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Abstract 

Background  Although temozolomide (TMZ) has been used as a standard adjuvant chemotherapeutic agent for 
primary glioblastoma (GBM), treating isocitrate dehydrogenase wild-type (IDH-wt) cases remains challenging due to 
intrinsic and acquired drug resistance. Therefore, elucidation of the molecular mechanisms of TMZ resistance is critical 
for its precision application.

Methods  We stratified 69 primary IDH-wt GBM patients into TMZ-resistant (n = 29) and sensitive (n = 40) groups, 
using TMZ screening of the corresponding patient-derived glioma stem-like cells (GSCs). Genomic and transcrip‑
tomic features were then examined to identify TMZ-associated molecular alterations. Subsequently, we developed 
a machine learning (ML) model to predict TMZ response from combined signatures. Moreover, TMZ response in 
multisector samples (52 tumor sectors from 18 cases) was evaluated to validate findings and investigate the impact of 
intra-tumoral heterogeneity on TMZ efficacy.

Results  In vitro TMZ sensitivity of patient-derived GSCs classified patients into groups with different survival out‑
comes (P = 1.12e−4 for progression-free survival (PFS) and 3.63e−4 for overall survival (OS)). Moreover, we found 
that elevated gene expression of EGR4, PAPPA, LRRC3, and ANXA3 was associated to intrinsic TMZ resistance. In 
addition, other features such as 5-aminolevulinic acid negative, mesenchymal/proneural expression subtypes, and 
hypermutation phenomena were prone to promote TMZ resistance. In contrast, concurrent copy-number-alteration 
in PTEN, EGFR, and CDKN2A/B was more frequent in TMZ-sensitive samples (Fisher’s exact P = 0.0102), subsequently 
consolidated by multi-sector sequencing analyses. Integrating all features, we trained a ML tool to segregate TMZ-
resistant and sensitive groups. Notably, our method segregated IDH-wt GBM patients from The Cancer Genome Atlas 
(TCGA) into two groups with divergent survival outcomes (P = 4.58e−4 for PFS and 3.66e−4 for OS). Furthermore, 
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we showed a highly heterogeneous TMZ-response pattern within each GBM patient using in vitro TMZ screening and 
genomic characterization of multisector GSCs. Lastly, the prediction model that evaluates the TMZ efficacy for primary 
IDH-wt GBMs was developed into a webserver for public usage (http://​www.​wang-​lab-​hkust.​com:​3838/​TMZEP).

Conclusions  We identified molecular characteristics associated to TMZ sensitivity, and illustrate the potential clinical 
value of a ML model trained from pharmacogenomic profiling of patient-derived GSC against IDH-wt GBMs.

Keywords  Machine learning, Glioblastoma, Temozolomide, Pharmacogenomics, Cancer genomics, Intra-tumoral 
heterogeneity

Background
Isocitrate dehydrogenase wild-type (IDH-wt) glioblas-
toma (GBM) constitutes the most common and aggres-
sive GBM subtype, with high inter- and intra-tumoral 
heterogeneity [1]. Temozolomide (TMZ), in addition to 
radiotherapy and surgical resection, can improve both 
the progression-free survival (PFS) and overall sur-
vival (OS) in newly diagnosed GBMs [2]. As a chemo-
therapeutic agent potentially suitable for long-term use 
owing to its relatively low toxicity, TMZ causes DNA 
damage by methylating the O6-position of guanine in 
DNA, initiating cell cycle arrest leading to cell death [3]. 
Despite TMZ improving survival outcomes, the recur-
rence rate of GBM patients after standard TMZ therapy 
is over 90% [4].

Identifying non-responders of TMZ in 
advance is especially important in neuro-oncol-
ogy. To date, the promoter methylation status of 
O6-methylguanine-DNA-methyltransferase (MGMT), a 
protein that repairs the damages from TMZ, is the most 
widely used predictor of TMZ response in GBM [5]. 
However, MGMT methylation alone was not sufficient. 
Besides, it was believed that the relapsed GBM is driven 
by invasive GBM stem-like cells (GSCs) [6]. Under con-
ventional treatment, invading GSCs are likely exposed to 
lower TMZ concentrations than the tumor cells within 
the contrast-enhancing tumor area highlighted by mag-
netic resonance imaging [7]. Therefore, the existence of 
residual, heterogeneous populations of GSCs explains 
the temporal variability of the genomic profile during 
GBM progression [8]. While previous studies utilized a 
small subset of conventional cancer cell lines to identify 
TMZ-resistant features [9, 10], we propose to investigate 
patient-derived GSCs, which might indicate treatment 
outcomes and reveal clinical-relevant mechanisms of 
drug resistance.

To identify predictive features and establish an inte-
grative method to distinguish TMZ responder and non-
responder before TMZ chemotherapy, we cultured a 
panel of GSCs derived from newly diagnosed treatment-
naïve IDH-wt GBM patients and analyzed genomic traits 
and drug screening data of their early passages. Our 
recent work showed that these patient-derived GSCs 

better represent the traits of parental tumors compared 
to conventional cell lines [11–13]. In this study, we aimed 
to collect molecular profiles of the GSCs and develop a 
classification model to predict TMZ sensitivity in order 
to improve patient management.

Methods
Patient samples
After written informed consent was obtained, we uti-
lized tumor specimens of patients whose first therapeu-
tic intervention was an open surgical resection at the 
Samsung Medical Center in accordance with the Insti-
tutional Review Board. Overall, 128 GBM specimens 
(108 primary, 19 recurrent, 1 unknown) were collected 
from 92 GBM patients with median age at diagnosis 57 
(range 29-80) including 39 females and 53 males. GBMs 
were diagnosed based on the World Health Organization 
(WHO) criteria. The methylation status of the MGMT 
promoter was assessed by methylation-specific poly-
merase chain reaction (PCR) after sodium bisulfite DNA 
modification, and the mutation of IDH1 was detected by 
peptide nucleic acid-mediated clamping PCR and immu-
nohistochemistry on the tumor tissues [14–17]. Follow-
up MRI was performed at a regular interval of 2 months 
during treatment and 3 or 6 months interval after treat-
ment for disease recurrence. Among the 128 specimens, 
126 samples (z-score cohort, Additional file 1: Table S1) 
were subjected to in  vitro culture of patient-derived 
GSCs to study relative TMZ-sensitivity (Additional file 2: 
Fig. S1). Within these 126 samples, TMZ-treated IDH-wt 
primary GBMs were selected as the main cohort (n=69) 
for downstream analysis. For intratumoral heterogeneity 
analysis, 18 patients with multi-sector samples (52/128) 
were included (multi-sector cohort). Longitudinal GBM 
cohort (n = 40 pairs) for longitudinal expression analy-
sis included 4 (2 pairs) out of 128 samples in addition to 
64 samples (32 pairs) from Wang et al. [18] and 12 sam-
ples (6 pairs) from Zhao et  al. [19]. Only the pairs that 
were IDH1-wt in the primary (untreated) and received 
TMZ after the first resection were selected. WES, tar-
geted sequencing (GliomaSCAN), and/or RNAseq were 
performed on the main cohort and multi-sector cohort 
when available. Part of the sequencing data was retrieved 
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from our previous publications [11, 20]. Detailed infor-
mation can be found in Additional file 1: Table S1.

Isolation and short‑term in vitro culture of patient‑derived 
GSCs
Enrolled tumor specimens were enzymatically dis-
sociated into single cells and cultured as described 
previously [21]. These cells were then grown in Neuroba-
sal-A medium with N2 and B27 supplements (0.5 × each, 
ThermoScientific, Bartlesville, OK, USA), basic fibroblast 
growth factor, and epidermal growth factor (20 ng/mL 
each, R&D Systems, McKinley Pl NE, Minneapolis, USA). 
As spheres appeared in the suspension culture, they were 
dissociated using StemPro® (Life Technologies, Wood-
ward St, Austin, TX, USA) and expanded by reseeding 
under the same suspension culture conditions. Patient-
derived GSCs were negative for mycoplasma contami-
nation, as determined using the Universal Mycoplasma 
Detection Kit (American Type Culture Collection, Uni-
versity Blvd, Manassas, USA, 30-1012K).

TMZ sensitivity evaluation of GSCs in vitro
Patient-derived GSCs cultured in defined suspension 
culture conditions [21] were seeded in 384-well plates 
at a density of 500 cells/well with technical duplicates or 
triplicates. TMZ was purchased from Selleck Chemicals 
(Houston, TX, USA) and stored following the manufac-
turer’s instructions. GSCs were treated with TMZ using 
a fourfold and seven-point serial dilution series ranging 
from 500 μM to 122 nM, using a Janus Automated Work-
station (PerkinElmer, Waltham, MA, USA). After 6 days 
of incubation at 37°C in a 5% CO2 humidified incubator, 
cell viability was assessed using an adenosine triphos-
phate assay system based on firefly luciferase (ATPLite™ 
1step, PerkinElmer, Bridgeport Ave, Shelton, CT, USA). 
Cell viability was measured using an EnVision Multilabel 
Reader (PerkinElmer). Control wells containing only cells 
and vehicle (dimethyl sulfoxide) were included on each 
assay plate. The half maximal growth rate (GR) inhibi-
tory concentration (GR50) and traditional area under the 
curve of the dose-response curve (AUC) were calculated 
using an online GR calculator [22]. These GR50 and AUC 
values were used to compute the z-score in a total of 
126 GSC samples from GBM tumor specimens (z-score 
cohort, Additional file 1: Table S1) for the determination 
of TMZ-resistant and sensitive samples.

DNA sequencing
Whole-exome sequencing (WES) and/or GliomaSCAN 
[11] were performed on the DNA fragments of the tumor 
and matched blood. For WES, exonic DNA was captured 
by Agilent SureSelect Kit. GliomaSCAN is a massive 
parallel targeted sequencing protocol that covers exons 

of selected glioma-associated genes. Pair-end sequenc-
ing was sequenced on Illumina HiSeq 2000 instrument. 
FASTQ data was mapped to human genome reference 
(hg19) using Burrows-Wheeler Aligner [23]. Duplicates 
were marked by Picard and alignments were sorted by 
SAMtools [24].

Somatic mutation detection
SAVI2 [18] was used for identifying somatic mutations 
from WES and targeted sequencing (GliomaSCAN) 
[11]. From the SAVI2 report, nonsynonymous somatic 
mutations with tumor variant allele frequency (VAF) 
higher than 5% and matched blood VAF equal to 0% were 
selected. Selected GBM driver genes were used in the 
following analysis. For epidermal growth factor recep-
tor variant III (EGFRvIII), a sample was determined 
EGFRvIII-positive if two or more reads skipped exon 2–7 
from the transcriptomic data.

Copy number alteration by WES and GliomaSCAN
We used the ngCGH python package (version 0.4.4) [25] 
to generate estimated copy number alterations (CNAs) 
in a tumor specimen compared with its matched blood 
control. Gene-level read counts were calculated in both 
tumor and matched control. The output value from 
the package, which is the median-centered log2 ratio 
of tumor and normal sample, was used to define copy 
number status. If the value was above 0.5, the gene was 
annotated as “gain,” and “amplification” if above 1.58. 
Similarly, a value lower than −0.5 and −1.58 was labeled 
as “loss” and “deletion,” respectively. However, in the case 
of EGFR, GliomaSCAN’s copy number result was less 
accurate and therefore 0.3 and 1.58 were used as cut-offs 
to increase compatibility with WES results. The CNA 
result from WES data had the highest priority followed 
by CNA called from GliomaSCAN and RNA sequencing 
(RNA-seq).

CNA estimation by RNA sequencing
For samples with RNA-seq data but without WES, we 
estimated the CNAs from RNA-seq by adopting the 
CNAPE method [26] with several modifications. Briefly, 
we used XGBoost [27] to train our model instead of 
LASSO (Least Absolute Shrinkage and Selection Opera-
tor) regression, and also took the KEGG (Kyoto Ency-
clopedia of Genes and Genomes) pathway gene set into 
consideration instead of only the STRING (Search Tool 
for the Retrieval of Interacting Genes/Proteins) pro-
tein-protein interaction. Then we used 38 samples with 
matched WES and RNA-seq data from our dataset to 
calibrate the cut-off values of normal, gain, and ampli-
fication (or loss and deletion) via optimizing F-score. 
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Details can be found in Additional file 3: Supplementary 
Methods.

RNA‑Seq data processing and gene expression marker 
identification
Sequencing reads were mapped to human genome refer-
ence (hg19) by the STAR (Spliced Transcripts Alignment 
to a Reference) pipeline [28]. Read counts were then 
calculated using featureCounts [29]. To identify genes 
that have conserved expression profiles between GSCs 
and the matched initial tumor tissues, RNA sequenc-
ing analyses were carried out on 12 matched GSC-tissue 
pairs to calculate the Spearman correlation coefficient for 
each gene based on log2-transformed raw read counts. 
A Gaussian mixture model was then used to separate 
conserved genes from the non-conserved genes (Addi-
tional file  2: Fig. S2). The conserved genes (with Spear-
man correlation coefficient > 0.177) were subsequently 
investigated by differential gene expression analysis via 
DESeq2 R package [30] on RNA-seq data of tumor tis-
sues from 12 TMZ-resistant and 22 TMZ-sensitive sam-
ples (evaluated by the above-mentioned in  vitro TMZ 
screening). Principal component analysis was performed 
on these 34 samples to detect potential batch effects 
(Additional file 2: Fig. S3a, b). To make sure the marker 
genes are more reliable, we used stringent cut-offs (log2 
fold change > 2.5, adjusted P < 0.01) for identifying differ-
entially expressed genes resulting in four TMZ-resistant 
markers (Additional file 2: Fig. S3c). To measure the level 
of gene expression, read counts were converted to Reads 
Per Kilobase per Million mapped reads (RPKM), followed 
by log2 transformation and quantile normalization.

GBM subtyping
We performed single sample gene set enrichment analy-
sis (ssGSEA) using the GBM subtype gene sets defined 
by Wang et al. [31] on the RNA-seq samples. The enrich-
ment scores for each subtype were normalized across 
samples. The subtype with the highest normalized 
enrichment score was selected as the activated subtype 
for each sample.

TCGA data
Transcriptomic data of the TCGA cohort was down-
loaded directly from Broad GDAC Firehose (normal-
ized RNAseqv2 RSEM, https://​gdac.​broad​insti​tute.​org/). 
Mutation and CNA data were downloaded from cBioPor-
tal. Clinical data was downloaded from the original pub-
lication by Ceccarelli et al. [1] and cBioPortal [32].

Modeling TMZ efficacy predictor (TMZep)
The XGBoost classifier [27] was trained to separate TMZ 
responder from non-responder based on genomic and 

transcriptomic profiles. A total of 25 features, including 
methylation status of MGMT promoter, single-nucle-
otide variants (SNVs), CNAs, and expression levels of 
selected genes, were incorporated to train a machine-
learning model, based on samples in the main cohort (n 
= 69). To address the issue of missing values, we first 
performed data imputation: for binary features, miss-
ing values were replaced by 0.5; for continuous features, 
missing values were imputed by KNNImputer [33] 
(K=5). The imputed data was used to train the XGBoost 
model (python xgboost v0.90), where 50 decision trees 
with a tree depth of no more than 3 were constructed 
under the learning rate of 0.74 and the subsampling ratio 
of 0.35 for each boosting iteration. The above hyperpa-
rameters were selected via optimization of (1) AUC score 
in 5-fold cross-validation; (2) capability of stratifying 
patients with different survival outcomes in the training 
set; and (3) biological significance of prioritized features. 
In the final model, we used 0.6 as the probability cutoff 
to segregate two risk groups. Furthermore, we added L2 
regularization to the cost function to control overfitting 
and enhance the generalization ability of our model for 
unseen data. Lastly, the area under receiver operating 
characteristic curve (AUC) score was used to measure 
the model’s performance.

Statistical analysis
T-test, Wilcoxon rank-sum test, Spearman’s rank correla-
tion coefficient test, and Fisher’s exact test were used to 
conduct different statistical analyses. Survival analyses 
were performed using the Kaplan–Meier method and the 
Cox proportional hazards regression method. Patients 
who were alive at the last known follow-up were consid-
ered censored in these analyses. Hazard ratios (HR) and 
their 95% confidence intervals (CIs) were calculated. Sta-
tistical analyses were conducted using Python (v.3.8) and 
R (3.6.3) software.

Results
In vitro screening using patient‑derived GSCs reflects 
personalized TMZ efficacy
To evaluate GBM’s response to TMZ, we performed 
in  vitro TMZ cytotoxicity assays in short-term (6 days) 
cultured patient-derived GSCs (n = 69, main cohort) 
obtained from surgically resected IDH-wt primary GBM 
specimens. Since conventional metrics such as the effec-
tive concentration at 50% (IC50) or maximum inhibition 
% (Emax) highly depends on cell division rate obscuring 
accurate sensitivity prediction, we adopted GR inhibition 
metrics, which are independent of division number and 
therefore superior to conventional metrics for assessing 
the effects of drugs in fast dividing cells [34]. We calcu-
lated GR50 values for each sample, and for those with 

https://gdac.broadinstitute.org/
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infinite GR50 values, we measured conventional AUC 
values. By calculating Z-scores for GR50 and AUC, we 
divided our samples into TMZ-Sensitive and TMZ-
Resistant groups (Fig. 1a). As expected, MGMT promoter 
methylation was observed to be related to Z-scores of 
GR50 and AUC values (Fig. 1b, Wilcoxon rank sum test P 
= 0.018) [35].

Strikingly, TMZ-Resistant (n = 29) and TMZ-Sensitive 
(n = 40) groups defined from in  vitro sensitivity were 
highly predictive of survival outcomes for patients who 
were under a TMZ-based treatment regimen (Fig. 1c and 
d; PFS, P = 1.12e−4; OS, P = 3.63e−4; by log-rank test). 
Notably, the above-defined in  vitro sensitivity surpasses 
the well-known MGMT promoter methylation status in 
predicting the patient prognosis (Additional file  2: Fig. 
S4a). Additionally, a Cox-regression multivariate survival 
analysis considering age, gender, extent of resection, and 
MGMT promoter methylation revealed that in vitro TMZ 
sensitivity and the extent of resection were independent 
factors associated with PFS and OS, while MGMT pro-
moter methylation being related to in  vitro sensitivity 
(Additional file 2: Fig. S3b, Fisher’s exact test P = 0.0156) 
was marginally significant (Table  1). Collectively, these 

data reflect the reliability of our preclinical TMZ testing 
system for assessing clinical response to TMZ in patients 
newly diagnosed with IDH1-wt GBM.

Genomic analysis reveals somatic mutational landscape 
of TMZ‑resistant and sensitive groups
To identify genetic factors contributing to TMZ 
response, we explored somatic genomic alterations in 
the TMZ-resistant and sensitive groups in our main 
cohort. WES and/or GliomaSCAN on 57 tissue speci-
mens (with matched blood controls) and RNA-seq on 
34 tissue specimens were either newly performed or 
downloaded from previous publications [11, 20] (Addi-
tional file  1: Table  S1). Somatic SNVs and short inser-
tions/deletions were identified by SAVI2 [18] (Additional 
file 1: Table S2). A sample was labeled as hypermutated 
if the total number of somatic mutations was over 350 
by WES. CNAs were calculated from WES, GliomaS-
CAN, or were predicted from RNA-seq by CNAPE [26] 
(Additional file 1: Table S2-3, Additional file 2: Fig. S5-S6, 
and Additional file  3: Supplementary Methods). Vari-
ants with VAF over 5% and CNAs in previously reported 
GBM driver genes, together with EGFRvIII (Additional 

Fig. 1  In vitro TMZ screening of patient-derived glioblastoma (GBM) stem cell (GSC) predicts GBM prognosis. a TMZ sensitivity determination 
pipeline for patient-derived GSC. GR: growth rate; AUC: area under the conventional drug response curve; GSC: Glioblastoma Stem Cell; TMZ: 
temozolomide. b GR50 and AUC z-score comparison between MGMT methylated and un-methylated samples. Wilcoxon rank sum tests were 
performed for p-values (* P < 0.05). c, d Comparison of progression-free survival (c) and overall survival (d) between the TMZ-resistant (red) and 
TMZ-sensitive (blue) patients. The cohort was determined by TMZ screening in panel a. Sen, TMZ-sensitive; Res, TMZ-resistant. P-values were 
calculated by logrank test
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file 1: Table S4) and the expression-based GBM subtyp-
ing were shown in Fig. 2. Overall, no significant genomic 
difference was observed between the responder and non-
responder groups. Yet, mesenchymal/proneural subtype 
and somatic mutations in genes including NF1, NF2, and 
PTEN were more often observed in TMZ-resistant sam-
ples, while PIK3R1 somatic mutations were slightly more 
frequent in TMZ-sensitive samples (Fig. 2). These obser-
vations indicate that GBM’s response to TMZ might be 
determined by the combination of multiple factors but 
not by single ones.

Transcriptomic sequencing reveals marker genes of TMZ 
resistance
To identify marker genes of TMZ response, we first 
separated conserved and non-conserved gene expres-
sion between GSCs and the initial tumor tissue through 
a Gaussian mixture model (Additional file 2: Fig. S2). The 
conserved genes were then used to perform differential 
gene expression analysis between tissue RNA-seq data 

of TMZ-resistant (n = 12) and sensitive (n = 22) sam-
ples. Principal component analysis on these 34 samples 
showed slight clustering by GBM subtype (proneural vs. 
mesenchymal/classical) but by no other factors includ-
ing age, gender, and MGMT promoter methylation status 
(Additional file  2: Fig. S3a, b). We identified four genes 
(EGR4, PAPPA, LRRC3, and ANXA3) significantly up-
regulated in the TMZ-resistant group (Fig. 3a, Additional 
file 2: Fig. S3c, log2 fold change > 2.5, adjusted P < 0.01). 
To explore the prognostic value of the TMZ-resistant 
marker genes, we extracted 96 RNA-seq available TMZ-
treated IDH-wt primary GBM patients from the TCGA 
dataset and classified them into high-risk and low-risk 
groups based on the expression of these four genes. 
Notably, the high-risk group had significantly worse PFS 
(P = 1.59e−03 by log-rank test) and OS (P = 3.46e−03 
by log-rank test, Fig. 3b), compared to that of the low-risk 
group.

To further investigate the expression change of these 
genes before and after TMZ treatment, we integrated a 

Fig. 2  Somatic mutational landscape of the main cohort. TMZ sensitivity was determined based on in vitro TMZ screening. The single nucleic 
variants (SNV) including point mutations, short insertion/deletions, and copy number amplifications and deletions of selected GBM driver genes 
were included. Alteration frequencies are shown on the right side. When available, copy number alteration results were inferred from the methods 
in the following order; WES (highest priority), Gliomascan, and RNAseq. EGFRvIII was identified from RNA-seq data. Moderate: missense or inframe 
deletion; high: frameshift, stop gained, splice donor or splice acceptor; M, methylated; UM, unmethylated; N/A, not available; C, classical; P, 
proneural; M, mesenchymal; GS, Gliomascan; WES, whole exome sequencing



Page 8 of 15Nam et al. Genome Medicine           (2023) 15:16 

total of 40 paired RNA-seq data of initial and matched 
TMZ-treated recurrent IDH-wt GBM samples [18, 19]. 
As shown in Fig. 3c, the expression level of TMZ-resist-
ant markers increased in the recurrent samples compared 
to the initial, suggesting that the TMZ-resistant marker-
expressed cell population survived TMZ treatment and 
expanded in the recurrent GBM.

A machine learning (ML) approach for integrating key 
features to predict TMZ response of IDH1‑wt GBM
Figure  4a presents the overall relevance of the genomic, 
transcriptomic, and other features on TMZ response. 
Along with the expression of four TMZ-resistant markers, 
MGMT expression, MGMT promoter methylation status, 
hypermutation status, GBM subtype, somatic mutations, 
and CNAs identified from the main cohort, we added 
5-aminolevulinic acid (5-ALA) tendency [36] as another 
feature (Additional file  1: Table  S1). In order to integrate 
these features for patient evaluation, we constructed an 
XGBoost classifier to identify the TMZ response of a 
patient as TMZ-resistant or TMZ-sensitive. Among the 
30 features shown in Fig. 4a, 25 features were used to train 
the machine learning model in the main cohort, excluding 
NF2 mutation, hypermutation, 5-ALA positive and 5-ALA 

negative which were not available in the TCGA testing 
cohort (Additional file 1: Table S5). Compared with MGMT 
promoter status as the only feature, adding other features 
provided more information for recognition of TMZ non-
responders (Fig. 4b). Notably, the top five informative fea-
tures from the model were the expression level of ANXA3 
and LRRC3, proneural subtype, ERG4 and MGMT expres-
sion (Additional file 2: Fig. S7a). In addition, incorporating 
the four expression markers together with other features 
achieved a stronger discrimination power compared to the 
presence of just an individual marker (Additional file 2: Fig. 
S7b). Within the training cohort (main cohort), a prediction 
of 88.4% (61 out of 69) of the samples matched the in vitro 
TMZ-response (Fig. 4c). We then tested our model in an 
independent cohort with 262 IDH-wt, TMZ-treated pri-
mary GBM patients from TCGA (inclusive of the 96 RNA-
seq available patients from Fig.  3b). Importantly, patients 
predicted to be TMZ-resistant by the classifier had signifi-
cantly worse PFS (Fig. 4d, P = 4.58e−04 by log-rank test) 
and OS (Fig. 4e, P = 3.66e−04 by log-rank test) validating 
the power of our model to predict prognostic outcome in 
patients treated by TMZ. Moreover, we investigated the 
survival difference across four subtypes (classical, proneu-
ral, neural, and mesenchymal) in the TCGA cohort and no 

Fig. 3  Elucidation of expression markers associated with the resistance to temozolomide in patients with IDH-wt primary glioblastoma (GBM). 
a TMZ-resistant expression marker identification using RNA sequencing (n = 34). b Progression-free survival (upper panel) and overall survival 
(bottom panel) of IDH-wt, TMZ-treated primary GBM from the TCGA. High risk, z-score of gene expression > 2 in at least one of the TMZ-resistant 
marker genes (n = 13); others, the rest (n = 83). c Comparison of the expression level of the TMZ-Resistant expression markers in the initial and 
recurrent paired samples from the longitudinal sequencing cohort with 40 IDH-wt, TMZ-treated primary GBMs. Each gray line connects the gene 
expression level in one initial and recurrent pair. Wilcoxon rank sum tests were performed for p-values (* P < 0.05, ** P < 0.01). qnorm, quantile 
normalized
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significant segmentation was observed for PFS (P = 0.531 
by multivariate log-rank test) and OS (P = 0.412 by mul-
tivariate log-rank test) in Additional file 2: Fig. S8a, which 
is expected and compatible with the observations previ-
ously reported by the TCGA group. We further correlated 
the four GBM subtypes with the TMZ response predicted 
from our machine learning model. Notably, the mesenchy-
mal subtype is associated with TMZ resistance (P = 0.039 
by Fisher exact test, Additional file  2: Fig. S8b). Among 
the mesenchymal cases, the resistant group demonstrated 
worse PFS (P = 1.98e−02 by log-rank test, Fig. 4f) and OS 
(P = 1.26e−04 by log-rank test, Fig. 4g), compared to that 
of the sensitive group, highlighting the value of our model 
to unveil new responders/non-responders within the sub-
types. In addition, when compared to using only MGMT 

promoter methylation status in the TCGA dataset (n = 
203), our model integrating multiple features provided a 
better way to segregate patients with different outcomes of 
both PFS and OS (Additional file 2: Fig. S9). Within MGMT 
methylated group, our model identified a limited number 
of high-risk resistant cases with worse PFS and OS (Addi-
tional file 2: Fig. S9c). Furthermore, to facilitate the use of 
our model, we designed a freely accessible website named 
TMZep that provides the function for evaluating potential 
TMZ response for GBM patients (http://​www.​wang-​lab-​
hkust.​com:​3838/​TMZEP) [37]. Users can input patient’s 
data on part or all of the 25 features to the website, which 
will evaluate the potential TMZ treatment response of the 
corresponding GBM patient.

Fig. 4  Machine learning from the combined genomic and expression features predicts patient prognosis. a Bubble plot showing the trends of 
features in terms of TMZ-resistant and TMZ-sensitive. The bubble size indicates P-value, the color and location of the bubble indicate the log2 of 
TMZ-resistant ratio/TMZ-Sensitive ratio value. If the log2 TMZ-Resistant ratio/TMZ-Sensitive ratio value is positive, the bubble is colored in red, and if 
negative, it is colored in blue. Copy number gain and loss were not counted in this plot. del: deletion, amp: amplification, exp: expression, subtype: 
GBM subtype; CL, classical; PN, proneural; MES, mesenchymal; M, methylated; UM, unmethylated. P values on gene expression and MGMT fusion 
bubbles are by t-test, the rest are by Fisher’s exact test. b ROC curve in the training set (n = 69). All features include 25 features shown in a. P < 0.01, 
using features that are P < 0.01 in a (gene expression of ANXA3, PAPPA, EGR4; AUC: 0,81); P < 0.001, using features that are P < 0.001 in a (ANXA3 
expression; AUC: 0.77); MGMT, only using MGMT promoter status as prediction feature. c Sankey diagram showing confusion matrix of resistant 
and sensitive samples in the training dataset. Sen, TMZ-sensitive; Res, TMZ-resistant. d, e Survival curves of TCGA IDH-wt, TMZ-treated primary 
GBM samples which the TMZ response has been predicted by machine learning. P-values were calculated by logrank test. f, g Survival curves of 
mesenchymal TCGA samples separated by predicted TMZ response. P-values were computed by log-rank test

http://www.wang-lab-hkust.com:3838/TMZEP
http://www.wang-lab-hkust.com:3838/TMZEP
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Multi‑sector TMZ screening underlines intratumoral 
heterogeneity in drug responsiveness
Intratumoral heterogeneity (ITH) is a key factor that 
causes therapeutic resistance and recurrence in GBM 
[38, 39]. To reveal the impact of ITH on TMZ treat-
ment, we compiled 52 GBM tumor tissue specimens 
from 18 patients, where each patient had 2 to 4 multi-
sector samples taken from the same patient (Multi-sector 
cohort, Additional file  1: Table  S1). Of the Multi-sector 
cohort, 15 tissues and patients overlapped with the main 
cohort. The three additional patients were patients with 
recurrent GBM, IDH mutant GBM, or IDH-wt primary 
GBM without TMZ treatment. We performed in  vitro 

TMZ screening of the multi-sector GSCs (Fig.  5a) fol-
lowed by WES in 19 samples and RNA-seq in 26 samples. 
Interestingly, almost half of the patients (8/18) carried 
both TMZ-resistant and TMZ-sensitive tumor samples 
(Fig. 5b and Additional file 2: Fig. S10). We termed these 
patients as TMZ-ITH, which harbored heterogeneous 
GSCs within one tumor in terms of in vitro TMZ treat-
ment response. We confirmed several TMZ-associated 
factors identified earlier in this study by comparing the 
molecular signatures of multi-sectors. In particular, 
the TMZ-resistance markers were upregulated in the 
resistant sectors of M13 and M14 (Fig. 5c, d, Additional 
file  2: Fig. S11a-b). Meanwhile, a combination of PTEN 

Fig. 5  TMZ screening in multi-sector samples underscores intra-tumor heterogeneity of drug response. a Experimental design for screening 
multi-sector samples. Sen, TMZ-sensitive; Res, TMZ-resistant. b Molecular features of multi-sector samples. I, initial tumor; R, recurrent tumor; WT, 
wild-type; mut, mutant; M, methylated; UM, unmethylated; N/A, not available; C, classical; P, proneural; M, mesenchymal. c, d Phylogenetic trees 
of somatic mutation evolution in multi-sector samples from c patient M13 and d patient M14. The length of the branch is relative to the number 
of mutations. Dashed lines indicate a relatively larger number of mutations that cannot be scaled for visualization. Indicated alterations are GBM 
driver alterations and RNA expression of TMZ-resistant markers. amp, amplification; del, deletion; higher_exp, higher transcriptomic expression 
compared to other sample/samples. Blue, TMZ-sensitive; red, TMZ-resistant. e Comparison of Concurrent CNAs in PTEN, EGFR, and CDKN2A/B in the 
main cohort. P value by Fisher’s exact test. f Overall survival difference in patients with multi-sector samples identified as S, all sensitive (M1~M4); H, 
heterogeneous (M11~M18); R, all resistant (M5~M10). P-values calculated by logrank test. g Detection rate of TMZ heterogeneity by the number of 
multi-sector samples. h Relative distribution of TMZ response by the number of multi-sector samples
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loss, EGFR gain, and deeper deletion of CDKN2A/B was 
observed specifically in the sensitive sectors of these two 
patients (Fig. 5c, d, and Additional file 2: Fig. S11c). Moti-
vated by this observation, we checked the concurrent 
CNAs in PTEN, EGFR, and CDKN2A/B back in our main 
cohort and found that it was significantly more frequent 
in TMZ-sensitive samples (Fisher’s exact P = 0.0102, 
Fig. 5e), while each individual factor did not have statisti-
cal significance.

Back to the ITH analysis, eight TMZ-ITH patients had 
comparable survival time with patients harboring only 
TMZ-resistant sectors and significantly worse survival 
time than patients with only TMZ-sensitive sectors (OS, 
P = 0.027; PFS, P = 0.015; by log-rank test), indicating 
that although the TMZ treatment achieved the particu-
lar effect by eliminating a sensitive group of tumor cells, 
the resistant GSCs might quickly lead to tumor relapse 
(Fig.  5f and Additional file  2: Fig. S12). This observa-
tion underscores the importance of careful considera-
tion of ITH via multi-sector evaluation before treatment 
delivery.

Since the number of sectors analyzed from a tumor 
may influence the possibility of TMZ-ITH detection, 
we evaluated the optimal number of sectors to observe 
TMZ-ITH in a patient. We demonstrated that when 
two sectors were taken from a tumor, the TMZ-ITH 
detection rate was around 30% (17/56), followed by 43% 
(12/28) with three sectors, and 50% (3/6) with four sec-
tors (Fig.  5g). Interestingly, while the TMZ-ITH detec-
tion increases with multi-sector number, purely resistant 
groups decreased but not the purely sensitive patients, 
underscoring the existence of good responders of TMZ 
treatment (Fig. 5h).

Discussion
To date, TMZ is the major standard chemotherapeutic 
agent for primary GBM treatment. However, recent stud-
ies do not support the indiscreet use of TMZ because 
of its side effects [2, 40]. Moreover, treatment outcome 
significantly differs among patients due to personalized 
genetic background and various tumor microenviron-
ment [35]. Therefore, precision identification of TMZ 
responders is in urgent need to optimize TMZ-related 
treatment and benefit patients. In this study, we demon-
strated that in vitro screening of TMZ on patient-derived 
GSCs, which distinguishes TMZ-resistant and sensitive 
groups, is related to prognosis, reflecting TMZ efficacy 
in patients. However, this option has several challenges: 
culturing GSCs may not be always successful, is of high 
cost, and is not yet available widely. To develop a more 
easily accessible tool for TMZ-sensitivity prediction, we 
performed multi-omic analysis on the TMZ-resistant and 
sensitive GBM specimens. Transcriptomic comparison 

between these two groups revealed four TMZ-resistant 
markers, i.e., EGR4, PAPPA, LRRC3, and ANXA3. Along 
with these markers, we investigated the association of 
TMZ sensitivity and other molecular features such as 
somatic mutations and CNAs. Systematically integrating 
these features, we constructed a machine learning-based 
model which was able to classify IDH-wt primary GBM 
patients into TMZ-resistant and sensitive groups with 
high prognostic value. In addition, we demonstrated the 
dramatic impact of ITH by evaluating multi-sector sam-
ples from the same patients. Noticeably, patients with all 
sectors sensitive to TMZ had the most optimistic treat-
ment outcome. Meanwhile, the multi-sector study vali-
dated important features associated with TMZ response. 
Together, we proposed and summarized several new 
TMZ response-associated features in addition to the 
well-known factors in this study (Fig. 6).

The expression level of the four TMZ-resistant mark-
ers predicted poor survival not only in our cohort but 
also in an independent IDH-wt GBM cohort extracted 
from the TCGA dataset. In addition, higher expression of 
these genes was observed in the recurrent GBMs and the 
TMZ-resistant sectors of the TMZ-ITH patients, high-
lighting the role of these genes in contributing to TMZ 
resistance. Although further studies will be needed to 
investigate the underlying mechanisms of these genes, it 
was reported that the ANXA3 gene drives tumor growth 
through the c-Jun N-terminal kinase (JNK) pathway [41]. 
Compelling evidence indicates a role for JNKs in the 
maintenance of GSCs [46] and regulating TMZ resist-
ance through MGMT expression [42].

On the other hand, we observed co-occurrence of 
CDKN2A/B loss/deletion, PTEN loss/deletion, and EGFR 
gain/amplification more frequently in the TMZ-sensi-
tive samples from the main cohort and the multi-sector 
cohort, while each single feature was not statistically sig-
nificant. According to the fifth edition of the WHO clas-
sification of tumors of the central nervous system (CNS), 
EGFR amplification and +7/−10 copy number changes 
(PTEN in chromosome 10) are the parameters for Glio-
blastoma IDH-wt diagnosis, while CDKN2A/B homozy-
gous deletion is the parameter to diagnose IDH-mutant 
astrocytoma as WHO CNS grade 4 [47], suggesting that 
the CNAs in the three genes are related to more aggres-
sive CNS tumors. While the prognostic value of EGFR 
alterations within GBMs is still controversial, some stud-
ies have reported its association with better outcomes 
[48–50]. Hobbs et al. reported that high EGFR-amplified 
GBMs had a favorable response to TMZ compared to no 
or low-amplified GBMs [48]. They speculated that EGFR-
amplified GBMs may have higher genome fragility mak-
ing them more susceptible to DNA damage induced by 
TMZ [48]. Yet how the concurrent CDKN2A, PTEN, and 
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EGFR CNAs affect TMZ-response in GBM is unknown 
and the investigation therefore belongs to the realm of 
future work.

Considering that single features showed limited power 
to predict TMZ efficacy, we developed a machine learn-
ing model to integrate many features to predict TMZ 
responders. The model outperforms single feature 
models, which would assist the improvement of TMZ 
treatment on GBM patients. However, the model was 
validated only in the TCGA dataset, so the chance of 
over-fitting cannot be fully ruled out. Prediction results 
in other datasets may vary due to various reasons such 
as the clinical settings of the hospital and the treatment 
of the patients. Therefore, our model is yet preliminary 
to be directly applied to practice, and evaluation on a 
larger additional independent cohort would be neces-
sary in future studies. In addition, we identified a new 
patient group with TMZ resistance within the MGMT 

methylated group, but due to the small sample size of 
these patients, additional follow-up is necessary to con-
firm these results.

Although more accessible, our model’s prediction using 
multi-omic features is still less accurate than in  vitro 
screening, partially due to that the current markers may 
not be complete, and more markers such as non-coding 
genomes or epigenomic features remain to be discovered. 
In addition, the features may not be independent, so 
more advanced multi-omics integration methods could 
be applied to reveal interactions between different data 
layers and further improve the model’s robustness. More-
over, utilizing single-cell sequencing or  cell-type decon-
volution technologies (e.g., CIBERSORT, xCell) to assess 
the TME composition  as well as  resistant and sensitive 
tumor  samples could be promising future directions to 
further demonstrate how concordant the cell-type com-
positions can affect treatment outcomes.

Fig. 6  Summarizing scheme for the known and newly identified molecular features associated to TMZ response in GBM. References supporting the 
associations are shown next to the arrows [18, 35, 41–45]. Features with gray dotted lines are the proposed association from this study. Small arrows 
pointing upward inside the bubbles indicate activated signaling or highly expressed
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Conclusions
In summary, we demonstrated that in  vitro TMZ 
screening of patient-derived GSCs can reflect treat-
ment outcomes in IDH-wt GBM patients under the 
standard Stupp therapy (radiotherapy with concomi-
tant TMZ followed by adjuvant TMZ). Genomic and 
transcriptomic characterization revealed MGMT pro-
moter methylation status, hypermutation, and the 
expression of MGMT, EGR4, ANXA3, PARPA, and 
LRRC3, together with other features, as relevant molec-
ular predictors of TMZ response for IDH-wt GBMs. 
The machine learning model TMZep [37] for predict-
ing TMZ efficacy from pharmacogenomic data integra-
tion provided an easily assessable computational tool 
to facilitate a more selective treatment towards the 
disease.
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