42 research outputs found

    Safety-Critical Control under Multiple State and Input Constraints and Application to Fixed-Wing UAV

    Full text link
    This study presents a framework to guarantee safety for a class of second-order nonlinear systems under multiple state and input constraints. To facilitate real-world applications, a safety-critical controller must consider multiple constraints simultaneously, while being able to impose general forms of constraints designed for various tasks (e.g., obstacle avoidance). With this in mind, we first devise a zeroing control barrier function (ZCBF) using a newly proposed nominal evading maneuver. By designing the nominal evading maneuver to 1) be continuously differentiable, 2) satisfy input constraints, and 3) be capable of handling other state constraints, we deduce an ultimate invariant set, a subset of the safe set that can be rendered forward invariant with admissible control inputs. Thanks to the development of the ultimate invariant set, we then propose a safety-critical controller, which is a computationally tractable one-step model predictive controller (MPC) with guaranteed recursive feasibility. We validate the proposed framework in simulation, where a fixed-wing UAV tracks a circular trajectory while satisfying multiple safety constraints including collision avoidance, bounds on flight speed and flight path angle, and input constraints.Comment: Accepted for the 2023 62nd IEEE Conference on Decision and Control (CDC

    Multi-dimensional Packing for HEAAN for Approximate Matrix Arithmetics

    Get PDF
    HEAAN is a homomorphic encryption (HE) scheme for approximate arithmetics. Its vector packing technique proved its potential in cryptographic applications requiring approximate computations, including data analysis and machine learning. In this paper, we propose MHEAAN - a generalization of HEAAN to the case of a tensor structure of plaintext slots. Our design takes advantage of the HEAAN scheme, that the precision losses during the evaluation are limited by the depth of the circuit, and it exceeds no more than one bit compared to unencrypted approximate arithmetics, such as floating point operations. Due to the multi-dimensional structure of plaintext slots along with rotations in various dimensions, MHEAAN is a more natural choice for applications involving matrices and tensors. We provide a concrete two-dimensional construction and show the efficiency of our scheme on several matrix operations, such as matrix multiplication, matrix transposition, and inverse. As an application, we implement the non-interactive Deep Neural Network (DNN) classification algorithm on encrypted data and encrypted model. Due to our efficient bootstrapping, the implementation can be easily extended to DNN structure with an arbitrary number of hidden layer

    Third-order exceptional point in an ion-cavity system

    Full text link
    We investigate a scheme for observing the third-order exceptional point (EP3) in an ion-cavity setting. In the lambda-type level configuration, the ion is driven by a pump field, and the resonator is probed with another weak laser field. We exploit the highly asymmetric branching ratio of an ion's excited state to satisfy the weak-excitation limit, which allows us to construct the non-Hermitian Hamiltonian (HnH)(H_{\textrm{nH}}). Via fitting the cavity-transmission spectrum, the eigenvalues of HnHH_{\textrm{nH}} are obtained. The EP3 appears at a point where the Rabi frequency of the pump laser and the atom-cavity coupling constant balance the loss rates of the system. Feasible experimental parameters are provided.Comment: 9 pages, 6 figure

    Transcriptional regulatory networks of tumor-associated macrophages that drive malignancy in mesenchymal glioblastoma.

    Get PDF
    BACKGROUND: Glioblastoma (GBM) is a complex disease with extensive molecular and transcriptional heterogeneity. GBM can be subcategorized into four distinct subtypes; tumors that shift towards the mesenchymal phenotype upon recurrence are generally associated with treatment resistance, unfavorable prognosis, and the infiltration of pro-tumorigenic macrophages. RESULTS: We explore the transcriptional regulatory networks of mesenchymal-associated tumor-associated macrophages (MA-TAMs), which drive the malignant phenotypic state of GBM, and identify macrophage receptor with collagenous structure (MARCO) as the most highly differentially expressed gene. MARCO CONCLUSIONS: Collectively, our study characterizes the global transcriptional profile of TAMs driving mesenchymal GBM pathogenesis, providing potential therapeutic targets for improving the effectiveness of GBM immunotherapy

    Security Guidelines for Implementing Homomorphic Encryption

    Get PDF
    Fully Homomorphic Encryption (FHE) is a cryptographic primitive that allows performing arbitrary operations on encrypted data. Since the conception of the idea in [RAD78], it was considered a holy grail of cryptography. After the first construction in 2009 [Gen09], it has evolved to become a practical primitive with strong security guarantees. Most modern constructions are based on well-known lattice problems such as Learning with Errors (LWE). Besides its academic appeal, in recent years FHE has also attracted significant attention from industry, thanks to its applicability to a considerable number of real-world use-cases. An upcoming standardization effort by ISO/IEC aims to support the wider adoption of these techniques. However, one of the main challenges that standards bodies, developers, and end users usually encounter is establishing parameters. This is particularly hard in the case of FHE because the parameters are not only related to the security level of the system, but also to the type of operations that the system is able to handle. In this paper, we provide examples of parameter sets for LWE targeting particular security levels that can be used in the context of FHE constructions. We also give examples of complete FHE parameter sets, including the parameters relevant for correctness and performance, alongside those relevant for security. As an additional contribution, we survey the parameter selection support offered in open-source FHE libraries

    Pharmacogenomic profiling reveals molecular features of chemotherapy resistance in IDH wild-type primary glioblastoma

    Get PDF
    Background Although temozolomide (TMZ) has been used as a standard adjuvant chemotherapeutic agent for primary glioblastoma (GBM), treating isocitrate dehydrogenase wild-type (IDH-wt) cases remains challenging due to intrinsic and acquired drug resistance. Therefore, elucidation of the molecular mechanisms of TMZ resistance is critical for its precision application. Methods We stratified 69 primary IDH-wt GBM patients into TMZ-resistant (n = 29) and sensitive (n = 40) groups, using TMZ screening of the corresponding patient-derived glioma stem-like cells (GSCs). Genomic and transcriptomic features were then examined to identify TMZ-associated molecular alterations. Subsequently, we developed a machine learning (ML) model to predict TMZ response from combined signatures. Moreover, TMZ response in multisector samples (52 tumor sectors from 18 cases) was evaluated to validate findings and investigate the impact of intra-tumoral heterogeneity on TMZ efficacy. Results In vitro TMZ sensitivity of patient-derived GSCs classified patients into groups with different survival outcomes (P = 1.12e−4 for progression-free survival (PFS) and 3.63e−4 for overall survival (OS)). Moreover, we found that elevated gene expression of EGR4, PAPPA, LRRC3, and ANXA3 was associated to intrinsic TMZ resistance. In addition, other features such as 5-aminolevulinic acid negative, mesenchymal/proneural expression subtypes, and hypermutation phenomena were prone to promote TMZ resistance. In contrast, concurrent copy-number-alteration in PTEN, EGFR, and CDKN2A/B was more frequent in TMZ-sensitive samples (Fishers exact P = 0.0102), subsequently consolidated by multi-sector sequencing analyses. Integrating all features, we trained a ML tool to segregate TMZ-resistant and sensitive groups. Notably, our method segregated IDH-wt GBM patients from The Cancer Genome Atlas (TCGA) into two groups with divergent survival outcomes (P = 4.58e−4 for PFS and 3.66e−4 for OS). Furthermore, we showed a highly heterogeneous TMZ-response pattern within each GBM patient usingin vitro TMZ screening and genomic characterization of multisector GSCs. Lastly, the prediction model that evaluates the TMZ efficacy for primary IDH-wt GBMs was developed into a webserver for public usage (http://www.wang-lab-hkust.com:3838/TMZEP) Conclusions We identified molecular characteristics associated to TMZ sensitivity, and illustrate the potential clinical value of a ML model trained from pharmacogenomic profiling of patient-derived GSC against IDH-wt GBMs

    Metastability-based Feedback Method for Enhancing FPGA-based TRNG

    No full text
    This paper presents a novel and efficient method to enhance the randomness of a Programmable Delay Line (PDL)-based True Random Number Generator (TRNG) by introducing Metastability-based Feedback scheme. As a principal tool for the security of sensor network, random number generator is one of important security primitives. At the CHES2011 conference, a new method of generating random numbers by inducing metastability using precise PDL and PI (proportional-Integral) control has been proposed. As the proposed TRNG could not achieve sufficient randomness on its own, a filtering scheme was used for higher entropy. Unfortunately, the intrinsic characteristics of filters made the throughput of the TRNG decrease by approximately 50\%. To preserve the original throughput and attain a high level of randomness, we present a simple solution that analyzes the probability of outputs and assign long time to metastable state. The proposed scheme shows high randomness in the NIST randomness test suite without any of the throughput loss caused by filtering
    corecore