin(3))
—1(=sin(")cosh(kb)+ sin(B’)cosh(k L)+ sin(A3))

j — M (1—cosh(kb

fi, =k(1—cosh(kL)) f,, = kL —sinh(kL) f,; = —ksinh(kL) f,, =1-cosh(kL)
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Table 4.2 Exact solution solutions for point load and end moment with free and

fixed boundary condition

I 11

Fy
— Mx
us =0 For region II et us©=0
vs (=0 b{g b=RJ' N vs@=0
we©=0 B Bo =0
Boy =0 we (0)=\=0
BOo =0 BOo 0)=\=0
Ox 0)=\=0 Ox 0)=\=0
Oy =\=0 By 0=\=0
| (PR- )58 ) o)
Mx sm(F)
sin(ﬂ) N
PR-M\)——=
1 ( ) cin(0) sin(¢’)
I B, cosh(k z)+T, sinh(k 2) + (PR-M) s1.n(ﬂ )(sinh(k z) - kRsin(p))
M k k sin(T")
w . y .
Il | B,cosh(kz')+T, sinh{k =) + (PR _M)n 51'n )] (sinh(k z')— krsin(p"))
k k sin(T")
To f22f24_f25f21
fzs f23 _f22f26
Bo f21f26_f23f24
f12 f23 _fzz fzs
f21:f11 fzzzflz f23:fl3
_(PR-M)

S = sin(T")

fos = kcosh(kL) f,, = sinh(kL)

17(= sin(T")sinh(kb) + sin(’)sinh(k L))— M sinh(kb)
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Table 4.3 Exact solution for distribute loading with fixed-fixed warping boundary
condition

us (0)=0 us (0)=0
vs (0)=0 " 2 vs (0)=0
oo
B@m ©=0 00 (0)=0
Ox (0)=\=0 Ox (0)=\=0
9; Eog =0 ’ 0y (0)=\=0
Mx (PR? — M R)—Sm(ﬂs 3:(;1;‘@ ),
B, cosh(kz)+T, sinhk(kz) - k—n;(cosh(k z)-1)
sin(p) —sin(¢’)
kr| ——————* h(k
My N pR* —mR . { sin(T") + cosh(kz) N 1-cosh(kz)
i R
S L GO .
sm(F)
T f32 f34 — Af35f31
0 f35 f33 - f32f‘36
B() f31 f36_fé3 f‘34
f35 f33_f‘32 f;36
I*  cosh(kL)-1
= —k _—
Ja mL 2 K J

n L((COS(F)— l)sinh(k L)+ sir];g“) (cosh(kL) - l)j

sin(I")
(2(1 - cos(F))—Fsin(F) J

Sra = —m[l - Sln};(k]‘)) * (pR 7 mR) + q((cos(l")— 1)(1 + Cosh(k L))+ —sin(a)sinh(kL)

sin(F) R
f32:f12 f33:f13 f35:f15 f36:f16

+(pR2 -m
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Table 4.4 Exact solution for distribute loading with free and fixed warping

boundary condition

us©0)=0
Vs =0 us =0
we@©)=0 vs(=0
Bwoy =0 we(©=0
Ox0)=\=0 Bo) =0
Oy0)=\=0 Bo =0
O =\=0 Ox0)=\=0
Oy 0)=\=0
R _ R\sin(ﬂ)+ sin(ﬂ’) 1
Mx (p "y sin(F)
B, cosh(kz)+T, —smhk(k 2) - kﬂz(cosh(k z)-1)
sin((p)— sin((p')
k h(k
Ma s PR’ —mR r( sin(I") + coshikz) . 1-cosh(k z)
k i kR
N s1gh(k z) (1= cos(T))
sm(F)
Ty f42f44_f45f41
f43 f43_f42 f46
B f41f46_f43f44
0

f45 f43_f42 f46

Ja = fa
s = -mcoshiety 1) 12X =) o eos(r) - fson(i )+ sin{acosh(kd)-1)
sin(I") kR
Jo=1n Jis =1 Jas = Jos Jas = S

)
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Table 4.5 Exact solution for one vertical end moment with fixed-fixed warping
boundary condition

us =0 us©=0

vs (=0 vs (=0

we (=0 ' <z we (0)=0

B =0 Po) =0

BOw© =0 w0 =0

Ox0)=\=0 BOx0=\=0

Oy ©0=\=0 ’ Oy =\=0

sin(g')
M
Mx sin(T")
B, cosh(kz)+T, smhk(k 2)
My, .
, M 77[ R(sin(T") cosh(k z)—sin(p')) — <o) simh(k Z)j
sin(T") k
T, f52f54_f55f51
f55f53_fszf56
B, f51f56_f53f54
fss f53 - fsz f56
fs = _.M (kR (et cos(T")— sin(T")) — (cos(T")sinh(k L) — krsin(T")cosh(kL)))
R sm(F)
-M 5 . .
S = sin )(cos(F) - 77(— kR —cos(I")cosh(kL )+ kR 51n(F)51nh(kL)))

S =1 Jss =11 Jss = fis Sss = Jis
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Table 4.6 Exact solution for two different vertical end moments with fixed and

free warping boundary condition

N
b D

—
us =0 — us =0
vs@)=0 Y Vs =0
we (=0 E)VC (0) =00
By =0 ©0) =
o =0 Ox0)=\=0
Ox 0)=\=0 ’ Oy0)=\=0

Oy ©0)=\=0 O =\=0

sin(gp)
. sin(F)

4, Sine)
sm(F)

u (_ iR sin(go)Jrsinh(kz)J
sinh(kz) _ n L7 sin@)  sin(I)

¢ +M, [kR[cosh(kZ) _ Si.n((/f)J 3 Sinh(kz)j
sin(I") tan(")

M, | B,cosh(kz)+T,

f62 f64_f65 f61
fss f63_f62 f66

To

f61 f66_f63f64
fss f63_f62 f66

Bo

M, (— R—L 4 n(kR3 + Sinh(kL)D

P sin(I") sin(I")
. r sinh(kL)
+ ML [kR(m - lj + 77(— —tan(r + kR COSh(kL)jJ
S = U(M . (— kR + S;?Illl((g )J +M, [kR cosh(kl) — SE:EI;?D

Jo=/n Jos = /i3 Jos = Jas Jss = S
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Table 4.7 Exact solution for one end bi-moment with fixed and free warping
boundary condition

/\ Mw:BR

=
V
us =0 us =0
vs(0)=0 = =7 vs(0)=0
we (0)=0 we 0)=0
Boy =0 Boy =0
Ow© =0 Ox 0=\=0
Ox 0=\=0 Oy =\=0
Oy =\=0 ’ Oo ) =\=0
Mx 0
sinh(k z
My, B, cosh(k z)+T, #
T f72f74_f75f71
0
f75 f73 _f72f76
f71 f76 _f73f74
Bo

f75 f73_f72f76

Jn=0 S =Bk S =Ju J7s =13 Sas = Jas Jr6 = S

Table 4.8 Comparison the results solution for point load (P=10) and end moment
with fixed-warping boundary condition

z=0 z=L/2 z=L
Exact Solution 94.6 -53.9 94.6
Approximation 104 -63.4 104
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Table 4.9 Additional Incremental Strain Terms Associated with Non-Symmetric

Section
Value Additional terms
DAeo) _cay X8
Aey caZs AV
R S

Table 4.10 Additional Incremental Terms Associated with Initial Displacement
for Non-Symmetric Section

Value Additional terms

+(cys AB' +s x, Aﬂ')(cys b +sx, ,B')

Aé' o) a(sxs %]+ a’| + (S y AL —c xSA,B')(— cxf +s ys,B')

YRV R PR (SIRY

~r. !

- sAﬁ(a%(v: T+ (y T D + ca(%(— ALf ﬁ;Aﬂ')j

+ caz(ys —AM‘YV‘Y;ZMSAV“ j + S(— a%(Aﬁ;’— Av,f' - V;Aﬂ’) -2a’ %N;Ags'j

+ CA,B(— a%(ﬁ:—v;ﬁ')- az(&ga +L))

Aei(x) 2
czaz(— %(Aﬂ'ﬁs’ + AT )+ )];—Sz(Aﬂ’ Vi + B AV) = 2x, ﬁ’Aﬂ']

—szazxs(Aﬂ'ﬁ' + ﬂ'Aﬁ’)—szazxs ;*2 (A p + LT;Aﬂ’)—scazys(Aﬁ'ﬁ' + BAS

2

2
~-sca’ );S (A B+ AB')+ scaz%(Aﬂ'v; + AV + 2y SAS
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~c’ azys(Aﬂ’ﬁ’+ﬂ'Aﬁ’)+S2a2(%(AL7§ﬂ’+L7§Aﬂ’)—yx2ﬂ’Aﬂ'j

Aéy)
tsca (—x (apB + pAB )+ 2 (s p i Aﬂ’)+xS2,B’A,B’j
—ca2%2ﬂ'Aﬂ'+sa2Aﬂ%ﬂ'2—Sa2%2ﬂ'Aﬂ'—ca2Aﬂ%,B'2
Aei(w) +czaz(—%(m{ﬂ'+v;A,B')j+s2a2(%(Az7;ﬂ'+ﬁ;Aﬂ’)j
a2 ~ ! ~ ! ! ! ! !
+es s (ATA +TAB)+ x (A B +VAB))
2 2
Aei(xx) +cza2(%v;Av; + Aﬂ'ﬂ}rszaz )1}5 u/Au! —csaZ%(Aﬁ;v; +L7S'Av;)
2
—czazﬁ—fz(v;A,g'+,E'Av;) s° 2)1;‘ (Auu +uAu! )
Aei(xy)
resa Lo+ i) i s + )|
2
Adfy = e (A )4 L (0 )
. 2 2
Aé' xw) +s%%(ﬂ'v;)Aﬂ+c%%(ﬁ'~’) £—2c e );QS VIAV!

~2s° A uAu! +20s—L(Avu +V/ATL)
R’ R* R’

RZ
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Table 4.11 Additional Incremental Terms Associated with Quadric Incremental

Displacement for Non-Symmetric Section

Value

Additional Terms

An ()

(cy, AB'+sx, AB\cy, AB +5 x, AB')

—a*| +(~cx,AB' +5 y AB'\—c x,AB'+5 y,AB')

+%((0AIB Vs +SAﬂ X, )(CAﬂ Y +SA;B X ))

Any

2 2

y~ ~1 ' 2 AZ’Z’AV’ 2 y SIAST
cal —=\Au'A +a — S —sa” < Au'Au
( R( A ﬂ)) (yb R ] R S S

~ ! ~ ! ANr ’v + NV’A ’,
_ sAﬂ(a(% (AV! - AT B T AB )] + az{ys —ubvazub vs D

cAﬂ(a(— (8~ A v;Aﬂ')) + az(— 22 J;AJ;D

2

2
+ czaz(—%Aﬂ’Aﬁs’ + JI;‘—YzAﬂ'Av; - xSA,B’A,H'j —-s'a’x, ;;‘ AuApS'

2
- Sca{ y.ABAB' —);e—szAﬁ;Aﬁ’ + %Aﬂ’Av; + ySAﬂ'Aﬂ']

A77(y)

ca*(-y, )( A/}'Aﬁ’)+ s az{%AﬁS’Aﬂ’ - ysAﬂ'Aﬂ’j

+sc az(— X ABAB + %AJ;A/}’ + st,B’A,B')

Anw)

(- sAﬂ){az(— %2ﬂ'Aﬂ'D + c(az(— %Aﬂ’A,B’D + (cAﬂ)(az(— %M'Aﬂ'jj
2 _ﬁ ’ ’ 2 2 _& ' ' 2 2 XS ~1 !
+ s[a [ 2 ABAS D +c (a ( e AV.AB B +s (a (Rz Au/ApS D

2

+les) 2z (0. (ATAB) +x,(avap)

An ()

2 2 2
1L LA 2 D Do | Zonu v es T - Zoai | Zeav
2 R 2R R R\ R R
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2 2 2
a 1 o S Ay~ s DIA~1 S ASIA T
A7 (xy) e RJZ/S AL AV — R3y‘ A" +csa (;2 AB'Au/ + 23 AuSAvS)
2 2
a y ’ y ! a y ! ’ !
c—| —==A Av +s SA A —SAL)—| —=(ALY. + B'Av
2

Moy | +(cB)% (y s(Ap'a + ﬂ'AiT;)j+c2 %(—%Av;Av;j

+s2a—2—y*Au'Au +cs y“AvALT y‘;A{i’Av;
R R’ R R’ R ‘
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Figure 4.1 basic boundary and loading condition for shear force and moment.

Figure 4.2 Shear forces and moments for load number j.

94



Fy

/Mz

O Roller Boundary Condition

A Hinge Boundary Condition V

(a) 3-D Curved Beam Model

=0

uw=0
vo=10 ve =0
wo=0 L=0
Bo=0 we =\=0
Oxo=\=0 OxL=\=0
@y 0=\=0 @y L=\=0
Owo=\=0 AuL=\=0

(b) 2-D Curved Beam Model

Figure 4.3 Curved Beam Models
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F=M/h F=M/h

Plane View of
Equivalent Straight Beam

Segment of Enclosed Angle I'

Point Load P

Plane View of Curved Beam

Distributed Lateral focgs\\

Induced by Moment, M

Fixed

Warping BC \{

R_A:qc L/ jr

L=RT"
<3 =
Mc=PL/4
BMD
(a)
qe=Mc¢/(R h)=(P L)/(4R h)
3ch2
ML)c= —
{7 Mr)c 96
' |
L]
(ML)a= wf \\Plane View of Isolated Flange 5 ﬁ
ML)p= ==
96 (Mv) 96
ZrRch L/4

Mo z-0= (Mr)a h

Mo z-L=(ML)s h

(b)

Figure 4.4 (a) Small Segment of Curved Beam and Equivalent Straight Beam;
(b) Procedure of Calculating Approximated Bi-moment
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Figure 4.6 Elastic Body in Three Discrete Incremental Position
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Centeroid Plane of Cross Section

—

Uc,Ve,W

Figure 4.7 Section with Reference Line in Cross Section.

o

Plane of Cross section

ﬁ Fictitious wall

Uc,Ve,W
Centeroid

.

Shear Cente

Figure 4.8 Section with Reference Line not in Cross Section.
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Twist rotation as a whole beam

—

Figure 4.10 Rotation o Induced by the Sectional Deformation
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Ma
Unit Length

Figure 4.11 Web Deformation and Internal Moment m,,
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5. Development of Line Element

5.1 Introduction

In last chapter, the differential equations of load-displacement relationships are
developed for horizontally curved beams considering large displacements, rotations
and deformations of the beam cross section. The makeup of terms of these equations is
dependent upon loads and boundary conditions. The equations are too complex and are
too complicated for closed-form solution. Even for individual cases of beam geometry
and loading, exact solution is generally not possible and approximate solution by
numerical procedure is difficult. Instead, most often the employed procedure for
solution is the finite element method.

General purpose finite element packages with shell elements can be used for
evaluation of behavior of individual curved beams, with satisfactory results. However,
for examining the general behavior of curved beams, for evaluating the existing
solutions of differential equation based on first order formulation and for the
demanding task of developing stress equations for design of horizontally curved beams,
utilization of a general purpose finite element program is a formidable undertaking.

In order to achieve the goals of this study, a finite line element for curved beams is
developed in this chapter. The line element incorporates sectional deformation and
warping of the beam cross section. The effects of different levels of simplification, as
given in Chapter 3, can be compared by employing the line element. The P-A effect on
curved beams will also be developed in this chapter.

The mathematical base of formulating the line element is essentially the same as that
utilized in last chapter for the formulation of general equations.

5.2 Shape Function and Displacement Field

In a finite element analysis, a system is approximated by an assemblage of discrete line
elements which are connected at the nodal points. The displacement field of the line
element in the variation of minimum total potential energy, Equation 4.2, can be
interpolated from nodal displacement by using shape functions.

{uj=[N]d 5.1a
wi={u, w, v, B af 5.1b
[ ]:[ , Ny, N35N49N5] 5.1¢c

where {u} is displacement field vector
d is nodal displacement vector
[N] is the shape function or transformation matrix

Since five independent displacement variables are used in this study, five shape
functions are needed. The other displacement variables shown in Eq. 4.39b can be
expressed by the five independent variables. In the following section, the components
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of the displacement vector and the shape function matrix for a curved beam element

are presented.

5.2.1 Nodal Degree of Freedom

The line element for curved beam has two nodes. Each node has seven degrees of
freedom (DOF) as shown in Figure 5.1: three translations and three rotations about x, y
and z, and warping. Thus, fourteen degrees of freedom (DOF) are used for the nodal
displacement vector of a line element. The nodal DOF can be expressed by the
combination of displacements and twist rotation;

[B]: 0

0

Where: uy, vso and w¢ are the displacement at nodal point (z=0)
0x0, Oy0 and Py are rotational about x-, y- and z-axis (z=0)

WcO )
WCL eyL
VS w
VSO WcO
V‘ cL
0 0 O
I 0 O
o L
R
I 0 O
0 0 O
0 0 O
0 0 O

0 0 0]
0 0 0
0 0 0
0 0 0
-1 0 0
0 1 0
1

R 0 -1
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00 1s warping rotation at nodal point (z=0)

Us, Vs and we are the displacement at nodal point (z=L)
Ox, Oyr and P are rotational about x-, y- and z-axis (z=L)
0,1 1s warping rotation nodal point (z=L)

If sectional deformation is considered, another degree of freedom is needed. Since the
sectional deformation degree of freedom is an independent variable, nodal
displacement vector can be expressed in the following matrix form. For convenience,
only the nodal DOF at z=0 are presented.

d = {ZO} 5.3a
-

‘i, = B @ 5.3b
Where
‘u :{us v, w, u, v, g f a}T 53¢
i =fu, w, 0, v, 6, B 6, 6, 5.3d

8] 5.3e

00 0 0 O 0 0 1

*uy and ‘i, are the vector ‘u“ and ‘u at z=0

(1P
S

The superscript in Eq. 5.3 denotes sectional deformation. It is noted that two
reference axes are used for the nodal displacement and rotation of Eq. 5.3. The
longitudinal nodal displacement w¢, refers to the centroid; the lateral and vertical
displacement ugy and vy refers to the shear center. For the one-reference axis line
element, all displacement and rotation refer to the centroid. Special care is needed to
form nodal rotation, 6y, 6, and 0, from independent variables, u., v, and P. This is
presented in the following subsection.
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5.2.2 Shape Functions

One of the issues of deriving a shape function is the problem of membrane locking.
When a lower order independent interpolation function for displacement is used, the
finite element model becomes too stiff resulting in displacement smaller than the exact
value. Higher order interpolation functions are not efficient in terms of calculation
time. In an effort to overcome the numerical difficulty and to have an efficient
interpolation function, an approximate function based on the generalized linear strain
is used. The generalized linear strain formulated on two reference line can be obtained
from Eq. 3.7 and expressed as the following:

e, = {(w; —u, /R)—%sinﬂ —%(1 —cosﬂ)}

1 w X
+x{—(l=cosfB)—cos Bl u"+—< |+=2v"cos
{R( A) ﬂ(s Rj e ﬂ}

+ y{— vicosf+ SH;’B} + a){— B" —cos ﬂ%} 5.4

If the linear parts of strains are treated as independent variables, the strain terms inside
of parentheses can be used for interpolation of element displacement. By assuming that
strains associated with the flexural and torsional behavior of a curved beam line
element can be approximated by linear functions and those strains associated with
axial displacement can be approximated as constants, shape functions can be derived.

(w:,—uS/R)—%sinﬂ—%(l—cosﬂ):alé 3.5a
%(1 —cos,b’)—cosﬂ[u;# v;gj+%v;’cos,b’ = (a2%+a3jé 5.5b
—v'cos B+ Si;ﬂ = (a4%+ asj% 3.5¢
—ﬂ”—cosﬁ%=(a6%+a7]% 3.5d

Where: al to a7 are coefficients to be determined by nodal displacement.

The shape function of the sectional degree of freedom, a, is assumed as an

independent variable and interpolated by a linear function.
I __ ag

“TR

Equation 5.5 is solved to obtain the displacement components of the curved beam. The

solutions are:

5.5e
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u?:sini aé+cosi a +a,—a,+a,| — +a8&+a7y‘ — 5.6a
‘ R R)" R R R\ R
z . z z
W, =—Cos z ag +sin| — n a, +a2 —i—a1 —a,,y, cos n
. Z
+ asy, sm R + a,nys
z z zZ| z :
v, =—a,R sin(Rj a,R cos(RjnLaw 5 (EJ +a, E(Ej +a,z+a, 5.6¢
2
. z z z z a z
pf=a, SIH(EJ +ag, COS(EJ + alo(Ej +a, [Ej - Eg + a7R(Ej 5.6d

o=ag+ am[%j 5.6e

For convenience, only the shape functions for eight DOF which are associated with
sectional deformation are presented. In matrix form, Equation 5.6 can be expressed as
the following:

5.6b

u)=[ ooz 5.7a
where:
‘a=la,...a,} 5.7b
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[y @ 0 0 0]
1 @ 0 0 0
-1 0 0 0 0
0 1 0 0 0
c, s, 0 0 O
-J
—e e 0 0 0
Y
- 0 0 Rep 0

- 0 0
[ol-[® @ @ '@, @l 1,
R
0 %(pz A
2
0 g ¢ ¢ 0
0 0 Rp 0 0
0 0 1 0 0
0 s, —Rc, ¢, O
0 yvie, —Rs. s 0

0 0 0 0 ¢

5.7¢

z z . z
@p=—,c, =cos| — |and s, =sin| —
R (Rj (Rj

The superscript “s” in Eq. 5.7 denotes the inclusion of sectional deformation. To link
the displacement field, Eq. 5.6, with the nodal displacement, Eq. 5.3c, the following
relationship is used.

! = [SCD"’]O a 5.9a
[o']=[®, ‘®©, '®, ‘@ ‘@ ‘®© '© ‘o 5.9b
The symbol prime denotes differentiation with respect to z. Since the nodal

displacement is the displacement field at the ends of the curved beam element, the
relationship between the integration constant or coefficient a and nodal displacement

‘d = {“170, ‘u, }T can be established by combining Eq. 5.3a and Eq. 5.9a.
Atz=0;
iy =['Ble([[@ila) 5.10a
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000000O0OO OOO0OOTIL-RO0O0
00010-10000000GO0 y O
L 90002 0000000000
[od]=| R R 5.10¢
000000O0O0OOO0OT1O00O0—10
00000000—%0000100
1 1
000000100 —000 0— 0
R R
0000000100 00000O00O0 |
Atz=1;
w,=[Bls([of}a)
5.11a
[ot]-
- T
¢L1—1OCL%¢L&000000000
R322
000000000 ¢ S0’ Rp 1 -Re -Rs, 0
2 Yo 2
o ¢ 01 s, —¢ 00 07(& yo, 00 s ye O
L9002 90000000000
R R
4
0000000002 Zp 105 -c 0
2 R
000000R¢7L0—%§0L(&2000L s, 0
1 2 s, ¢
000000100 — =900 - g
R R R
(00 0000010000000 ¢ |

01—1010%000000000

L (L L
Where: ¢, = s, = SIH(E] ¢, = COS(E]

5.11c

From Egs. 5.3, 5.10 and 5.11, the integration constant ‘a can be expressed by the

following equation:
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Sq = [s \P].vg 5.12a

[¥]- {[sq)gﬂ 5.12b

[0

By substituting Equation 5.12a into Equation 5.7a, the displacement field can be
interpolated by the nodal displacement:

u=0"x[w|"a=N'd 5.13a
w="0, x['w]"d=N,'d 5.13b
v=®, x['w|"d=Nd 5.13¢
p="0, x| W[ "d=N,'d 5.13d
a="0, x| d="N,d 5.13¢

Where S]VI *N. , are the shape function vector for us, we, vs, B and a

The superscript “s” in *N denotes the inclusion of sectional deformation. If it is not
included in the analysis, the matrixes [*®] and [*¥] in Eq. 5.13 have to be modified for
the shape functions of the seven degrees of freedom (DOF) of the line element. The
modified matrixes and the shape functions of the seven DOF are listed in Table 5.1 for
later use in this study.

The shape functions*N, ..” N, are developed from two reference lines. The procedure

of developing the shape function from one reference line is the same as that for two
reference lines except the terms X and y; are replaced. However the definition of nodal
rotation should be changed.

Since the rotation of arbitrary points which are not in a cross section is not affected by
warping and is constant by the rigid body rotation of the cross section, only Saint-

Venant torsion has to be considered for these points. The nodal rotation 0,=u, + VI‘;L ,

6.=v, and 6, = ﬂ’+% have two rotational components. The nodal displacement u,

and v. in the expression of 0O, Oyand©O,can be expressed as u, =u +yf

WC

and v, =v,—x,f . Thus, the nodal rotations are 6, =u, +y, ﬂ' + 2 6. =v —x, ﬂ' and

6,=p+ % . The terms y, ,B' and x, ,b” in the expression of nodal rotation are due

to warping of the cross section. It implies that the rotation of the reference axis which
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is located outside of the section includes warping deformation. However, warping
deformation exists only in the section. Therefore, the rotation associated with warping
deformation should be removed from the rotation of the reference axis outside of the
WC
R 2
0.=(v,+x,8) and 6,=p+(v,+x,8)/R . The shape functions based on one
reference line can be obtained by modifying the matrix [*®], [°B] and [*¥] expressed in
the Eq 5.7c, 5.3e and 5.12b. [*®] can be modified as:
[Sq)c:l:[sq)cl SCDCZ SCDC3 S(Dc4 Sq)cS]:

- -r

o 1 -1 0c 0 000 O O 0O0 0 0 0
@ ¢ 01l s - 000 O 0 00 s 0 0
000000 O O O %(03 %¢2 Rp 1 —Rc —Rs 0| 514
000000R(/)0—%(/)¢2000 s 0

oo0o0o00O0 O0O1O0O O 0 00 O 0 o

!
cross section. Therefore, nodal rotations of one reference line are 6, = (w,—yp)+

The superscript “s” and subscript “c” in [SQDC] denote sectional deformation and
centroid.
The nodal degree of freedom,’d , can be modified as;

_ ‘u
‘d, = { S_CO} 5.15a
ucL

i, =['8]w 5.15b
Where
W=, w 6, v, 6, B 6, 6, 5.15¢
=t v, ow,oul v, BB af 5.15d
1 0 0 0 0 0 0 O]
0100 0 0 0 O
00 00 1 0 x 0
| 0100 0O 0 0 O
['5.]- 0 0 % 10 0 -y 0 5.15¢
0000 O I 0 O
0000 -0 -1 0
R
0000 0 0 0 1

The modified [“P] are_
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5.16a

COH
0O 0 0 00 O OO

d
cL

[Sq)d
_[s
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0
-R 0 O

0 0 0 0 O
0 0 0 O
0

0
0

00 0 0O

-1

1

0

0
0

0 000 O
0 000 O

0

0 -1 0 0
0 0 00 0 OO

1

0 0 O

0 0 06 00 0 0O

1
R

0 0 06 00 0 00O

0

1

1

0 0 0 00 O
0 0 0 00 0 O

[sa]{

d]_
c0l™

K

5.16¢
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~
o o o © O —~ o o 1_R2_w,R0 OS_RCL_RO
|
~
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~
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S
[

With the matrix [SCDC], [SBC] and [5 ‘PC], the displacement fields based on one reference

line can be interpolated as the following equation.
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u =0, <[ [ d=N q

w="0," [ [ d=N, d
v =0, x['w ["d=N 'd
=, x|'w ["d="N d

NN R

c

5.17a

5.17b

5.17¢

5.17d

5.17¢

Where °N,,..*N,; are the shape function vector based on one reference line (centroid)

for u., we, v¢, B and a.

5.2.3 Nodal Load Vector

The nodal load vector can be derived from Eq 4.41. As mentioned before, body forces
are not considered in this study. The nodal load vector is composed of two vectors, due
to distributed and concentrated loads. By substituting the shape function of Eq. 5.13
into the first term (the integrand term) of Eq. 4.41, the distributed load can be
transformed into an equivalent nodal load and expressed as the following equation:

75 =

Il
O e

|

R
! {Jz
fo=1r4
fo=Are

d d d

fyO S my m,, m,
d

fyL

N = o " m
(f;_—myj Nlé‘d*‘{f;mx —T

d d

d d

d d
f‘zL me m yL mzL

m

m

0

ol

dz

5.18a

5.18b

5.18¢
5.18d

Where f“ is the equivalent nodal load vector due to distributed loads. The

forces £, i1, [, mi, m) , m!

x 9 y z 9

m’ and m? are equivalent nodal loads due to

f. ,fy . f. S MMM, and m, , respectively.
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The nodal load vector due to concentrated forces can be derived from the last term of
Eq 4.41. By limiting the location of concentrated load to the nodal points, the nodal

force is:
_ F.
Fl=1" 5.19a
FL
_0 = { FxO FyO FzO MxO Myo Mzo Ma,() Mao}T 5.19b
E:{ FxL EVL FzL M):L MyL MZL MwL MO,L}T 5.19¢

Where F¢ is the nodal load vector due to concentrated external loads. The nodal load
vectors are shown in Figure 5.1 for the single reference line formulation. In two
reference line formulation, My, My, F, are applied to the centroid of cross sections and
Fy, Fy, M, M,, are applied to the shear center.

For incremental analysis of large displacement and rotation, the variation of nodal
displacements, distributed loads (Eq. 5.18) and concentrated loads (Eq. 5.19) are
changed to incremental nodal displacements, distributed loads and concentrated loads.

A SA'd =
! SNT s 7 ! Amw’ SAT s7
A —Am, |'N, SAd +| Af, — Am, - N, SA'd
— J dz
0 Am — — N o — — —
+ (Afz +—YJ ‘N, SA'd+ (Amz—Amw ) ‘N, SA'd +(Am,)) N, 5 A'd
R
5.20
_ Af
Afd={ f“} 5.21a
Af;
A ={0rd ars AR Amty AmYy Am? Amly Aml, | 5.21b
A, =S A A Amt Am? AmY Am? Amd | 5.21c¢
_ AF.
AF? =" 5.21d
AFL

AF,={ AF,, AF,, AF, AM, AM, AM. AM, AM,| 5.21e
AF,={AF, AF, AF., AM, AM, AM. AM, AM,| 521f

Because the line element is represented by reference lines and points, external
concentrated loads have to be transformed to reference point loads. When concentrated
loads are not on the reference point, it generates secondary forces corresponding to the
displaced configuration of the beam. Figure 5.2 shows a concentrated load that is not
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on the reference line. The load is coupled with the sectional rotation and displacement,
and generates a secondary moment. By using the incremental form of potential energy
due to applied loads, the secondary moment at the reference point can be derived with
respect to the initial configuration. With the assumption of small rotation in each
incremental step, secondary moment can be expressed by the following equation.

A(Potential Energy)=(Potential Energy)"*—(Potential Energy)

v = {(F,+ AF, B+ AB)~F, By,
={F, AB+AF, B+ AF, ABly, 522
Where, the superscript “sm” in Eq 5.22 denotes secondary moment. For large rotations

with concentrated loads applied at arbitrary points of a cross section (yy), secondary
moment can be obtained using the following expressions.

Vfgh =(Ar}e AT P+ (Rl [B]) AP + (7] [AT;]) AP 5.23a

i VSN VA Vi 5.23b

AP = {AF, AF, AF.{ 5.23¢

P={F. F, Ef 5.23d

0 yosin(@,) v, (2-cos(§)-cos(6,))

[1]= — y,sin(6,) 0 y,sin(8.) 5.24a

~7(2-cos(6,)—cos(B)) y,sin(6.) 0
0 X, sin(Hy) — x, sin(3)

1,]=]-x, sin(é?y ) 0 X, (2 - cos(ﬁy )— cos(ﬂ)) 5.24b

—x,sin(8) -x, (2 - cos(é?y )— cos(ﬂ)) 0

O yO(Aex) 0
[AT]=]-2(a6,) 0 y(ap) 5.24c
0 yo(Aﬂ) 0

0 xO(AQy) _xo(Aﬂ)
[AT]=|-x(a0,) 0 0 5.24d

y

% (Aﬂ ) 0 0
Where M*™ is vector of the secondary moment
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M " is the secondary moment about y-axis
M’" is the secondary moment about x-axis

M:" is the secondary moment about z-axis

xo and yy are the distances of point load from the reference point
[T;] are the transformation vector associated with yq
[T,] are the transformation vector associated with X,

5.2.4 Calculation of Stresses

With large displacements and rotations, curved beams may be subjected to relatively
high stresses. It is necessary to calculate the maximum stress based on the large
displacement and large rotation analysis, for checking against limit states.

The simplified longitudinal strain for an arbitrary cross section is obtained From Eq.
4.9a and expressed as the following.

gz:(eo+n0)+x(ex+77x)+y(ey+77y)+a)(ew+77w) 5'25
In this equation, the terms associated with x%, y*, xy, xo® and yo are not included. The
components of the strain in Eq. 5.25 can be expressed in terms of sectional properties
and stress resultants, My, My, M,, Bi.

(e, +7,)= = 5.26a
e +m ) M (1,0, -1,0,)+M (1.1, -1,2)+Bil1.1, zlxylyw )J <2t
Elrag,+21, 0,0, -1,1,7-11," 1,7
o n)- M, — 1,2 )M (1T, - IWIW)+ Bilr,1,,-1,1,,) <a6c
v Elra1, +21,0,01, -1,1,7-11," 1,7
e 4n )M Ar1,-1,1,,)+M, (lex 1,1,,)+Bilr1, -1, <264

Eltnn, 20,00, 1,1, -1.1,"-1,7)

xwh xy”oyw

By substituting Equation 5.26 into Equation 5.25 and using the constitutive law, the
following equation for calculating longitudinal normal stresses is obtained;

oo M g1, -1o0,))em (00, -1, )+ Bil0 0, ~1,1,,)
(11,1, +21,0,1,, -1,1,7-1.1,"~1.")

z
A xwhxy”oyw yoow

. M (10, -1,2 )+ (1,0, 1,1, )+ Bill 1, ~1,1,,)
(11,0, +21,0,1,, -1,1,>-1.1,"-1,")

xwhxy”oyw

M g1, -1,0,)+m (1,0, -1,1,,)+Bil1,1,-1,?) .
(11,1, +21,0,1,, -1,1,>-1.1,"-1,")

xwhxy”oyw
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It should be noted that in Equation 5.27, approximation (b) in Section 3.2 is used and
stress resultants Ky, Kyy Ky and Ky, associated with terms of x%, y%, xy and xo are not
included under the assumption that the contribution of these stress resultants are
negligible. In order to use equation 5.27, the stress resultants, Mx, My, Mz and Bi have
to be calculated first. Although the linear part of these stress resultants can be derived
by solving linear differential equations or by free body diagrams, the complete stress
resultants can only be obtained by solving higher order nonlinear differential equations.
Furthermore, if the contributions of stress resultants, K., K,y Ky and Ky, to the
longitudinal stress are not negligible, obtaining stresses from Eq. 5.27 may generate
inaccurate results.

In finite element analysis, on the other hand, stresses can be easily computed. In each
incremental step, the displacement field is interpolated from the nodal displacements.
By substituting the displacement field into Equation 4.9a and using the constitutive
law, the longitudinal stresses can be calculated. With regard to the maximum
longitudinal stress in the beam, an example equation for calculation including full
nonlinear effects is developed in Chapter 8 by using this approach for curved beams
subjected to end moments Mx..

5.3. Stiffness Matrix

5.3.1 Linear, Stress and Geometric Stiffness Matrixes

In order to solve the nonlinear equation in the variation of total potential energy, Eq.
4.2, linearization of the first term is necessary. Linearization can be done by ignoring
the high order terms under the assumption that displacement and rotation are small and
can be represented by the first term of Taylor’s expansion. After linearization, first
term of strain energy, Eq. 4.2 can be expressed as the following.

[$7szar =[[ se"[ce v+ [[s" s7lav 5.28

Where S is the approximate stress vector and can be expressed as S = [C ] e . The first
term and the second term of the linearized variation of strain energy of Eq. 5.28 are
defined as the linear stiffness matrix, [K], and the stress stiffness matrix, [K]. Since
there are two non-zero strains, longitudinal and shear strain, and only homogeneous
material is considered, the linear stiffness matrix can be defined from the following
equation:

[loe" [Cleky = [[Ee.de.lav + [[Ge. de. Jav 5.29

By substituting the linear strains, Eq 4.9, into Eq 5.29, the following equations are
obtained
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“Eez e, |dv =

v

[t oo 3]
= ((5%; —%j + x(— ST+ 20 5“"') + y(— S+ %j ; a)(— 5" - WD& }dV
R R R R

5.30a
_V“Gesz e Jdv =ﬂc(ﬁ'+%)(

o, Hd vV 5.30b
R
The displacement functions in equation 5.30 can be interpolated by the shape function
in Table 5.1 and expressed as the following equation;

[[Ee.0e.Jav +[[Ge.be Jav =d" [K]5d 5.31a
4 4
I I T
]V!_&_ysN4 +x — ”_&_'_ysN
> R R "R R

Ao

YA\ P TN .2 Ny o NY
R R R R

+y —ﬁ;+ﬂ + - Nj - N
R R
viaNd X7
+G2n(ﬁg+];;3j (N +%ﬂdV 5.31b

By using the sectional properties defined in Eq 4.60 to 4.65, the linear stiffness matrix
in Eq 5.31 can be expressed as the following equation;

[K]zEAIK]Vz’_%_%]T (N' ]Xl yJZ ﬂdz

i AT’ T\ ' ATV
+EI,J. N” N ySN3 N” N ysN3 b
! R R R R

k]| £

— \T —
+EIXJ (— N;+%j x(— N;’+%ﬂdz
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T\ AT
+GKJH]V§+%} x(ZV;+ N3j dz 5.32

Similarly, the stress stiffness matrix, [K], can be derived from the second term of
Equation 5.28. By substituting the interpolation functions into the displacement field,
the stress stiffness can be expressed by the nodal displacements and shape functions:

[[57 o7lav =a’ [k Jsd 5.33a
Vv

1= | (o, 0] <l 3, o 3 - Y - 2.0)

L

-M,| R

_2]VIITX]V{
_M;’

—%(N;T <N/ + N/ x N} )-2xN," x N,

e
+N."xN,+N,"xN!
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:T — —, T ~ — T ~ ~ J—
+MX(N1’ xN!+N."xN/+N, xN{'+N;’T><N4)

+Mf(—]\~/1’Txﬁj+ﬁ'T4xﬁl’—ys (ﬁ;TxN;+N;Txﬁ;»

+
=
R
l—
=
~
X
=
=
N
X
=
N—
+
=

AT T>< ]vln_l_ ]VII!T % N4j

= |+
=

+M;{— (N;szVI'HV;TxN;)_z&MTX—L;J
R R

N AARTA A AR K;;((

5.33b

= —r =
+K;’w(1V;TxZV;)+MW(—N1 XN, + N ><Nlﬂa’z

U
=

Where N/ =N/ +

In Eq 5.33, the superscript “a” of stress resultants represents multiplyingRi to the
- X

corresponding terms in the integration function of Eq 4.12, e.g., F* = IJ[RR deA .

4
The linear and stress stiffness matrix, Eq. 5.32 and Eq. 5.33 are developed under the
assumption of small displacement and rotation. For large displacement and large
rotation analysis, the incremental stiffness matrixes are needed. By using the
incremental total Lagrange formulation derived in Section 4.5, the incremental
stiffness matrixes can be developed. In this study, several different incremental
stiffness matrixes are derived. The difference among them is in the approximation used
in the simplification of incremental strains. These incremental stiffness matrixes will
be used for analyzing the effect of simplification in large rotation stage.

The linear incremental stiffness matrix can be formulated from the first term of
Equation 4.76. The incremental strain in Ae of Eq. 4.76 can be decomposed into two
strains; the linear incremental strain and the initial incremental strain.

Ae = Ae’ + Ae’ 5.34
Where Ae’ is the linear incremental strain vector
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Ae' is the initial incremental strain associated with initial displacement
By using Eq. 5.34, Equation 4.76 is decomposed as
J,olae’) [cl(ae" kv + [ slae) [c](ae'hav + [ S's(aqhy =" 535

The first term and second term of the linearized variation of strain energy in Eq. 5.35
contain the incremental linear stiffness matrix, [AK], and the incremental geometric
stiffness matrix, [AK,]. The third term contains the incremental stress stiffness matrix,
[AKS]. Since there is only two non-zero incremental strain, longitudinal and shear
strain, the first term of equation 5.35 can be written as the following equation;

£[5 e [C]ae" ]dV = l[E (Ae?)s(ael v + l [6(ae? )s(ae’ v 5.36

By substituting the linear incremental strains, Eq. 4.81, into the first and second term
of right hand side of Eq. 5.36, the linear incremental strain energy can be expressed in
terms of the incremental displacement field:

I[E(Ae°)5(Ae°)]dV_an[ e TR j (( R D

z z

Ap AV!

g g +y A+ r ol - A - —=

N+ A=
(cm; ~ELY j + x[c(— T+ 2 5Av;'D

dv
+ y(c(— OAV! + %D + a)(— OAp" —c¢ éivs j

5.37a
[lG (aet )s(aet Jav = | [G a(A,B’ + c%) (53 e 5; ; ﬂdV 5.37b

Vv

By interpolating incremental displacement in equation 5.37 from the shape functions
of Table 5.1, the incremental linear stiffness matrix can be obtained:

[[E 8¢t anet v + [[Gaet anel Jav = ad™ [AK]ead 5.38a
Vv

14
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AR NRCR 7L PR SN Y I+ A S
R R R R

[ak]= [ £« O

"R R
( Nu_jm(_m_c&)
R
T ]V'
+Gal(2 )(N’+c—] (N'+cRﬂdV

From orthogonal condition and the sectional properties defined in Egs. 4.60 to 4.65, Eq.

5.38b is transformed to the following equation:

-5 el

R

telt| N2 B e —_§’+& +1°, ]\_f;'—cN3
v R R g R
T — —
N _ N, yN
VE| =N -3 | ) N -2 Kl
R R L
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T \7 AT
+GK;(—N£+C%) x(—ﬁ4+c];[;ﬂdlf

jVO sae [c](aef av = ad" [ak, |oad
[AKg] =

£ o(“D,+D, x+'D, y+D, o)

‘D¢ +a ‘D¢ +("D¥ +a D )x+(“D¥ +a D# )y +(“D# +a ‘D o

xXa

=N —

ing .2 g ,,2 Y ine Y
+a’'D; x"+a'D; y +a'Dj xy+a'D;, xo+a D}, yo

-+ G(2n)2 (a “Bny X (a “Eng)

Ea

+I +a ‘D x* +a qﬁj Y +a qﬁ; xy+a ‘D xw+a qﬁfw yo

xa(*Dy+D, x+'D, y+D, @)+ G (2nY (a ‘D2 ) x(a D?)

n
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5.39

The incremental geometric stiffness matrix [AK,] can be derived from the second term
of Equation 5.35. Several geometric stiffness matrixes are derived from the simplified
longitudinal and shear strains in this study. For convenience, only the geometric
stiffness matrix based on the complete incremental strain developed in Section 4.5.2, is
expressed in Eq 5.41 and Eq. 5.42.
In [AK,], two types of displacement are used, initial displacement and incremental
displacement. Since at position t+At of Figure 4.6, the initial displacement is known,
the only unknown quantities are the components of the incremental displacement.
Thus, the incremental geometric stiffness matrix can be obtained by interpolating the
incremental displacement, resulting in the following equation.

5.40

“DE +a ‘DE +("D¥ +a Df )x+(“D* +a D# )y +("D# +a DF o)

dV




‘D¢ +a ‘D +(“D¥ +a ‘Df )x+("D# +a ‘D? )y+(“D¥ +a Df )o
Ea

+a 'DE x* +a "5;; v +a "5;; xy+a ‘Df xo+a "“By‘io Yo

+J‘ D, D. D ) Y = — — dV
v aDOg +a ‘IDOg +(ang +a qug)x—i-(”Df s qDyg)y-l-(”D(f ty qu)a)
xXa
+a ‘D x’+a D)y’ +a ‘Dj xy+a ‘Df, xo+a ‘Df, yo
|+ G(2n) (a "EngYX(a ”Eng) |
5.41

[Pt

The strain vector terms D in equation 5.41 are listed in Table 5.2. The superscript “g
of the symbols D? indicates that the strain vectors are associated with geometric
stiffness matrix and are expressed with coupling between incremental and initial
displacement. The superscript “a” and “q” in the symbol D denote that strain terms
are multiplied by the term R/(R-x) and R%/(R-x)%.

In the total Lagrange formulation, the undeformed configuration is used as the
reference for the subsequent positions. Thus, the initial displacement at each
incremental position has to be updated by adding the incremental displacement from
the last position to the initial displacement of that position. The nonlinear response in
the load and deformation relationship is caused by the coupling between incremental
and initial displacements as seen in Equation 5.41. This updating of the initial
displacement and the coupling of terms make the geometric stiffness matrix very
complicated. This is one of the disadvantages of the total Lagrange formulation.

The triple integration function of Equation 5.41 can be simplified to single integration
by using orthogonal condition, the sectional properties and Eq 4.5. Because the
complete expansion is quite lengthy, only the terms associated with A, Qx, Qy, Qo, L,
Iy, I, and K are shown below in Eq. 5.42. The omitted terms are listed in Table 5.3.
The complete geometric stiffness can be obtained by multiplying the sectional
properties in the second column of Table 5.3 to the strain terms in the third column and
adding to Eq 5.42.

[AKg ] =
E{ [Aa ((aﬁog )rxaﬁog )+ A ((aﬁog )’xqﬁog + (qﬁog )fxaﬁog )+ YL ((qﬁog )rqujog )]dz
+E j [qu ((aﬁog )Txaﬁxg + (aﬁxg )lxaﬁog )+ 0; ((qﬁog )qulig + (qﬁxg qulsog)
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The incremental stress stiffness matrix [AK;] can be derived from the third term of the
variation of strain energy, Eq 5.35. Similar to the case of incremental geometric
stiffness matrix, several stress stiffness matrices are derived from the simplified
longitudinal and shear strains. Only the stiffness matrix based on the complete
incremental strain developed in Section 4.5.2, is expressed in Eq 5.43 and 5.44.

[ STs(amv = ad" [AK Joad 5.43

- -5, oidan o, oo, ]

R O A A e ZA R T

vk oy bk oy ek [0, vk [0ps, Lo [0 ] iz 5.44

The matrix terms of incremental strains in Eq. 5.44, [Dg] to [D,;" ], are interpolated by
the shape function in Table 5.1 and listed in Table 5.4. The superscripts “a” and “q”’in
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[DS] indicates that strain matrix terms are to be multiplied by R/(R-x) and R*/(R-x)?,

respectively

The incremental displacement and stress resultant are coupled in the stress stiffness
matrix [4K], from which the nonlinear effect of initial stress resultants can be
considered. In the total Lagrange formulation, stress resultants have to be updated at
the end of each position and can be calculated by using Eq. 4.59.

The stiffness matrix, [AK], [AK,] and [AK,] in Eqgs. 5.39, 5.42 and 5.44, are derived
based on shape functions, N,.. N, which do not consider sectional deformation and are

listed in Table 5.1. When sectional deformation is considered, the stiffness matrix,
[AK], [AK,] and [AK] are changed to [ASK ] , [A‘“K g] and [ASKS] which is linear,

geometric and stress incremental stiffness matrix associated with sectional deformation.
The superscript “s” denotes sectional deformation.

The linear incremental stiffness, [AK] Eq. 5.39, can be changed to [ASK ] by
replacing N, .. N, to*N, .. N, (Eq. 5.13) and modifying the last term of Eq. 5.38b,
which is associated with shear strain and altered to the following equation.

AT r SAT!
I[Ga (2n)2(‘*]V4—S]V5' + ];]3 éJ x[sﬁi—sﬁ; + ]I\f éﬂdV

Ve

+J'{Ga(2n)2(“’]v;+éA?}Tx(“'ﬁ;jté‘?ﬂdV 5.45
V.

By using the sectional properties, Eq. 5.45 can be expressed as:

a N N a ~ T'on
6il'x, (B, Y xB, =+ ik, (B, " <D, | 5.46a
L L
D —N—N + g 5.46h
n; R
B, =W +e i 5.46¢
R

Where Kr¢ and K1y, are Saint-Venant constant of flange and web respectively.

‘K, = [(@n) (RR jdA 5.47

‘K, = [(@2n) (RR jdA 5.48
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The geometric incremental stiffness, [AK ] Eq. 5.42, can also be changed to [ASK g] by

replacing N, .. N, to’N, ..’N, and modifying the last term of Eq. 5.42, which is
associated with shear strain and altered to the following equation.

G| [“KT/ (“Ef/Tx”'Bngf )] dz+G | ["KTW (ﬂﬁﬁfxaﬁfw) dz 5.49a
y y
where: B
‘D :[—&%(SN;—W;)—é%(fﬁ;—éﬁ;)—ﬁ N ] 549
D = (_s%(sm)_c%(sm_s jf} 5.49¢

Similarly, the incremental stress stiffness, [AKs] Eq. 5.44, is changed to [ASKS] by
replacing N, .. N, used in Table 5.4 to’N, ..’ N, and modifying the last term of Eq. 5.44

and is shown as below.
] [ M, [“Di, ]] dz+ | (s, |'D; ]]az 5.50
VLVhere: '

_ A(SZVA‘—S]VS)X (Jﬁé _ A(sﬁ4_s]\—[5)x N

R R
;|- B _ 5.51a
+[_§(sﬁ4-szv5)’ x ]]Z ~e('N,~N, ) g}

sar T osarr sxT T s sAtT UsxT s T 5T
[“D,f,,]=[—s Ny XNy Ny XNy TN; XN, XN‘*j 5.51b

C S C
R R R
, viooul,
Msv/. = J.[O-Szle’l]dA:GKTf(ﬂ —ao +EC—ESJ 5.51¢
Af
vr '
M =|lo. 2n|ldA=GK +—c——s 5.51d
SV, ;1[[ sz, ] T, (ﬂo R R j

Additional incremental stiffness matrixes associated with the web deformation are
needed. With the web-deformation strain and the incremental shear strain expressed in
Eq. 4.102 and 4.103, the additional linear stiffness matrix associated with web
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deformation can be derived. The following equation shows the additional stiffness
matrix:

[o,de,dV =[EAe) 6 Ac) aV = Ad" [AK],, ond 5.52a
V V
[AK], = E1,,[['N: ™ N; hiz 5.52b
L
Where:

2
I = j{(lz%xj }dA 5.52¢
| d
A

[AK ], is the additional linear stiffness matrix

Ae! is the component of linear incremental strain of the web, Eq. 4.102

It is noted that the shape function with superscript “s” and subscript “5” in Eq. 5.45 to
Eq. 5.52 indicates sectional deformation and shape function of sectional deformation.

So far, incremental stiffness matrixes for seven and eight DOF are developed. The
total incremental stiffness matrix is the sum of linear, geometric and stress incremental
stiffness matrixes and can be expressed as the following.

e For a seven DOF element
[AKTotal ] = [AK] + [AKg ]+ [AKS]
Where
[AK,,,,] is the total incremental stiffness matrix

[AK] is the incremental linear stiffness matrix, Eq. 5.39
[AK g] is the incremental geometric stiffness matrix, Eq. 5.42

[AK ] is the incremental stress stiffness matrix, Eq. 5.44

e For a eight DOF element
[ASKTutal ]: [ASK]+ [ASKg ]+ [ASKS ]+ [AK]SW
Where

[ASK Tota l] is the total incremental stiffness matrix for eight DOF element
[ASK ] is the incremental linear stiffness matrix for eight DOF element
[ASK g] is the incremental geometric stiffness matrix for eight DOF element
[ASKS] is the incremental stress stiffness matrix for eight DOF element

[AK ]SW is the additional incremental stiffness matrix, Eq. 5.52b
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5.3.2 Unbalanced Matrix

Because of the approximation used in linearization, the solution may have an error.
The magnitude of error can be checked by evaluating the unbalanced forces based on
Equation 4.81. The unbalanced forces can be adjusted to within tolerance by updating
the incremental displacement through iteration. The detailed procedure of iteration is
presented in Section 5.4.

In Section 4.5.1, the error in virtual work by external load was expressed by Eq. 4.77.
The first term of the equation is a known value. In the second term, the variation of

total strain at position t+At, & glak g equivalent to o ™ because at position t

equilibrium is already satisfied and there is no variation of strain. Therefore the
equation can be expressed as the following.

error = ﬁ(w bo_ I(é‘ék )T §<HN )de 5.53

Vo
where k is iteration number
By using the incremental strain, the second term of equation 5.53 can be written as:
[lee )5t kar = (&) + (&) ) 5t kar 5.54
Vo Vo

By using the shape functions of Table 5.1, Eq. 5.54 can be interpolated as:

) + (5 ) | 5V kay = goad 5.55
oy + (Y f g

Vo

g = J. [F; (aBO +”50g )_My (a5x+a5xg )+ Mx (“5}/4_"1_);' )+ Ma) (“5w+al_)g)

w
L

_{aF _ uMy jqﬁog —(”M _ quJqu
z R y R X

a

K _ a _
H M +—=|"Df+ “Mw+—K“” D
R 7 R

a4 g ag 48 44 I g 4 a INg 4 4a Y aneg
+'K,"D +K "D, +K *D;+K "D, +K "D, +M_ "D, ]dz 5.56

Where:
“D, = [1\7; LRF NJ 5.57a
R
“D, =(c(— N4 s N§’j+ (C_ZI)NIJ 5.57b
R R
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‘D, = (— cNj+c %j 5.57¢

‘D, =[—Nf{—c N3) 5.57d
R
‘D, = (N; +c %j 5.57e

When sectional deformation is considered, shape functions, N,.. N, in Eq. 5.57 have

to be replaced by’N,..°N, and the last term of equation 5.56 need to be modified as
the following;

M_ ‘DElz+|| M. “D? Uz 5.57
'[ [ SV ny }1 I [ SV, n,, h
L L

An additional term associated with the sectional deformation moment has to be
included in Eq. 5.56.

[[ Mol 5.58
L
The stress resultant M,, is defined in Eq. 4.96c¢.

5.4 Numerical Solution Technique for Incremental Analysis

Several numerical solution schemes for solving nonlinear problems have been
developed. The characteristics of numerical solution is represented in terms of stability,
accuracy and efficient for convergence. Originally, incremental analysis starts with the
“pure” incremental method. The loading is divided into small steps. Within each step,
structural behavior is considered linear. In this method, no iteration for reducing the
unbalance forces from linearization is performed. The accuracy of the pure
incremental method depends on the size of steps. In Newton-Raphson method,
constant load steps are used with iteration for reducing the unbalance forces and error.
The limitation of this method is that when the structural member becomes “unstable”,
i.e. singularity in stiffness matrix when the load-deflection curve reaches the maximum
point and starts to unload, convergence problem occurs. As long as the structural
member has a positive stiffness matrix, this method is relatively simple and efficient.
In this study, this method is adopted as a checking tool.

In order to circumvent the singularity problem, the displacement control method and
the arc-length method have been developed. In the displacement control method,
constant displacement steps instead of constant loading steps are used. When the
structural response changes sharply, e.g. a snap-through behavior of an arch type
structure, the displacement control method may have difficulty in convergence. A
snap-through behavior can be handled by considering the variation of nonlinearity in
each incremental step. The arc-length method adopts variable loading and
displacement steps based on the response of the previous incremental step. And
orthogonal condition is applied for the convergence. The arc-length method is chosen
for the current study.
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The nonlinear equation for incremental analysis of a structure can be expressed as the
following:

[K(HAz)k]AL—t(HAt)k _ flank _ Fleean k- 5.59
Where Ar"**)* is the incremental displacement of the k™ iteration in incremental
position t+At, F (+A0k-1 is the internal stress resultant forces of the k™ iteration in

incremental position t+At, and H“*“* is the external nodal load applied on the

structure.

The initial conditions of equation 5.59 are
[0 = [k ] 5.60a
A2 = A" 5.60b
Fleo - ) 5.60c

The external load H**)* is composed of two components;

H([+A1)k :ﬁ(erAt)k—l A (1+Az)kﬁ 5.61
Where AA"*4)* is the load increment factor for the k™ iteration in incremental position
t+At and H is the reference external load that should be decided in the beginning of
the incremental step. After the k™ iteration, the total displacement can be calculated by

t+A) k _ L—[(HAz)k—l n AL—l(HAz)k 5.62

(¢+A1)

it

Another expression for the incremental displacement Az'*** is the summation of the

reference displacement and the unbalance displacement;

[K(HAI) k-1 ]Aﬁk — ﬁ 5.63
[K(zmt)k—l]A-uTk — FFlean ket _ Fleean ket _ (oA kel 5.64

Where Au* is the reference displacement, Aui* is the unbalance displacement and

7k is the unbalance force at the (k-1)" iteration in incremental position t+At.
With the reference and unbalance displacement, the incremental displacement can be
expressed by the following equation;

N = AJAVRATE 4 AT 5.65
A numerical solution technique is characterized by the procedure of calculating the
incremental load factors. In the following, the procedures of calculating the load
factors by Newton-Raphson method and by the arc-length method are shown.

e Newton-Raphson Method
In the Newton-Raphson method, the incremental load factor is set for a constant value.
Equation 5.65 in Newton-Raphson method can be written as the following equation;

AL—l(H—At)k _ A;L(HAt)Aﬁk +Aﬁk 566

Figure 5-3 illustrates the process of solution by Newton-Raphson method.
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e Arc-Length Method
The arc length method considers the constraint condition for determining the first load
increments in each step and makes the solution converge to equilibrium by using the
orthogonal condition. This is illustrated in figure 5-4. The following constraint
condition is used for determining the load incremental factor and for performing
iterations;

(AI/—‘(HAt)l)T A FAE A AT A Jr80) K 7 (2 5.67

Where A" and Aw“**)* are the incremental displacement at the first and the k"
iteration at incremental position 7+A4t, and As is the prescribed arc length. In the
beginning of each step, the arc length can be calculated from the following equation;

AS(H-At)l =AS(1)1 /ITL) 5.68
I t

Where I"and IV is the limitation of number of iteration and the number of iteration on
the preceding incremental step, and As"" is the prescribed arc length at the first

incremental step. As")'
load factor.

can be calculated from Equation 5.69 with the unit incremental

As = (a1 Y Az 41 5.69
At the first step of position t+At, i.e., k=1, the incremental displacement, A (a1 can
be calculated from Equation 5.66 with no unbalanced forces (Aii' =0);

AL—[(HAt)l — A/ft(H-At)lAﬁ(H—At)l 5.70

By substituting Equation 5.70 into Equation 5.67, the load parameter AA) can be
calculated;

Aﬂ(f+Al‘)1 — AS(H—At)l 5.71

\/(Aﬁ(tJrAt)l)rAﬁ(t+At)l +1
After the first iteration, the iteration path follows the normal vector, N;, as shown in
Figure 5.4. This task can be done by letting AsW* =0 fork> 1.

By substituting Equation 5.65 into Equation 5.67 and using AsVF = 0, the load factor
can be calculated;

(AL—I(HAt)l )rAu (t+0)1
(AL—l(HAt)l)T A flevan

With the load factor, the incremental displacement for the k™ iteration in position t+At
can be calculated from Equation 5.65.

AAHAIE 5.72
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With the establishment of the displacement field, nodal forces and stiffness matrixes, a
finite line element for curved beam is developed. Different from conventional beam
element, the curved beam line element incorporates large rotation, large displacement,
cross sectional deformation and P-A effect. Different levels of simplification of strain
can be incorporated into the line element. The evaluation of the line element will be
conducted next.
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Table 5.1 Nodal Displacement and Shape Function Vector for Seven DOF
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Table 5.2 The strain terms in the equation 5.41

Equation

sx,—*
R

\Wi+cy, Ni+sx, N +cy, f+sx, B)
+ (M —cx,N;+s y NV =c x B +5 v,5)

b (Vi v Nt v N+ 3, +1-) )

~~n 1 K " ~1 ’ !/ ! " s (=5 ’ ! ~1 ! AT
(s(-a e et oo - L) N,

+c(%(—ﬂ'ﬁ'-afm)—ﬂ'ﬁg—v’fVi]*s(Néﬁ;w'ﬁ'—ﬁé’)

~2
~ 3 ¢~ ) u oo~ g \u +2x
(g (g o o

{217;17; vN+u'N’
ol -y

+N+vN
. B )

N!:! N!:I ys ~r :r
+S[—ﬂ | —u 4—2R u Nlj

2 s

+c2(-%(agﬁg+ﬁ'ﬁ') ? (v N+ B N)- 2xsﬂ'ﬁgj
+s2xs(—(ﬁ'ﬁg+ﬂ'ﬁ;) ZS (,B’N +~’N’)j

2
g +R.X'S !:/ ~IAT!
% R (ﬂNl+usN4)

o[+ )
+SscC
+ 2N+ B V) 23, B,

cw’]ﬁ'+ﬁ’ﬁg)+(s(v”+ﬁ’ﬁ)+ @’'+v' BN, +s(N”+Nﬂ +v N)

N N

_c(:,“’ :) g M—%—(N’ﬂ'f‘ ’N’)J

+({ﬁ§ —;Sz LV ]—i—s(u ,H)J

134




+c? ys(_éﬁ’+ﬂ' £)+S2(
(

5 (N

(Fip+amt)-y. 2ﬂ'mj

~

+sc (- x|\ NB + ﬂwg)+&(N;ﬂ' + J;N;)+ X, 2[3’17;}

a7y g z, i ~IAT! :II AT ! rAT! ~n 1! ” ~r o .
Da; C Nlﬂ +u‘vN4 +s N1+N3ﬂ +VSN4 +lc &_I_vsﬂ —g _&_i_ux N4
R R R R R R
N oswN oy =) Npg+wN, (2N x . -,
s s ZsyB'N' | = s s —_Z5928'N
{ R? xR 7 “} R g RPN
qﬁg 2 Vs (371 pr AT 2 X (Z, i ~r_r) 1’7;2 Xs 12 L’TS’V; Vs 12 AT
0| —C R2 (N3ﬂ +VSN4)+S R2 Nlﬂ +USN4 +| C F—?ﬂ +5 F+?ﬂ N4
+ 3 BN+ TN, o x, (6F, 41
2 175, ys ' ﬁ]’ ys N! N! ! 2 ar ys ~ :V yS ﬁl
PR R TR RPN A R e
1D
M +2[(_ ﬁ’ - yS ﬁ,j(_ﬁ,—i—&v,j—i—(_ N,_ ys ﬁ,j(_ :,+&_,j]
4 2 1 K R K R2 K 1 R 3
qu — ~/ﬁr — ~1 37y + N
w [cz iﬁ'+sz[u;{21+ iﬂ’}+cs[—u* 4R i J
2 __ —
c Sl o~ Vs o NP4 ’
— u, —==>v. |+ N—=—=N.
R( 4( s R Sj ﬂ( 1 R 3))
_ 2 —
D& N ~ S Vs o~ ~r Vs 3
xy +E(N1[ ﬂ 2MSJ+MAY(—N4—R2 Nlj]
N ~1 BT 2N,ﬁ! ~ITE L N )
+cs[2ﬂ' ;+y;( W+ B l)— L;;21+ys3(5N3+vaé)—2ﬂN4}
C AT N !:r ys AT wr! S X7 D !:! ys AT ! !:r
?(N4us+ﬂNl_?(N4VS+IBN3)]+E(N4ﬂ +f N4+R2 (N4“s+ﬂ Nl)]
s r~r Vs oo Cl Brpr, Vs ~ror | |77
-—| Bu, —==>v +— +=u N,
qﬁg ( R2 (ﬁ s R sﬂj R(ﬂﬂ R2 sﬂ j} 4




ape
Df,

Table 5.3 Additional term of geometric stiffness matrix in equation 5.42
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Table 5.4 the notation of D’ in the equation 5.44
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6. Load and Deflection Curves

6.1 Introduction

In the previous chapters, the derivation of equations for analyzing nonlinear response
of horizontally curved beams has been presented. In Chapter 3, simplified strains
based on different degrees of approximation that have been used in curved beam
studies are derived. In Chapter 4, comprehensive nonlinear differential equations
incorporating large displacement and rotation, simplified strains, P-delta effect and
sectional deformation are developed. In Chapter 5, a numerical solution tool, the finite
line element (FLE), for solving those complicated nonlinear differential equations is
developed. In this chapter evaluation of the derived equations and the finite line
element is presented.

The evaluation is conducted through analyzing a number of beams which were studied
and reported in the literature. Unfortunately, the variations of beam cross sections,
boundary conditions and loading cases of previous studies are limited. Most studies are
on doubly symmetric cross sections. The study of singly symmetric and non-
symmetric cross sections with different combination of loading and boundary
conditions is very rare. On experimental study, only a few symmetric cross sections
under pure flexural moment or point loading have been investigated. These very
limited experimental and analytical data are insufficient for the evaluation of the
derived equations and the finite line element. To overcome this situation, a three-
dimensional finite element model is developed using the readily available program
ABAQUS to generate load-deflection curves for comparison. The results of three
dimensional finite element analyses (3DFEA) are calibrated against existing
experimental data.

For the comparison of results from 3DFEA and from the finite line element analysis
(FLEA), two set of boundary conditions are introduced for transforming the boundary
conditions of the line element to three-dimensional boundary conditions. The
evaluation is conducted by comparing load-deflection curves generated by 3DFEA,
FLEA and experiments. Stress distributions in beam cross sections are also compared.
Various cross sections and loading conditions are used for this numerical study.

6.2 3D Finite Element Analysis (3DFEA)

6.2.1 Finite Element Model

The general purpose finite element analysis program ABAQUS is used. The choice of
mesh size and element type relies on the balance of accuracy of results and the
required computational time. Because a curved beam member is composed of thin
plates, shell element is the best fit for the constant or linear stress distribution through
the plate thickness. The shell element, S4R, a four node shell element capable of
handling large strains and material and geometrical nonlinearity is chosen in this study.
Also S4R element is “shear deformable” element, by which transverse shear
deformation is allowed. Conventionally, the significance of shear deformation of a
beam depends on the ratio of cross sectional dimensions and span length. It is
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necessary to find out the limitation of ignoring shear deformation of horizontally
curved beam, as it is assumed in the development of the finite line element.

The Riks’ method is used for performing incremental nonlinear analysis in the finite
element program. Increment of load and displacement is controlled simultaneously
within the specified error criteria in this method. Because only homogeneous elastic
material is considered in this study, linear stress and strain constitutive law is used for
modeling curved beam.

A horizontally curved beam modeled by S4R shell element is shown in Fig 6.1. The
same mesh size is used throughout the span. The curved beam is simply supported
with the boundary condition of u=v=w==0,0,#0atoncendandu=v=0=0,
w £ 0, 6, # 0 at the other end, where u, v, B and 0, are the lateral and vertical
displacement, rotation about the longitudinal axis and warping with respect to
reference line. The cross section of the curved beam is shown in Figure 6.2. For a
convergence test, two models with 943 and 2371 elements are used. Several loading
cases are considered including bi-moment, moment about x-axis and about z-axis.
Results indicate that the model with 943 shell elements is sufficiently accurate. In
Figure 6.1, the displacement shape of the 943 element model generated by the moment
about x-axis My, is shown.

6.2.2. Boundary Conditions

In order to compare the results from the three-dimensional model of 3DFEA with
those from the line element model of FLEA, the boundary conditions of the line
element have to be translated into those of the three dimensional model. In this study, a
basic boundary condition of a horizontally curved beam is defined. The basic boundary
system can undergo the most flexible stable nonlinear response of the curved beam
system. The basic boundary condition has the displacement u, v, w and [3 restrained at
one end section and u, v and B are restrained at the other end section. Warping of cross
section, 0, is not restrained at the ends.

The above assumption in three dimensional boundary constraints of two dimensional
curved beams and the simulating line element is difficulty to interpret for three
dimensional models. The interpretation of the assumption that plane cross sections of
beams retain their original shape but can warp in the longitudinal direction is that only
rigid movement in the transverse and longitudinal direction is allowed of the boundary
or end cross sections. When external and nodal loads are applied, there may be slight
or severe local deformation of cross section at the ends of three dimensional models. In
order to make the assumptions consistent for the line element model and the three
dimensional finite element models, rigid beams are introduced to the end cross
sections of the three-dimensional finite element model. The three rigid beams are
attached into the components of the boundary cross sections, as shown in Fig. 6.3. The
connections between the flanges and the web are accomplished by a hinge to allow for
rotational movement of the flanges about the y-axis only for warping distortion.
Because the reference points of doubly and singly symmetric I-shaped cross section of
curved beams are in the cross section, external forces and boundary condition can be
directly applied to the centroid and shear center in the 3DFEA model. For non-
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symmetric cross section as seen in Figure 6.3, the centroid and shear center are not
located in the cross section. Because there is coupling between displacement and nodal
forces at the end cross sections, direct transferring of centroidal boundary condition of
finite line element analysis (FLEA) into 3DFEA of beams with un-symmetric cross
section is difficult. Further more, when large rotation is considered, transferring of
rotation may not be done by merely considering rigid body rotation. It may need
matrix formulation of large rotation (Argyris 1982). In order to overcome this difficult,
an additional rigid beam is introduced to connect the centroid with a point of the cross
section, as indicated in Fig. 4.8.

For comparison purpose, a boundary cross section without the rigid beams is
introduced, Fig. 6.4 so that the cross section is free to warp and deform. When the
centroid and the shear center are not in the cross section, transferring of the FLEA
centroidal restrain into 3DFEA cross sectional restrain is needed. But with coupling
between the translation and large rotation and the condition of free warping and
deformation at end cross sections, a method of transfer has not been developed.
Therefore the free-to-deform boundary condition is limited to cases where the beam is
fixed against rotation about the z-axis. The rigid boundary condition is defined as the
upper bound and the free to deform condition is the lower bound in this study

6.2.3 Comparison with Experimental Results

The purpose of the comparison is not to reproduce analytically by 3DFEA the results
of the experiments but to investigate the influence of the significant factors affecting
the behavior of curved beams. However it is very difficult to obtain detail information
of the experiments from literature. The behavior of the bearings and lateral bracing
system is often not reported. Such information is essential for the appropriate analysis
of beam behavior. Two set of experimental results are compared: test results of Culver
and Mozer (1971) and by Fukumoto and Nakai (1981).

6.2.3.1 Comparison with Results of Beams Tested as a Pair

Table 6.1 contains the sectional and geometrical properties of a pair of horizontally
curved and simply supported beams, L1A and L2A, tested by Culver and McManus.
The beams were hybrid, consisting of two different grades of steel. The flanges and
loading stiffeners were made of ASTM-A36 steel. The web and transverse stiffeners
were fabricated from ASTM-A570 Grade B steel with a minimum yield stress of 30
ksi. The Loading and bearing stiffeners were attached to both sides of a web and the
intermediate stiffeners were on one side only. Specimen L1A had full depth transverse
stiffeners, whereas L2A had cut short stiffeners. Figure 6.5 shows the boundary and
loading condition. There were a transverse diaphragm at each end and a bracing
system at each loading point. The vertical, concentrated loads at the third points of the
beam span generated a constant strong-axis flexural moment between the loads. The
end diaphragms provided torsional restraint to stabilize the specimen under its own
weight and under the external loads during testing. The Full depth loading stiffeners
are considered to be able to restrain warping in the analysis. The lateral bracing system,
placed symmetrically about mid-span, provided restraint to twist rotation. Because the
sectional properties, material properties and boundary condition of the bracing system
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are not known, different schemes are developed to simulate, including one as a beam
and another one as a direct restraint at the upper and bottom flange. The materials of
the beams are assumed elastic perfectly plastic in stress-strain relationship. Residual
stresses and initial imperfection are not included in this analysis.

The load-deflection curved for specimens L1A and L2A are plotted in Figures 6.6 and
6.7. Five analyses were conducted to examine the effects of different schemes of
bracing simulation. These are pin-pin ends (B1) and fixed-roller ends (B2) for the rigid
bracing beams, direct restraint of nodes at loading point (B3), and sectional properties
of EA/L=1667 k/in (S1) and 3750 k/in (S2) for the bracing beams. Another curve
labeled as “Elastic & Geo-nonlinear” in the load-deflection plots is for the case in
which only the geometrical nonlinearity is considered.

Figures 6.6a and 6.6b compare the vertical deflection at mid-span. At loads below the
first yield, the beam behavior is basically linear. The experimental results show a
“softer” behavior than that from analyses. This response is attributed to the residual
stresses and boundary settlement and rotation. Near and beyond the ultimate load, the
load-deflection curves corresponding to the five lateral bracing conditions differ
slightly. The computed ultimate strength by 3DFEA agrees well with the experiment
result.

The load and rotation responses at the end sections of the beams are not computed for
comparison with the experimental results. Without detailed information of material
and sectional properties of floor beams and end diaphragms at the end sections and
loading points, computation can only provide rough estimates. In this part of study,
only the comparisons of finite element analysis results with different assumed bracing
condition are examined.

In Figures 6.7a and 6.7b, the rotation at the mid-span is compared. The computed
results of the five cases of lateral bracing are somewhat different and are much less
than the experimental results. Two possible contributions to this large difference exist.
First, rotation at the mid-span is the sum of all rotations including the twist rotation at
the end sections. Second, the end diaphragm and bearing system are assumed as rigid
against rotation and warping in the finite element modeling. This condition strongly
indicates the short coming of attempting to estimate accurately the magnitude of
rotation of curved beams.

It is interesting to find out the degree of warping constraint at bracing points. The
middle third of L1A was subjected to constant bending moment with the same warping
restraint at the bracing points. Table 6.2 lists the computed warping moment from the
finite line element analysis using the fixed-fixed and free-free conditions of warping
restraint at the bracing points. The warping moment introduced by the lateral bracing,
as evaluated from the experiment is much closer to that of fixed-fixed than of the free-
free condition of constraint.

6.2.3.2 Comparison with Results of Beams Tested Individually

Fukumoto and Nakai tested four beams individually (1981). Figure 6.8 shows the
loading and boundary condition. The beams were simply supported at the ends where
rotation was restrained but warping was free. A concentrated load at mid-span
generated large rotation and it coupled with loading. Therefore, the P-A effect should
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be considered. The evaluation of P-A effect is presented in Chapter 5 for the
incremental analysis:

Mz =(PAu+ APu+ AP Au)y, 6.1a

The torsional moment, Mz, is automatically incorporated in the three dimensional
finite element analysis (3DFEA). This torsional moment is used as an external load in
the finite line element analysis (FLEA). The comparison between the measured
rotation and the results of 3DFEA is presented in Figures 6.9 to 6.12. Two boundary
conditions are used for analysis; one is free-to-warp and the other one is rigid against
warping. For both conditions, analyses are conducted considering geometric
nonlinearity in the elastic range. In the inelastic range, elastic-perfectly-plastic material
properties are used with the geometric nonlinearity (ABQ free ML in the figures). All
rotations presented in Figs. 6.9 to 6.12 are at the mid-span. The magnitudes of rotation
are much higher than those of beams in Fig. 6.6 and 6.7. Among the four beams of
this group, specimen ARI had an L/b ratio almost half that of the other three and
above first yielding the computed rotation based on geometric nonlinearity only is
quite different from those generated by considering both material and geometric
nonlinearities. The BR series specimens, on the other hand, undergo large rotation and
displacement before yielding. The specimens exhibit nonlinear behavior from the very
beginning of loading. From the fact that the BR series beams are within the range of
dimensional specifications, it is quite evident that nonlinear analysis based on large
rotations and large displacements is necessary for the evaluation of behavior of curved
beams.

Overall, the computed rotations agree well with the experimental results. The three
dimensional finite element model is to be used for evaluating the results of the finite
line element procedure.

6.3 Effects of Simplification of Strains

In Chapter 3, several simplified strains are developed based on the following
approximations; a) the nonlinear term divided by quantities R* and higher can be
ignored, b) (R-x)/R can be simplified as unity, c) the nonlinear term divided by R can
be ignored, d) with small rotation, cos(f) and sin(3) can be simplified as their first

. ) . . ow u
term of Taylor expansion and e) the inextensible conditions; a———;O and
Z

8%2 = 0. Each simplified strain is used in formulating the finite line element in

Chapter 5. In this section, the effects of approximation a) to c¢) are examined using a
numerical study. As mentioned in Chapter 3, approximation e) vanishes by the
adoption of approximation a). The effect of approximation d) will be examined in
Chapter 7.

The numerical study is accomplished by comparing the results from analyzing a beam
by the finite line element based on approximations a) to c).
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The dimensions and sectional properties of the beam are shown in Fig. 6.13. The
sectional properties L/b=25, L/R=0.1, bg/t=20, d/t,=165, d/b=2, t/t,=3 and A¢/A~=1.3
are near or at the current limits of AASHTO Specifications. High effects of nonlinear
response are expected. The basic boundary condition is used that the ends are
constrained against rotation but are allowed to warp. For the external load, equal
moments about the x-axis, Mx, applied at the end section.

The effects of approximation a) that the nonlinear term divided by quantities R? and
higher can be ignored are shown in Figures 6.14 to 6.16. Figure 6.14 shows the lateral
displacement at the mid-span. Two curves are plotted; one is from the analysis in
which all the nonlinear terms are included and the other is associated with
approximation a). The two curves are essentially identical. In a similar way, the
vertical displacement and rotation curves plotted in Figures 6.15 and 6.16 are also
nearly identical. The effects of approximation a) are trivial.

The effects of approximations a) and b), in which (R-x)/R are simplified as unity, is
shown in Figures 6.17 to 6.19. The figures show that for the lateral, vertical and
rotational response of the curved beam, the difference between the results of no
simplification and of adopting approximations a) plus b) is very small. Practically no
difference is founded.

With the approximations a), b) and c), in which nonlinear terms divided by R are
ignored, the effects of simplification are detectable in Figures 6.20 to Figure 6.22.
Approximation c¢) implies that only first order terms coupling with trigonometric
functions are considered. It is observed that the lateral displacement and rotation are
slightly higher with the approximations whereas the vertical displacement is slightly
less. The maximum difference is about 4%, and the effects of approximations can still
be ignored.

The results of this case study imply that the benefit of simplification overcomes the
loss of accuracy. Therefore, from the practical point of view, the usage of simplified
form of strains based on the approximation a), b) plus c) is justifiable. In the following
section, simplification using the approximations a), b) plus c¢) will be used for
numerical studies of horizontally curved beams.

6.4 Comparison of Deflections by 3DFEA and FLEA

In previous sections, the three dimensional finite element analysis model is calibrated
with experimental results and the simplification for the finite line element is
determined. In this section, the developed finite line element will be evaluated by
comparing the results from its use with the results from using the three dimensional
model. Four different shapes of cross section are examined, i.e., doubly symmetric,
singly symmetric about x-axis (C-shape), singly symmetric about y-axis (I-shape) and
un-symmetric cross sections. For each cross section, four different external loads are
used, i.e., Mx, My, Mz and Bi-Moment. Two different boundary conditions are used in
the 3DFEA model: free-to-deform and rigid boundary condition. For the line element
analysis, twelve line elements incorporating large displacement, large rotation and
cross sectional deformation are used. The number of twelve elements is decided by a
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convergency test. The numerical studies for evaluating the line element are conducted
within the elastic range of material properties.

6.4.1 Doubly Symmetric Cross Section

6.4.1.1 Load and Deflection Response

For the geometry and material properties of the doubly symmetric cross section, the
beam studied by Fukumoto and Nishida (1981) is used. This cross section is shown in
Figure 6.23. The material properties are E=29,000 ksi and G=12,000 ksi. The beam is
restrained by the basic boundary condition. The ratio of sectional dimensions are b/ts
=12, d/b =2.5, d/t,, =50, L/R =0.008, L/b=27. Among the ratios, the sectional property
of L/b is significant for the load-deflection behavior of curved beams. With a L/b ratio
of 27, being slightly higher than the AASHTO limit of 25, relatively severe flexural
respons is expected.

Moment about the x-axis, Mx

The vertical end moment, M,, in the three dimensional finite element model is
generated from the point loads as shown in Figure 6.24. Because of the boundary
condition of the model, the point loads may not generate the exact amount of vertical
moment. In order to check this, it is necessary to calculate the stress resultants at the
loading section. The resultant forces can be calculated from the stresses obtained from
the finite element model and the definition of fundamental stress resultants.

Fz=[oc.dd, M =[c.ydd, M, =[c.xdd, B =|c.wdd 6.1

This approach is used in calculating all nodal forces for the line elements at the bracing
points of curved beams, especially for calculating bi-moments. For a continuous
curved beam braced by lateral bracing, the segment between the bracing points is
modeled as a single span with external load. Different from the other six nodal forces
of line elements, the bi-moment can not be calculated statically. Table 6.4 shows the
externally applied and resultant forces, which agree well.

The load-deflection curves at the centroid at mid-span are shown in Figures 6.25 to
6.27. In all cases, the line element results agree well with the three dimensional finite
element results. The curves also show that the rigid and free-to-deform boundary
condition act as the upper and lower bound of deflection response.

Torsion at Mid-span (Mz)

The point loads for generating moment Mz at mid-span in the ABAQUS model are
depicted in Figure 6.28a. The deformation of the beam under the torsional moment is
shown in figure 6.28b.

Figures 6.29 to 6.31 show that the displacements of the centroid at the midspan as
generated by the finite line element analysis (FLEA) are in between those by the three-
dimensional finite element analysis (3DFEA) with the rigid and free-to-deform
boundary condition.
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Bi-Moment

The point loading system and the corresponding deformation are shown in Figure
6.32a and Figure 6.32b. The lateral deflection, vertical deflection and rotation of the
centroid at the mid-span are shown in Figures 6.33 to 6.35.

Again, the results of line element analysis are in between those from the upper bound
and lower bound boundary conditions of 3DFEA. A notable phenomenon is the
relatively wide range between the results of the upper and lower bound boundary
conditions.

Moment about the y-axis, My

The point loading system in the three-dimensional finite element model for generating
My and the corresponding deformation shape are shown in Figure 6.36a and Figure
6.36b. Different from other loading condition, lateral bending moment is “in-plane”
loading for the curved beam. Therefore, there is no coupling of rotation and vertical
displacement. Only lateral displacement is developed as plotted in Figure 6.37. With
this loading condition, the horizontally curved beam is transformed into an arch.
Figure 6.37 shows that the results of finite line element analysis (FELA) agree well
with that of three dimensional finite element analysis (3DFEA).

6.4.1.2 Stress Distribution

Two sets of stress calculations are conducted: by linear analysis and nonlinear analysis.
Calculation of stresses by linear analysis is done by calculating the linear stress
resultants and plugging into the corresponding parts of Eq. 5.27. The linear part of
stress resultants, F,, My, My, at mid-span can be obtained from statics. The linear part
of bi-moment can be calculated by solving the linear differential equation Eq. 4.65 or
using Table 4.1 to 4.7 for different set of warping boundary condition. Stresses based
on the nonlinear analysis can be also calculated by using Eq 5.27. In order to use Eq
5.27 in nonlinear analysis, the linear and nonlinear parts of stress resultants, i.e., Eq
4.59, have to be calculated. Calculation of the nonlinear part of stress resultants
requires solving nonlinear differential equation. This task may not be easily
accomplished. Furthermore, in Eq 5.27, the stress resultants associated with x°, y%, xy
and xw are not included. In this study, the stresses from nonlinear analysis are
obtained by substituting total displacement of each incremental step into Eq. 4.9a and
using the constitutive law.

The stress distributions in the cross section at mid-span due to two equal end moments,
Mx, are shown in Figures 6.38 to 6.43 for two different loading stages, Mx=100 k-in
and 250 k-in, (Gmax = 0.30y and 0.9cy). The cross section in Figure 6.23 and the basic
boundary condition are used for calculating the stresses. The stresses calculated by the
three-dimensional finite element model with rigid and free to deform ends (ABQ Rigid
and ABQ Free) and by the line element model with linear analysis and nonlinear
analysis (Linea Anal and Line Ele) are compared. Figure 6.38 to Figure 6.40 show the
stress distribution along the top flange, web and bottom flange when Mx=100 kips-in
(omax = 0.30y). Figure 6.41 to Figure 6.43 show the stress distribution when Mx=250
kips-in (6max = 0.90y). As seen in Figures 6.38, 6.40, 6.41 and 6.43 for stress
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distribution in the flanges, the results of the nonlinear analysis from the three
dimensional finite element model and from the line element model agree quite well.
On the other hand, even at Mx=100 k-in (Gmax = 0.36y =15 ksi), there are relatively
large differences between the results from the non-linear analysis and the linear
analysis. At Mx=250 kip-in (omax = 0.90y), the stress at the tip of the top flange
calculated by the linear analysis is about one third lower and at the tip of the bottom
flange, about one third higher. Since the contribution of stress resultants, My, on
longitudinal stresses is not anymore secondary and can not be generated from linear
analysis, these differences occur. Also the stress resultants, Ky, Kyy, Kysw, Kyw, can not
be generated from linear analysis and cause more difference in relatively high loading
stages. This condition suggests that linear analysis is not adequate for the computation
of flange stresses of horizontally curved beams.

6.4.2 Singly Symmetric Cross Section (I-Shape)

The cross sectional shape and dimensions are given in Figure 6.44. The length and
radius of the curved beam are L=107 (in) and R=1338 (in). The elastic and shear
modulus are E=29,000 ksi and G=12,000 ksi. The beam has simple boundary
condition with respect to bending and torsion at ends, where axial rotation is prevented.
The beam is subjected separately to a vertical moment (Mx), a lateral moment (My), a
torsional moment (Mz) and a bi-moment (Bi). Both axes of vertical and lateral
moment pass through the centroid of the cross section. Torsional moment and bi-
moment are applied through the shear-center.

In the analysis, both the procedures of one-reference line and two-reference lines are
evaluated. Twelve line elements are used for the line element analysis. For the three
dimensional finite element model, 943 shell elements are used. External point loads
similar to those for the doubly symmetric cross section of the last example are used for
generating Mx, My, Mz and Bi-moment in the three dimensional finite element model.

Moment about the x-axis (Mx)

For the applied vertical bending moment (Mx) at the end sections, a set of point loads
similar to that of Figure 6.24 is used. The lateral, vertical and rotational displacements
are plotted in Figure 6.45 to Figure 6.47. For all displacement, the results of using one-
reference line and two-reference lines are the same. It confirms the fact that if sectional
properties of any I-shaped cross section are properly introduced, the strain equations
for the development of partial differential equation of doubly symmetric cross sections
can be used for non-symmetric [-sections.

Similar to the case of doubly symmetric cross sections, the results of displacement
form the line element analysis are closer to the upper bound results from 3DFEA. The
stress distribution in the unsymmetric I-section is also similar to that of a doubly
symmetric cross section. The stress distribution at two loading stages are plotted in
Figures 6.48 to 6.53 for M= 100 kips-in (Gmax = 0.350y) and M= 220 kips-in (Gmax =
oy). For both the top and bottom flanges at both loads, the stresses calculated by the
line element model and the three-dimensional finite element model are in good
agreement. The stress distributions calculated from considering only the linear part of
stress resultants do not provide accurate results. At Mx =100 kip-in, the maximum
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stress calculated by the linear analysis is about 25% lower and at Mx=220 kips-in,
about 40% lower than that from the nonlinear analysis. Further more, surprisingly at
Mx=220 kips-in, the trend of stress distribution in the bottom flange is opposite
between the linear and the nonlinear analysis. This situation strongly indicates the
necessity of nonlinear analysis.

Moment about z axis (Mz)

A point load system similar to that of Figure 6.28 for the doubly symmetric cross
section is applied at the mid-span of the singly symmetric I-section to generate
torsional moment in the span. The load and deflection curves for the Ilateral
displacement, the vertical displacement and the rotation at the mid-span are presented
in Figures 6.54 to 6.56. These results are quantitatively identical to the corresponding
ones in Figures 6.29 to 6.31 for doubly symmetric I-beams. The results from the line
element analyses are between the lower and upper bound results from the three-
dimensional finite element analysis.

Bi-Moment

Under an applied bi-moment similar to that of Figure 6.32 for a doubly symmetric
cross sections, the load-deflection behaviors are also similar. The deflection curves are
plotted in Figure 6.57 to Figure 6.59. The results of the line element analysis are in
between those from the upper bound and lower bound boundary condition of 3DFEA.
Similar to the case of doubly symmetric cross section, the difference between the
curves of upper bound and lower bound conditions is relatively big when the beam is
subjected to bi-moment.

My and Bi-moment

Because the beam cross section is only symmetric about the y-axis, “in-plane” loading
as shown in Figure 6.32 generates not only M, but also a bi-moment. The bi-moment
can be easily calculated from the sectorial area of the cross section. For the given cross
section, the magnitude of the bi-moment is 3.5*My. The load and deflection curve
from the line element analysis of the combination of these two loads is shown in
Figure 6.60. The results agree well with those by 3DFEA. The magnitudes of the
vertical displacement and rotation are quite small in comparison to that of the lateral
displacement, and are not presented.

6.4.3 Singly Symmetric Cross Section about x-axis (Channel Section)

The axes of centroid and shear center of singly symmetric channel section are out side
of the cross section. When a reference line is not in the cross section, special care is
needed to interpret the warping displacement, as presented in Section 4.6.

The cross section of the simply supported beam for analysis is shown in Figure 6.61.
The length of the channel section is L=107 in. The L/R ratio is 0.008. The beam is
restrained by the basic boundary condition. Two different loads are applied; a vertical
moment, Mx, and a bi-moment, Bi. For the line element analysis, twelve line elements
are used.
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For comparison, a three-dimensional finite element model is again used with
equivalent external point loads. The boundary conditions as shown in Figure 6.62 are
used for generating Upper bound and lower bound of load and deflection curves.

It is noted that for cross sections singly symmetric about x-axis, point loads at beam
ends usually generate two or more stress resultants. The point loads in Figure 6.62
generates not only Mx but also Bi. By using the stress distribution from the three-
dimensional finite element analysis, stress resultants can be calculated. The stress
resultants can be used for checking the external loads calculated by statics. The stress
distribution along the flanges and the web at the end of the beam are plotted in Figures
6.63 to 6.65. It is interesting that the stress distribution along the web is not linear.
Since a fictitious wall is used to link the centroidal reference point to the middle point
of the cross section in 3DFEA as shown in Figure 6.3, local deformation at the
junction point is inevitable and may cause nonlinear stress distribution in the web. The
stress resultants calculated from these stresses and Eq 6.1 are listed in Table 6.5. The
external loads and stress resultants are in good agreement.

The lateral, vertical and rotational deflection curves from the line element analysis and
those from 3DFEA with upper bound and lower bound boundary conditions are
compared in Figures 6.66 to 6.68. All load-deflection curves are in good agreement,
with the line element results fall in between the upper and lower bound curves of the
three dimensional finite element analysis. The results generated from using two-
reference lines and using one-reference line produce almost identical results.

Figures 6.69 to 6.74 show the stress distribution along the top flange, web and bottom
flange when Mx=1145 kips-in (Gmax = 0.350y) and 3000 kips-in (Gmax = Gy). Similar to
the conclusion from the singly symmetric I section, the linear analysis does not
provide adequate results especially in the flange at relatively high magnitude of
stresses.

6.4.4 Unsymmetrical Cross Section

6.4.4.1 Deflections

To evaluate the application of the line element to general thin-walled open cross
sections, the cross section in Figure 6.75 is selected. The span length, L/R ratio,
material properties and boundary condition are the same as those used for the singly
symmetric [-shaped and channel cross sections. From the point loads shown in Figure
6.75 for a vertical bending moment Mx, a bi-moment Bi is generated. The magnitude
of the balancing bi-moment is Bi=0.1 Mx. The results of the line element analysis and
the 3D finite element analysis are shown in Figures 6.76 to 6.78

As shown in these figures, the lateral deflection and the rotation curves for the centroid
as produced by the line element analysis agree well with those by the 3D finite element
analysis. The load versus vertical displacement curve is quite different from the other
curves. The vertical displacement decreases sharply as the magnitude of Mx increases
beyond 3000(k-in). The reasons are the coupling of Mx and bi-moment and the
relatively rapid increase of rotation under load. The more flexible free-to-warp
boundary condition permits more rotation than the rigid boundary condition, and leads
to more reduction of the vertical displacement at centroid. Although general
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unsymmetrical cross sections are not normally used for structural members, the unused
behavior warrants more study, particularly in conjunction with material nonlinearity.

6.4.4.2 Stress distribution

The stress distributions developed from the line element analysis are compared with
those from the three-dimensional finite element analysis (3DFEA) and from a linear
analysis. The stresses along the mid thickness of the section at the mid span of the
beam are plotted in Figures 6.79 to 6.84 for end moments of Mx=870 kips-in (Gmax =
0.41cy) and Mx=1742 kips-in (Gmax = 0.9Gy).

Similar to the cases of thedoubly and singly symmetric cross sections, all results agree
well at relatively lower loads. In the top flange, the stress distribution by the linear
analysis deviates from those by 3DFEA and FLEA at moderately high loads.

6.4.5 Comparison of Results from FLEA and Tests

Until now, evaluation of the finite line element analysis (FLEA) has been done by
comparison of its results with the results of the three dimensional finite element
analysis (3DFEA). Direct comparison with test data is needed. The experimental
results of Fukumoto and Nakai (1981) are used.

Their experimental results of four test beams have been shown in Figures 6.9 to 6.12.
These results are compared here with the results of their elastic analysis considering
geometric nonlinearity and with the results of the line element analysis of this study.
The load-deflection curves are plotted in Figures 6.85 to 6.88. The analytical results
from the line element analysis are in good agreement with the test results except for
beam BR3. With a small curvature, the contribution of geometrical nonlinearity on
deflections is relatively small for this beam. The computed rotation from the line
element analysis (Fig. 6.88) and from 3DFEA (Fig. 6.12) are less than those from the
test. On the other hand, for the other three beams with large curvature, AR1, BRI,
BR2, the geometric nonlinearity initiate at an early stage of loading, the line element
analysis provides very good agreement with the test results. Since all sectional
properties of test specimen are within the practical range of horizontally cured beams,
it is evident from the comparison that geometric nonlinearity should be included in the
design and analysis of horizontally curved beams.

6.5 Evaluation of Exact Solution of Some Cases

In Chapter 4, exact solutions for seven loading and boundary conditions based on
small displacement and rotation are given. These solutions differ from those
approximate solutions as is shown in Table 4.8. With the development of the line
element, direct comparison can be made. Because the differential equations from
which an exact solution is derived are base on small displacement and rotation, a line
element formulated with approximations a), b), ¢) and d) is used. The beam cross
sectional and material properties of Figure 4.5 are used for evaluation.

Table 6.6 to 6.12 list the bi-moments at the ends and mid-span for warping boundary
and loading condition listed in the table 4.1 to 4.7. The bi-moments calculated from the
expression of exact solution agree quite well with those computed from the line
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element analysis with the corresponding simplification, confirming the adequacy of
both the exact solution and the line element.

However, it must be emphasized again that linear analysis under estimates
displacement and stresses, and considering geometrical nonlinearity in the analysis of
horizontally curved beams is essential.
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Table 6.1 Sectional and Geometrical Properties of Beams, Culver and McManus

Specimen dyw(in) b(in) tw(in) ty(in) L(in) R(in)
L1A 17.87 5.94 0.12 0.39 180 595
L2A 17.93 6.0 0.119 0.39 180 606.7

Table 6.2 Warping Moment at Bracing Points, L1A
Applied Constant Bi Moment | Bi Moment | Bi Moment
Moment(k-in) Fixed-Fixed | Free-Free LIA
665 332 | 332 0 0 1269 269
1255 628 | 628 0 0 |550] 550

Table 6.3 Dimensions and Sectional Properties of Beams Tested by Fukumoto

and Nakai
Specimen | d(in) b(in) tw(in) tr(in) L(in) R(in) | L/R
AR1 9.91 4 0.220 0.331 66.93 911.9 10.07
BR1 9.85 3.96 0.217 0.331 110.24 1336 | 0.08
BR2 9.91 3.96 0.224 0.327 110.24 | 2838 | 0.04
BR3 9.86 3.86 0.220 0.327 110.24 19002 | 0.006

Table 6.4 Applied Vertical Bending Moment and Resultant Forces

Fz Mx My Bi
Stress Resultant 0 69.4 0.03 0
External load 0 70.0 0 0
Table 6.5 Stress Resultants at End Sections, Channel Shape
Mx My Bi
Stress Resultant 101.08 -0.00075 67.33
External load 100 0 66.7

Table 6.6 Comparison the results solution for point load (P=10) and end moment
with fixed-warping boundary condition

7z=0 z=L/2 z=L
Exact Solution 94.6 -53.9 94.6
Line Element 94.0 -53 94

158




Table 6.7 Comparison the results solution for point load (P=10) and end moment
with fixed and free warping boundary condition

7z=0 z=L/2 z=L
Exact Solution 131.6 -70 0
Line Element 131 -69.8 0

Table 6.8 Comparison the results solution for distribute loading (p=0.1) with
fixed-warping boundary condition

z=0 z=L/2 z=L
Exact Solution 60.84 -32.2 60.84
Line Element 60 -31.4 60.84

Table 6.9 Comparison the results solution for distribute loading (p=0.1) with
fixed and free warping boundary condition

7z=0 z=L/2 z=L
Exact Solution 84.5 -42.5 84.5
Line Element 83.6 -41.8 83.6

Table 6.10 Comparison the results solution for one vertical end moment (M,=100)
with fixed warping boundary condition

z=0 z=L/2 z=L
Exact Solution 36.97 -14.27 24.1
Line Element 364 -14 239

Table 6.11 Comparison the results solution for two different vertical end
moments (M,=100, M,=200) with fixed and free warping boundary condition

z=0 z=L/2 z=L
Exact Solution 131 -57.3 0
Line Element 12.9 -56.8 0
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Table 6.12 Comparison the results solution for one end bi-moment (Bi=100) with

fixed and free warping boundary condition

z=0 z=L/2 z=L
Exact Solution -39 16.93 100
Line Element -38 16.1 100
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7. The Sources of Nonlinearity

7.1 Introduction

In Chapters 4 and 5 differential equations and a finite line element for curved
beams were developed including the strains of large deflection, large rotation, P-delta
action and cross sectional deformation. These are the sources of large nonlinearity in
the load-displacement relationship of curved beams.

In Section 6.3, it is shown that the commonly adopted approximations, a)
ignoring 1/R* terms, b) adopting [(R-x)/R]=1 and c) ignoring 1/R terms in Section 3.2,
do not have significant effects on the deflection and rotation of the beams.
Consequently, the major contributors to the high magnitude of displacement most
likely are the approximation d) that cos =1 and sin B = 3, the P-delta action and the
cross sectional deformation. Numerical analyses to examine these contributions are
made in this chapter.

7.2 Large Rotation

With the adoption of the approximation d) (in Section 3.2) in addition to
approximations a), b) and c), the condition is that of assuming small rotation in an
analysis. To examine that, the cross section of Figure 6.2 is used with the boundary
condition of a simply supported beam with rotational restrain at the end sections. A
constant vertical Moment, Mx, is applied at the end sections as the external load.
Figure 7.1 shows the load-deflection curves obtained from the linear analysis, a large
displacement with small rotation analysis (approximations a), b), ¢) and d)), a large
displacement with large rotation analysis (approximation a), b) and c)) and the three-
dimensional finite element analysis using ABAQUS. The material strength of 0,=36y,
is need as a reference. All except the linear analysis give almost the same lateral
displacement when the applied Mx is fairly low. At higher loads, the analysis
considering large displacement with small rotation underestimates the deflection. The
analyses by McManus (1971), Yang (1987) and Kang (1992) are in this group. Only
the analysis considering both large displacement and large rotation can predict the
load-deflection behavior of the horizontally curved beam adequately. From Figure 7.1,
it is evident that if the yield point is higher than 36 ksi, the magnitude of
underestimation by the assumption of small rotation can be quite high even in the
elastic range of material strength.

7.3 P-Delta Effect.

When a applied load is not on the centroid or the reference point of a cross section of a
horizontally curved beam, the load couples with the twist rotation and generates a
secondary moment by the p-delta effect. Figure 7.2 show the situation. The magnitude
of the computed secondary moment and its contribution to the estimated load-
deflection behavior of a beam depend on the procedure of analysis. For example there
is no consideration of coupling between loads and displacement in the linear analysis,
and secondary moment is not generated. In this section, by using the expressions in Eq.
5.22 to 5.24 for P-delta effect, it can be investigated.
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For a numerical analysis, two beams of different cross section are selected: one has a
flexible cross section and the other is stocky. Figure 7.3 shows the sectional and
material properties of the cross sections. The sectional properties of both cross sections
are within the ranges of AASHTO Guide Specification (2003). The basic boundary
condition is used for the beams. A point load is applied on the top flange at the mid-
span. Figures 7.4 to 7.6 and Figures 7.7 to 7.9 show the load-displacement curves of
the beams with and without including the P-delta effects. For the beam with the
flexible cross section, the effect is so significant that the difference of load-
displacement curve starts at the onset of loading. For the stocky cross section, the
effects of P-delta occur at relatively high magnitude of load. Once started, the p-delta
effect increases rapidly with the increasing load. Thus, secondary moments generated
by the p-delta effect must be considered for horizontally curved beams.

7.4 Sectional Deformation

The sectional deformation caused by the deformation of the web is derived in Chapter
4 and Chapter 5. To evaluate the effects of web deformation, the results of analysis
using the line elements with and without the additional degree of freedom for sectional
deformation are compared with the results of a three dimensional finite element
analysis.

Two different cross sections are selected for this comparison. One is a cross section for
which the ratio of warping constant I, and Saint Venant constant Kr (I/Kr) is high
and the other one has a low ratio of [,/Kr. The sectional dimensions of the cross
sections are shown in Figure 7.10. The ratios b/t=6 and d/t,=24 are selected for the
low 1,/Kr ratio cross section and b/t=10 and d/t,=180 are selected for high I,/Kr ratio
cross section. For the boundary condition of the beams, warping and rotation about y-
axis at both ends are restrained. Figure 7.11 shows a beam and its boundary conditions.
In the formulation of equations for sectional deforamtion, it is assumed that the web
deforms with a double curvature. This assumption is confirmed by the shape in Figure
7.12 that is generated by the three dimensional finite element analysis.

The effects of sectional deformation for the cross section with a low and high I/Kr
ratio are shown in Figures 7.13 to 7.15 and Figures 7.16 to 7.18, respectively. From the
figures, it is recognized that overall the effect of sectional deformation is not very
significant, particularily for the cross section with high I,/Kr ratio. Since only the
shear strain is changed by the sectional deformation, as seen in Equation 4.97, only
Saint-Venant torsional resistance is reduced by the web deformation. For cross section
with relatively low I,/Kr ratio, the twisting moment is mostly resisted by Saint Venant
action. The reduction of Saint-Venant torsional resistance directly affects the total
torsional moment resistance. This fact can be seen in the figure 7.15 in which a
relatively larger difference exist between the rotation curves with and without
considering web deformation. For the cross section with a high I,,/Kr ratio, torsional
moment is mostly resisted by the warping torsion. The reduction of Saint Venant
torsional resistance does not affect much the behavior of the deflection curves of
Figure 7.18.
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It should be noted that in the H type of beams with the horizontal web in the plane of
curvature, the web deformation affects warping resistance also. The web-deformation
of H-beam changes not only the shear strains but also the longitudinal strains, both the
resistance of warping torsion and Saint-Venant torsion are changed corresponding to
the web deformation.

From the examination of the sources of nonlinearity, it is evident that the contributions
of large rotation, p-delta effect and deformation of cross section need to be considered
in the analysis of horizontally curved beams.
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Figure 7.12 Deformation Shape of Beam Segment at the mid span
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Figure 7.13 Lateral Displacement of Cross Section with Low I,/Kr ratio, Effect of
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Figure 7.14 Vertical Displacement of Cross Section with Low I,/Kr ratio, Effect
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Figure 7.15 Rotation of Cross Section with Low I,/Kr ratio, Effect of Sectional
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Figure 7.16 Lateral Displacement of Cross Section with High I,/Kr ratio, Effect
of Sectional Deformation
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8. Equation for Maximum Stress of Symmetrical I-Beams

8.1 Need for an Equation

In both the procedure of traditional allowable stress design and the procedure
of load and resistance factor design (LRFD), an equation for maximum stress in the
flange of beams is required. Current equations for flange stresses of curved beam do
not include the effects of large displacement, large rotation and P-A effect. A new
equation is needed.

An ideal equation should include all the relevant parameters which affect the
determination of stresses, yet the equation should not be too cumbersome to use. One
relatively simple form of the equation is to apply an amplification factor for a curved
beam to the stress equation of the corresponding straight beam. However, due to the
complexity of internal forces in curved beams, the expression of the amplification
factor can not be derived directly from the strains of Chapter 3 and the differential
equations of Chapter 4. Consequently, it is most efficient to adopt the procedure of
conducting a parametric study using the line element of Chapter 5 and then deriving a
stress equation through a regression analysis. But because external applied loads to
curved beams usually generate coupled moments of Mx and Bi-moment, and their
proportion depends on the beam geometry, it is almost impossible to derive a single
stress equation. At the least, a set of stress equations for Mx and Bi-moment are
needed. In the following, the procedure of developing a stress equation for a beam
with a doubly symmetrical cross section under Mx is presented.

The primary assumption used in parametric study and regression analysis is that the
parameters are independent and a simple equation can be derived by linear regression
as:

Y=b,+bX +b,X,+b,X;+... 8.1

Or by non-linear regression as:
Y=b,+bX +bX,+b,X,+b,X X, +b,X X;... 8.2
Where: X is an independent parameter
b; is coefficient of the parameter

8.2 Selection of independent Parameters
Seven parameters are considered for the equation of maximum stress of curved beams
with a doubly symmetrical cross section. These parameters are the flange width and
thickness (b and ty), the web plate depth and thickness (d and ty), the span length and
radius (L and R) and the yield strength of the beam steel. The geometrical parameters
are rearranged as non-dimensional parameters.

L/R, the ratio of length to radius,

L/b, the ratio of length to width of flange

d/b, the ratio of depth of web to width of flange

b/tg, the ratio of width to thickness of flange, b/ty and
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d/ty, the ratio of depth and thickness of web
Through the preliminary case study, it is determined that the primary parameters for
nonlinear behavior are L/b and L/R. The ratio d/t,, of depth to thickness of web is not a
dominant parameter from the results of Chapters 6 and 7, and is not considered in the
parametric study.
The ranges of major parameters L/R, L/b, d/b and b/t for the parametric study are
listed in Table 8.1. These values are derived from design specifications and practical
considerations.
To investigate whether the selected parameters are independent, several basic cases are
analyzed first. The sectional properties of the basic beams are listed in Table 8.2. The
basis beam has the most stocky cross section in the range of parameters in Table 8.1.
Beams Lcompl, Lcomp2, Lcomp3 and Lcomp4 have the same parameter values but
different cross sectional dimensions. Beam Lcomp5 has a high value of d/b ratio for
comparison. Results of analyzing these five cases are shown in Figure 8.1. The
ordinate M,/M, , represents the external bending moment normalized by the yield
moment My , of the cross section produced by vertical bending moment only. Since
additional normal stresses are generated by warping, radial bending and sectional
deformation, the amplification analyses are continued until the maximum normal stress
reaches 1.26,. The abscissa S,/S; is the ratio of stress calculated by the nonlinear and
the linear analysis. The stress S; by the linear analysis is calculated from equation 8.3.

M Bi
=— y+—w 8.3a
T

X w

where:

[ 557l )
Sin +Sin| —
M. =M, R R . 8.3b
sin| —
¢

. (L—z [z
i LRZ (sm[ 2 )+ Slﬂ( RD B sinh(k(L ‘—z))+ sinh(k z) 8.3¢
1+(k R) Siu( L J sinh(k L)
R
k=4 o 8.3d
EI,

As shown in Figure 8.1, the curves of stress amplification for beams Lcompl, Lcomp2,
Lcomp3 are practically identical and that for Lcomp4 is very close. This means that
the major parameters L/R, L/b, d/b and b/t; in table 8.1 are independent for the
parametric study. Another notable result in Figure 8.1 is that these beams with the
lowest value of parameters of Table 8.1 generate very low amplification of stress. The
highest is being about 1.3%. The difference between linear and nonlinear analysis for
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the basis beam is less than 0.5%, and for the next four reference beams is only about
0.8%. All these can practically be ignored.

8.3 Parametric Study

Since the ratio L/b is the dominant parameter on the nonlinear behavior of horizontally
curved beams, the regression analysis is started with L/b. Other parameters L/R, d/b
and b/t are examined in order.

Table 8.3 lists the geometric dimension of five beams with L/b equals to 7, 12, 17, 21
and 25 and L/R, by/tr and d/b at their basic values. The results of analysis by the line
element are shown in Figure 8.2. As the value of L/b ratio is increased, the
amplification of stress increases rapidly. At the maximum value of L/b=25 for beam
L b4, as the external moment is increased towards the yield moment, the stress
calculated by the nonlinear analysis is 35% higher than that by the linear analysis. This
result is for the lowest values of the other parameters in their respective range. When
the value of these other ratios increased, the amplification is even higher than 35%.

For a systematic study on the effects of all parameters, the five values of L/b ratio, 7,
12, 17, 21, 25, are combined with the following set of values of parameters in this
study.

L/R=0.1,0.077,0.054, 0.031, 0.008
be/te= 10, 12.5, 15, 17.5, 20
db=2,25,3,3.5,4.0.

The combinations of these values of parameters are listed in Tables 8.4 to 8.18. Tables
8.4 to 8.6 are for L/b=7, Tables 8.7 to 8.9 for L/b=25; and so on. The characteristics of
amplification of flange stresses in curved beams as listed in Tables 8.4 to 8.6 are
shown in Figures 8.3 to 8.5. The maximum amplification is less than 3.5%. At the low
value of L/b=7, the effects of curvature (L/R) on the character of amplification are
significant, as seen in Fig. 8.3. This implies that L/R ratio is also a primary governing
parameter. The effects of d/b are less prominent as shown in Figs 8.5, and the effect of
b/t are even less as shown in Fig. 8.4.

Similar characters are observed in the case study for other sets of values of the
parameters. Figures 8.6 to 8.8 are for L/b=12 with values of other parameters listed in
Tables 8.10 to 8.12; Figures 8.9 to 8.11 are for L/b=17 with values of other parameters
listed in Tables 7.13 to 7.15, and son on. The notable character is that when L/R is
0.008 (LR4 in Figs. 8.6, 8.9, 8.12 and 8.15), the amplification of stress increases
nonlinearly with respect to increase of moment. This nonlinear behavior of curved
beams with relatively small curvature points out the necessity of considering large
displacement, large rotation and P-A effects.

From the results of the parameter study, it is confirmed that all four parameters, L/b,
L/R, b/ty and d/b are independent parameters affecting the nonlinear behavior of curved
beams.

8.4 Equation for Maximum Stress
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After a regression analysis of the data generated by the parametric study, the following
equation is derived for calculating the maximum stress in doubly symmetrical curved
I-beams under end moment Mx.

Su _ 1+ A*sinh| B * M, 8.5a
Sl Mxiy

Where:
A=0.411+0.097 *LnK%}r 0.0136} 8.5b
1
Bl=—-029+ . 8.5¢
{8.7 /[L) + o.ooz}
b
1 b
B2=|-0031+ : 2 _20 8.5d
198/[) ~3.16 |\
b
B3=|-0218+ ! (i—4] 8.5¢
L b
28/(} ~0.503
b
B=B1+B2+B3 8.5¢

In order to evaluate Equation 8.5, a comparison between the results generated by
Equation 8.5 and by the line element analysis is conducted for three beams with
different cross sections: cross section 1 for a stocky section, cross section 3 for a
slender section and cross section 2 for a section in between. The values of the
parameters for the cross sections are the following.

Cross Section 1: L/b= 7, L/R=0.08, b/t=10, d/b=2, L=35
Cross Section 2: L/b=16, L/R=0.08, b/t=15, d/b=3, L=160
Cross Section 3: L/b=25, L/R=0.1, b/t=20, d/b=4, L=125

The comparison is made in Figures 8.18 to 8.20 for beams with cross section 1 to 3. As
can be conclude from the figures, the developed equation predicts the maximum stress
well. Equation 8.5 is developed based on large displacement, large rotation and
sectional deformation analysis of horizontally curved beams with doubly symmetric
cross sections which conform to AASHTO Specifications. Thus, the equation can
readily be used for calculating the maximum stress of such beams under equal end
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moments Mx. Similary, an equation can be developed for the bi-moment. The same
procedure of analysis can be applied to singly symmetrical I-shapes for developing
corresponding flange stress equations.

224



Table 8.1 Ran

Parameter Range
L/R 0.008 ~ 0.1
L/b 7 ~25
b/ts 10~20
d/b 2~4

Table 8.2 Reference Cases

e of Parameters

b d te tw L R L/b L/R | bgte | d/b
Basis 20 40 2 04 140 17500 | 7 0.008 | 10 2
Lcompl | 20 60 2 0.6 140 17500 | 7 0.008 | 10 3
Lcomp2 | 5 15 1 0.3 70 8750 |7 0.008 | 10 3
Lcomp3 | 5 15 0.5 0.15 |35 4375 |7 0.008 | 10 3
Lcomp4 | 10 30 1 0.2 70 8750 |7 0.008 | 10 3
Lcomp5 | 10 50 1 0.5 70 8750 |7 0.008 | 10 5
Table 8.3 Value of L/b ratio
b d te tw L R L/b L/R bi/te d/b
Basis | 20 40 2 04 140 | 17500 7 0.008 10 2
L bl | 11.67 | 23.34 | 1.167 | 0.234 | 140 | 17500| 12 0.008 10 2
L b2 | 824 | 1648 | 0.824 | 0.16 140 | 17500 17 | 0.008 10 2
L b3 | 6.67 | 13.34 | 0.667 | 0.13 140 | 17500 21 0.008 10 2
Lbd| 56 11.2 | 0.56 | 0.11 140 | 17500 25 0.008 10 2
Table 8.4 Values of L/R ratio L/b =7
b d te tw L R L/b L/R | bete | d/b
Ref. 20 80 1 0.8 140 1400 7 0.1 20 4
L RI1 20 80 1 0.8 140 1818 7 0.077 20 4
L R2| 20 80 1 0.8 140 | 2593 7 0.054 20 4
L R3| 20 80 1 0.8 140 | 4516 7 0.031 20 4
L R4| 20 80 1 0.8 140 | 17500 7 0.008 20 4
Table 8.5 Values of b¢/t; ratio with L/b =7
b d te tw L R L/b L/R by/ts d/b
Ref. 20 80 1 0.8 140 1400 7 0.1 20 4
b tl 20 80 1.25 0.8 140 1400 7 0.1 17.5 4
b t2 20 80 1.5 0.8 140 1400 7 0.1 15 4
b t3 20 80 1.75 0.8 140 1400 7 0.1 12.5 4
b t4 20 80 2 0.8 140 1400 7 0.1 10 4

225




Table 8.6 Values of d/b ratio with L/b=7

b d

Ll
iy

tw L R L/b L/R | bty | d/b

Ref. 20 80 0.8 140 | 1400 0.1 20 4

dbl | 20 70 0.7 140 | 1400 0.1 20 3.5

db2| 20 60 0.6 140 | 1400 0.1 20 3

db3 | 20 50 0.5 140 | 1400 0.1 20 2.5

NN D[N |
AN AENEENEENEEN]

dbd | 20 40 0.4 140 | 1400 0.1 20 2

Table 8.10 Values of L/R ratio with L/b =12

b d tr tw L R L'b | L/R | bdty | d/b

Ref. | 11.67 | 46.7 | 0.58 | 0.47 | 140 | 1400 12 0.1 20

L R1|11.67] 46.7 | 0.58 | 047 | 140 | 1818 12 10.077 ] 20

L R2 | 11.67 | 46.7 | 0.58 | 047 | 140 | 2593 12 10.054 | 20

L R3|11.67 | 46.7 | 0.58 | 047 | 140 | 4516 12 10031 | 20

N N NS

L R4|11.67 | 46.7 | 0.58 | 047 | 140 [ 17500 ] 12 ]10.008 ] 20

Table 8.11 Values of by/t; ratio with L/b =12

b d te tw L R L/b L/R by/ts d/b

Ref. | 11.67 | 46.7 | 0.58 | 0.47 | 140 | 1400 12 0.1 20

b tl | 11.67 | 46.7 | 0.67 | 047 | 140 | 1400 12 0.1 17.5

b t2 | 11.67 | 46.7 | 0.78 | 047 | 140 | 1400 12 0.1 15

b t3 | 11.67 | 46.7 | 093 | 047 | 140 | 1400 12 0.1 12.5

RN E RS

b t4 | 11.67 | 46.7 | 1.17 | 047 | 140 | 1400 12 0.1 10

Table 8.12 Values of d/b ratio with L/b =12

b d tr tw L R L/b L/R be/te d/b

Ref. | 11.67 | 46.7 | 0.58 | 0.47 | 140 | 1400 12 0.1 20 4

d bl | 11.67 | 409 | 0.58 | 041 140 | 1400 12 0.1 20 3.5

db2 | 11.67 ] 35 0.58 | 0.35 | 140 | 1400 12 0.1 20 3

d b3 [ 11.67 ] 29.2 | 0.58 | 0.29 | 140 | 1400 12 0.1 20 2.5

db4|11.67 ] 233 | 0.58 | 0.23 | 140 | 1400 12 0.1 20 2

Table 8.13 Values of L/R ratio with L/b =17

b d tr t L R Lb | L/R | bty | db

Ref. | 8.24 33 041 | 033 | 140 | 1400 17 0.1 20

L R1| 8.24 33 041 | 033 | 140 | 1818 17 10077 ] 20

L R2| 824 33 041 | 0.33 | 140 | 2593 17 10.054 ] 20

L R3|8.24 | 33 041 | 033 | 140 | 4516 17 10.031 ] 20

EE SN SN PN

L R4 | 824 33 041 | 033 | 140 | 17500 | 17 ]10.008 )] 20
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Table 8.14 Values of b¢/tr ratio with L/b =17

b d te tw L R L/b L/R | bgty | d/b
Ref. | 8.24 33 041 | 0.33 140 | 1400 17 0.1 20 4
b tl | 824 33 0.47 | 0.33 140 | 1400 17 0.1 17.5 4
b t2 | 824 33 0.55 | 0.33 140 | 1400 17 0.1 15 4
b t3 | 824 33 0.66 | 0.33 140 | 1400 17 0.1 12.5 4
b t4 | 824 33 0.82 | 0.33 140 | 1400 17 0.1 10 4
Table 8.15 Values of d/b ratio with L/b =17
b d tr tw L R L/b L/R bi/te d/b
Ref. | 8.24 33 041 | 0.33 140 | 1400 17 0.1 20 4
d bl | 824 | 288 | 041 | 0.29 140 | 1400 17 0.1 20 3.5
db2| 824 | 247 | 041 | 0.25 140 | 1400 17 0.1 20 3
d b3 | 824 | 20.6 | 041 | 0.21 140 | 1400 17 0.1 20 2.5
dbd4| 824 | 165 | 041 | 0.17 140 | 1400 17 0.1 20 2
Table 8.16 Values of L/R ratio with L/b =21
b d te tw L R L/b L/R | b¢ty | d/b
Ref. | 6.67 | 26.7 | 033 | 0.27 140 | 1400 21 0.1 20 4
L R1| 667 | 26.7 | 033 | 0.27 140 | 1818 21 0.077 | 20 4
L R2| 667 | 26.7 | 033 | 0.27 140 | 2593 21 0.054 | 20 4
L R3| 667 | 26.7 | 0.33 | 0.27 140 | 4516 21 0.031 20 4
L R4| 667 | 26.7 | 033 | 0.27 140 | 17500 | 21 0.008 | 20 4
Table 8.17 Values of by/t; ratio with L/b =21
b d tr tw L R L/b L/R by/ts d/b
Ref. | 6.67 | 26.7 | 0.33 | 0.27 140 1400 21 0.1 20 4
btl | 667 | 26.7 | 0.38 | 0.27 140 | 1400 21 0.1 17.5 4
bt2| 667 | 267 | 044 | 0.27 140 | 1400 21 0.1 15 4
bt3 | 667 | 26.7 | 0.53 | 0.27 140 | 1400 21 0.1 12.5 4
btd | 667 | 267 | 067 | 0.27 140 | 1400 21 0.1 10 4
Table 8.18 Values of d/b ratio with L/b =21
b d tr tw L R L/b L/R bty d/b
Ref. | 6.67 | 267 | 033 | 0.27 140 | 1400 21 0.1 20 4
dbl| 667 | 233 | 033 | 0.23 140 | 1400 21 0.1 20 3.5
d b2 | 6.67 20 0.33 0.2 140 | 1400 21 0.1 20 3
d b3 | 667 | 16.7 | 0.33 | 0.17 140 | 1400 21 0.1 20 2.5
dbd| 667 | 133 | 033 | 0.13 140 | 1400 21 0.1 20 2
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Table 8.7 Values of L/R ratio with L/b =25

b d tr tw L R L/b L/R | bgty | d/b
Ref. 5.6 224 | 028 | 0.22 140 1400 25 0.1 20 4
L R1| 5.6 224 | 028 | 0.22 140 1818 25 0.077 ] 20 4
L R2| 5.6 224 | 028 | 0.22 140 | 2593 25 0.054 20 4
L R3] 5.6 224 | 028 | 0.22 140 | 4516 25 0.031 20 4
L R4| 5.6 224 | 028 | 0.22 140 | 17500 | 25 0.008 | 20 4

Table 8.8 Values of by/t; ratio with L/b =25

b d te tw L R L/b L/R | bgty | d/b
Ref. 5.6 224 | 028 | 0.22 140 1400 25 0.1 20 4
b tl 5.6 224 | 032 | 0.22 140 1400 25 0.1 17.5 4
b 2 5.6 224 | 037 | 022 140 1400 25 0.1 15 4
b t3 5.6 224 1 045 | 0.22 140 1400 25 0.1 12.5 4
btd | 56 224 | 0.56 | 0.22 140 1400 25 0.1 10 4

Table 8.9 Values of d/b ratio with L/b ratio =25

b d te tw L R L/b L/R be/ty | d/b
Ref. 5.6 224 | 028 | 0.22 140 1400 25 0.1 20 4
dbl| 5.6 19.6 | 0.28 | 0.196 | 140 | 1400 25 0.1 20 3.5
db2]| 56 16.8 | 0.28 | 0.168 | 140 | 1400 25 0.1 20 3
db3 | 56 140 | 0.28 | 0.14 140 | 1400 25 0.1 20 2.5
dbd| 56 11.2 | 0.28 | 0.112 | 140 | 1400 25 0.1 20 2
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9. Summary and Conclusion

9.1 Summary

In this study, an analytical study associated with the nonlinear response of thin-walled
open-section horizontally curved beam has been conducted. In chapter 3, simplified
strains based on various levels of commonly used approximations have been derived.
The approximations are following:

a) The nonlinear term divided by R? and higher can be ignored.

b) (R-x)/R can be simplified as 1.0.

c) The nonlinear terms divided by R can be ignored

d) With the assumption of small rotation, trigonometric functions can be

simplified by the first term of Taylor expansions.

A sensitivity study has been conducted to investigate the effects of different levels of
approximation. Since the inclusion of rotation is essential in attaining an acceptable
accuracy for curved beams, considering the effects of large displacements and large
rotations is necessary. In Chapter 4, an incremental analysis for large deflection is
developed using total Lagrangian formulation. The analysis includes warping of the
cross section, sectional deformation and p-delta effect. In order to overcome
difficulties in the derivation of differential equations with reference to both centroidal
and shear center axes, formulas based on a single reference line are developed through
proper rotational transformation. Exact solutions of displacement and warping have
been obtained for linear differential equations for beams under several loading and
boundary conditions.

The solution of nonlinear differential equations is impossible for spatially curved
beams under general loading and boundary conditions. A finite line element with a
suitable form of governing equation is established in Chapter 5. In an effort to
overcome numerical difficulties for an efficient interpolation function, a shape
function has been developed for the line element based on generalized linear strains.
The line element has eight modes of deformation including stretching, twisting,
bending, warping and sectional deformation.

For the evaluation of the line element, load-displacement curves of several beams with
different cross sections and under several loading cases have been developed and
compared with those by a three dimensional finite element analysis in Chapter 6. To
transform the classical boundary conditions into the three-dimensional finite element
model, two boundary constraints for rigid systems and free-to-deform conditions have
been developed. These boundary systems provide upper and lower bound load-
deflection curves. In Chapter 7, the contributions of large rotation, sectional
deformation and p-delta effect on the non-linear behavior of horizontally curved beams
are investigated by using the line element. In Chapter 8, an equation for calculating the
maximum stress in the flanges when the beam is under equal end moment Mx is
developed from regression analysis. This equation includes the effect of large
displacement, large rotation and sectional deformation.
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9.2. Conclusions
Based on the analysis and comparison of results from large rotation analysis, small
rotation analysis, linear analysis and finite element analysis, the following conclusions

can be made.

(@)

(i)

(iii)

(iv)

V)

(vi)

(vii)

The different levels of approximation do not affect much the load-
displacement behavior of horizontally curved beams (Chapter 3 and
Chapter 6). Therefore, simplified strains can be used for derivation of
equations.

In the flange, computed stresses considering large displacement and
large rotation are much higher than those based on linear analysis far
before yielding. The difference can be as high as one third or more.
Sometimes the signs of stresses are even reversed (Chapter 6).
Therefore linear analysis is not adequate for stress calculation of
horizontally curved beam.

For beams with cross section of low I,/Kr ratio, the reduction of Saint-
Venant torsional resistance caused by the web deformation directly
affects the total torsional moment resistance. The magnitude is
dependent on the cross sectional properties (Chapter 7). Therefore the
effects of sectional deformation should be considered for such beams.

Twist rotation and the associated P-delta effect of curved beams occur
as soon as an external force is applied. This effect on the behavior of
horizontally curved beams is very significant and induces large
displacement of the beam (Chapter 7). Therefore P-delta effect has to
be considered.

By introducing proper rotational characteristics of cross sections,
equations based on one reference line produces results identical to those
based on two-reference lines (Chapter 4). Therefore, with additional
cross sectional properties, the equations for doubly symmetric sections
can be used for non-symmetric cross sections.

The primary nonlinear behavior comes from the coupling between
displacement and twist rotation. Analysis based on small rotation and
large displacement does not provide accurate results (Chapter 7). In
order to predict accurately the nonlinear behavior of horizontally curved
beams, large rotation analysis has to be used.

The line element for analysis of curved beams can be used for any thin-
walled open cross section and beam boundary conditions to provide
accurate results (Chapter 7). Also, since the line element is formulated
considering sectional deformation, the element can be used for both
stocky and slender cross sections.
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(viii)) As an example of procedure, an equation is developed for maximum

stresses in thin-walled, doubly symmetric, open cross section of
horizontally curved beam under vertical bending, (Chapter 8). The
equation is derived by a parametric study using the line element and a
regression analysis.

9.3 Potential Future Work

(@)

(ii)

(iii)

(iv)

In the current study, the equation for maximum stress in curved beams
handles only doubly symmetric cross sections under vertical bending.
The modification of this equation for singly symmetric cross sections
should be examined. Modification of the equqtion or development of
new equations should also be made for beams under different loading
cases.

All the derivation and analysis in the current study are within the elastic
range of material properties. Studies based on not only geometrical
nonlinearity but also material nonlinearity are recommended

Since the design of horizontally curved beam is governed not only by
deformation but also by ultimate strength, studies on ultimate strength
considering displacement, rotation, and cross sectional deformation, are
necessary.

Only limited experimental studies have been conducted and most are on
horizontally curved beams with doubly symmetric cross section.
Additional experiments as well as studies on beams with singly
symmetric cross sections are necessary.
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