12 research outputs found

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    establishment of cell-mof hybrid system

    No full text
    1

    construction of cell-mof hybrid system

    No full text
    1

    Body-mediated bioelectronics for zero-powered ion release and electricals stimulation

    No full text
    Development of bioelectronics that can be used permanently in daily life without additional power sources is an important research goal. To this end, myriad permanent systems based on energy harvesting have been reported; however, there are still limitations, such as restrictions regarding specific installations and connections to lines. Herein, we present a new type of bioelectronics based on body-mediated energy transfer for zero-powered ion release and electrical stimulation. Body-mediated bioelectronics (BMB) is a new system that transfers electrical energy generated by various human activities (e.g., walking, using laptop) through the human body without energy loss. To apply the BMB to human skin, a biocompatible and skin-adhesive soft ion-diffusive hydrogel (IDH) was utilized as the bioelectrode. Finally, a BMB patch composed of IDHs with an iontophoretic structure was applied to the human body, and zero-powered electrical stimulation as well as active ion emission were implemented in daily life.</p
    corecore