32,770 research outputs found

    Sheet forming simulations of automotive parts using different yield functions

    Get PDF
    In this work, the influence of the yield function on finite element (FE) forming simulation results for two auto-body panels, hood inner and door outer, was investigated. Simulations were conducted with different yield functions, Hill's1948. Yld91 and Yld2000-2d, which are available in the PAM-STAMP and LS-DYNA commercial codes. Although moderate, some differences in the results were observed.open111Nsciescopu

    A monolithic and flexible fluoropolymer film microreactor for organic synthesis applications

    Get PDF
    A photocurable and viscous fluoropolymer with chemical stability is a highly desirable material for fabrication of microchemical devices. Lack of a reliable fabrication method, however, limits actual applications for organic reactions. Herein, we report fabrication of a monolithic and flexible fluoropolymer film microreactor and its use as a new microfluidic platform. The fabrication involves facile soft lithography techniques that enable partial curing of thin laminates, which can be readily bonded by conformal contact without any external forces. We demonstrate fabrication of various functional channels (similar to 300 mu m thick) such as those embedded with either a herringbone micromixer pattern or a droplet generator. Organic reactions under strongly acidic and basic conditions can be carried out in this film microreactor even at elevated temperature with excellent reproducibility. In particular, the transparent film microreactor with good deformability could be wrapped around a light-emitting lamp for close contact with the light source for efficient photochemical reactions with visible light, which demonstrates easy integration with optical components for functional miniaturized systems.open1112Ysciescopu

    CGIntrinsics: Better Intrinsic Image Decomposition through Physically-Based Rendering

    Full text link
    Intrinsic image decomposition is a challenging, long-standing computer vision problem for which ground truth data is very difficult to acquire. We explore the use of synthetic data for training CNN-based intrinsic image decomposition models, then applying these learned models to real-world images. To that end, we present \ICG, a new, large-scale dataset of physically-based rendered images of scenes with full ground truth decompositions. The rendering process we use is carefully designed to yield high-quality, realistic images, which we find to be crucial for this problem domain. We also propose a new end-to-end training method that learns better decompositions by leveraging \ICG, and optionally IIW and SAW, two recent datasets of sparse annotations on real-world images. Surprisingly, we find that a decomposition network trained solely on our synthetic data outperforms the state-of-the-art on both IIW and SAW, and performance improves even further when IIW and SAW data is added during training. Our work demonstrates the suprising effectiveness of carefully-rendered synthetic data for the intrinsic images task.Comment: Paper for 'CGIntrinsics: Better Intrinsic Image Decomposition through Physically-Based Rendering' published in ECCV, 201

    A large-aperture strip-grid beam splitter for partially combined two millimeter-wave diagnostics on Korea Superconducting Tokamak Advanced Research

    Get PDF
    A large-aperture beam splitter has been developed for simultaneous operation of two millimeter-wave diagnostics employing different probe beams in the frequency and polarization, microwave imaging reflectometer (???85 GHz X-mode), and collective scattering system (300 GHz O-mode), on the Korea Superconducting Tokamak Advanced Research device. The beam splitter was designed based on a polarizer concept (i.e., grid of metal strips on a thin dielectric sheet), and this can be an optimal solution for these two diagnostics. Fabrication of the strips with uniform sub-millimeter width and spacing on a large dielectric sheet was achieved with an etching technique, and the laboratory test results on the reflection and transmission ratio are in good agreement with design values

    Personality Factors Predicting Smartphone Addiction Predisposition: Behavioral Inhibition and Activation Systems, Impulsivity, and Self-control

    Get PDF
    The purpose of this study was to identify personality factor-associated predictors of smartphone addiction predisposition (SAP). Participants were 2,573 men and 2,281 women (n = 4,854) aged 20-49 years (Mean +/- SD: 33.47 +/- 7.52); participants completed the following questionnaires: the Korean Smartphone Addiction Proneness Scale (K-SAPS) for adults, the Behavioral Inhibition System/Behavioral Activation System questionnaire (BIS/BAS), the Dickman Dysfunctional Impulsivity Instrument (DDII), and the Brief Self-Control Scale (BSCS). In addition, participants reported their demographic information and smartphone usage pattern (weekday or weekend average usage hours and main use). We analyzed the data in three steps: (1) identifying predictors with logistic regression, (2) deriving causal relationships between SAP and its predictors using a Bayesian belief network (BN), and (3) computing optimal cut-off points for the identified predictors using the Youden index. Identified predictors of SAP were as follows: gender (female), weekend average usage hours, and scores on BAS-Drive, BAS-Reward Responsiveness, DDII, and BSCS. Female gender and scores on BAS-Drive and BSCS directly increased SAP. BAS-Reward Responsiveness and DDII indirectly increased SAP. We found that SAP was defined with maximal sensitivity as follows: weekend average usage hours > 4.45, BAS-Drive > 10.0, BAS-Reward Responsiveness > 13.8, DDII > 4.5, and BSCS > 37.4. This study raises the possibility that personality factors contribute to SAP. And, we calculated cut-off points for key predictors. These findings may assist clinicians screening for SAP using cut-off points, and further the understanding of SA risk factors.111413Ysciescopu

    Crystallization and preliminary crystallographic studies of an antimicrobial protein from Pharbitis nil

    Get PDF
    An antimicrobial protein from seeds of Pharbitis nil (Pn-AMP) which shows an antifungal activity towards several agriculturally important plant pathogens has been crystallized in the presence of equimolar N-acetylglucosamine with sodium citrate as precipitant. The crystal belongs to the hexagonal space group P6(1)22 (or P6(5)22), with unit-cell parameters a = b = 29.33 (5), c = 133.44 (12) Angstrom. Native data were collected using a crystal at 100 K to a resolution of 1.78 Angstrom.open2

    ELASTOGRAPHY CAN EFFECTIVELY DECREASE THE NUMBER OF FINE-NEEDLE ASPIRATION BIOPSIES IN PATIENTS WITH CALCIFIED THYROID NODULES

    Get PDF
    When calcification, frequently found in both benign and malignant nodules, is present in thyroid nodules, non-invasive differentiation with ultrasound becomes challenging. The goal of this study was to evaluate the utility of elastography in differentiating calcified thyroid nodules. Consecutive patients (165 patients with 196 nodules) referred for fine-needle aspiration who had undergone both ultrasound elastography and B-mode examinations were analyzed retrospectively. Calcification was present in 45 benign and 20 malignant nodules. On 65 calcified nodules, elastography had 95% sensitivity, 51.1% specificity, 46.3% positive predictive value and 95.8% negative predictive value in detecting malignancy. Twenty-three of 45 benign calcified nodules were correctly diagnosed with elastography compared with 4 of 45 by B-mode ultrasound. Although it is difficult to differentiate benign and malignant calcified thyroid nodules solely with B-mode ultrasound, elastography has the potential to reduce the number of fine-needle aspiration biopsies performed on calcified nodules. (C) 2014 World Federation for Ultrasound in Medicine & Biology.1188Ysciescopu

    Porohyperelastic anatomical models for hydrocephalus and idiopathic intracranial hypertension

    Get PDF
    This is the accepted manuscript of a paper published in the Journal of Neurosurgery, Published online February 6, 2015; DOI: 10.3171/2014.12.JNS14516.OBJECT Brain deformation can be seen in hydrocephalus and idiopathic intracranial hypertension (IIH) via medical images. The phenomenology of local effects, brain shift, and raised intracranial pressure and herniation are textbook concepts. However, there are still uncertainties regarding the specific processes that occur when brain tissue is subject to the mechanical stress of different temporal and spatial profiles of the 2 neurological disorders. Moreover, recent studies suggest that IIH and hydrocephalus may be diseases with opposite pathogenesis. Nevertheless, the similarities and differences between the 2 subjects have not been thoroughly investigated. METHODS An anatomical porohyperelastic finite element model was used to assess the brain tissue responses associated with hydrocephalus and IIH. The same set of boundary conditions, with the exception of brain loading for development of the transmantle pressure gradient, was applied for the 2 models. The distribution of stress and strain during tissue distortion is described by the mechanical parameters. RESULTS The results of both the hydrocephalus and IIH models correlated with pathological characteristics. For the hydrocephalus model, periventricular edema was associated with the presence of positive volumetric strain and void ratio in the lateral ventricle horns. By contrast, the IIH model revealed edema across the cerebral mantle, including the centrum semiovale, with a positive void ratio and volumetric strain. CONCLUSIONS The model simulates all the clinical features in correlation with the MR images obtained in patients with hydrocephalus and IIH, thus providing support for the role of the transmantle pressure gradient and capillary CSF absorption in CSF-related brain deformation. The finite element methods can be used for a better understanding of the pathophysiological mechanisms of neurological disorders associated with parenchymal volumetric fluctuation.Dr. M. Czosnyka is a consultant for J&J (Codman), and has received payment for lectures from Integra Lifescience. This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRFK) funded by the Ministry of Science, ICT, & Future Planning (2013R1A1A1004827); and the International Research & Development Program of the NRFK funded by the Ministry of Education, Science, and Technology of Korea (Grant No. 2014K1A3A1A21001366)

    The anomalous U(1) global symmetry and flavors from an SU(5) x SU(5)' GUT in Z12IZ_{12-I} orbifold compactification

    Full text link
    In string compactifications, frequently there appears the anomalous U(1) gauge symmetry which belonged to E8×\timesE8 of the heterotic string. This anomalous U(1) gauge boson obtains mass at the compactification scale, just below 101810^{18\,}GeV, by absorbing one pseudoscalar (corresponding to the model-independent axion) from the second rank anti-symmetric tensor field BMNB_{MN}. Below the compactification scale, there results a global symmetry U(1)anom_{\rm anom} whose charge QanomQ_{\rm anom} is the original gauge U(1) charge. This is the most natural global symmetry, realizing the "invisible" axion. This global symmetry U(1)anom_{\rm anom} is suitable for a flavor symmetry. In the simplest compactification model with the flipped SU(5) grand unification, we calculate all the low energy parameters in terms of the vacuum expectation values of the standard model singlets.Comment: 18 pages, 4 figur
    corecore