4 research outputs found

    Shared Interoperable Clinical Decision Support Service for Drug-Allergy Interaction Checks: Implementation Study

    No full text
    BackgroundClinical decision support (CDS) can improve health care with respect to the quality of care, patient safety, efficiency, and effectiveness. Establishing a CDS system in a health care setting remains a challenge. A few hospitals have used self-developed in-house CDS systems or commercial CDS solutions. Since these in-house CDS systems tend to be tightly coupled with a specific electronic health record system, the functionality and knowledge base are not easily shareable. A shared interoperable CDS system facilitates the sharing of the knowledge base and extension of CDS services. ObjectiveThe study focuses on developing and deploying the national CDS service for the drug-allergy interaction (DAI) check for health care providers in Korea that need to introduce the service but lack the budget and expertise. MethodsTo provide the shared interoperable CDS service, we designed and implemented the system based on the CDS Hooks specification and Health Level Seven (HL7) Fast Healthcare Interoperability Resources (FHIR) standard. The study describes the CDS development process. The system development went through requirement analysis, design, implementation, and deployment. In particular, the concept architecture was designed based on the CDS Hooks structure. The MedicationRequest and AllergyIntolerance resources were profiled to exchange data using the FHIR standard. The discovery and DAI check application programming interfaces and rule engine were developed. ResultsThe CDS service was deployed on G-Cloud, a government cloud service. In March 2021, the CDS service was launched, and 67 health care providers participated in the CDS service. The health care providers participated in the service with 1,008,357 DAI checks for 114,694 patients, of which 33,054 (3.32%) cases resulted in a “warning.” ConclusionsKorea’s Ministry of Health and Welfare has been trying to build an HL7 FHIR-based ecosystem in Korea. As one of these efforts, the CDS service initiative has been conducted. To promote the rapid adoption of the HL7 FHIR standard, it is necessary to accelerate practical service development and to appeal to policy makers regarding the benefits of FHIR standardization. With the development of various case-specific implementation guides using the Korea Core implementation guide, the FHIR standards will be distributed nationwide, and more shared interoperable health care services will be introduced in Korea

    Scaling behavior of the degree of circular polarization of surface plasmon polariton

    No full text
    Surface plasmon polaritons (SPPs) carry transverse optical spin within the evanescent field, which has enabled the demonstration of various chiral light-matter interactions in classical and quantum systems. To achieve high spin selectivity in the interactions, the elliptical polarization of the evanescent field should be made circular, but the engineering principle of the degree of circular polarization (DOCP) of SPPs has been lacking. In this study, we theoretically and numerically investigate the scaling behavior of the DOCP of the SPP field with respect to the modal effective refractive index (neff). The DOCP of the SPP field exhibits power-law scalability to the effective refractive index in the 1D layered system, regardless of the material, structural geometry, and excitation wavelength. The power-law scalability is also confirmed in 2D waveguide structures for in-plane and out-of-plane SPP fields, but the scaling exponents vary depending on the distance from the waveguide boundaries by the reduced symmetry of the given system. Due to Lorentz reciprocity, the power-law scalability can be extended to the coupling directionality of chiral emitters towards the plasmonic waveguide. To this end, we propose a chiral photonic platform for enhanced light-valley interaction, which utilizes simultaneous enhancement of the DOCP and coupling directionality. An incident SPP can excite a chiral emitter with high spin selectivity that unidirectionally couples the emitted light into the plasmonic waveguide depending on the valley polarization of excitons in 2D material. Our work provides a ground rule for designing chiral nanophotonic systems and paves the way for the exploration of scale-free phenomena of electromagnetic waves

    Customizing Radiative Decay Dynamics of Two-Dimensional Excitons via Position- and Polarization-Dependent Vacuum-Field Interference

    No full text
    Embodying bosonic and interactive characteristics in two-dimensional space, excitons in transition metal dichalcogenides (TMDCs) have garnered considerable attention. The utilization of the strong-correlation effects, long-range transport, and valley-dependent properties requires customizing exciton decay dynamics. Vacuum-field manipulation allows radiative decay engineering without disturbing intrinsic material properties. However, conventional flat mirrors cannot customize the radiative decay landscape in TMDC’s plane or support vacuum-field interference with desired spectrum and polarization properties. Here, we present a meta-mirror platform resolving the issues with more optical degrees of freedom. For neutral excitons of the monolayer MoSe2, the optical layout formed by meta-mirrors manipulated the radiative decay rate in space by 2 orders of magnitude and revealed the statistical correlation between emission intensity and spectral line width. Moreover, the anisotropic meta-mirror demonstrated polarization-dependent radiative decay control. Our platform would be promising to tailor two-dimensional distributions of lifetime, density, diffusion, and polarization of TMDC excitons in advanced opto-excitonic applications.11Nsciescopu
    corecore