20 research outputs found

    Federated Cross Learning for Medical Image Segmentation

    Full text link
    Federated learning (FL) can collaboratively train deep learning models using isolated patient data owned by different hospitals for various clinical applications, including medical image segmentation. However, a major problem of FL is its performance degradation when dealing with the data that are not independently and identically distributed (non-iid), which is often the case in medical images. In this paper, we first conduct a theoretical analysis on the FL algorithm to reveal the problem of model aggregation during training on non-iid data. With the insights gained through the analysis, we propose a simple and yet effective method, federated cross learning (FedCross), to tackle this challenging problem. Unlike the conventional FL methods that combine multiple individually trained local models on a server node, our FedCross sequentially trains the global model across different clients in a round-robin manner, and thus the entire training procedure does not involve any model aggregation steps. To further improve its performance to be comparable with the centralized learning method, we combine the FedCross with an ensemble learning mechanism to compose a federated cross ensemble learning (FedCrossEns) method. Finally, we conduct extensive experiments using a set of public datasets. The experimental results show that the proposed FedCross training strategy outperforms the mainstream FL methods on non-iid data. In addition to improving the segmentation performance, our FedCrossEns can further provide a quantitative estimation of the model uncertainty, demonstrating the effectiveness and clinical significance of our designs. Source code will be made publicly available after paper publication.Comment: 10 pages, 4 figure

    Flammability Characteristics and Mechanical Properties of Casein Based Polymeric Composites

    No full text
    Even though casein has an intrinsic potential ability to act as a flame retardant (FR) additive, the research regarding the FR performance of casein filled polymeric composites has not been thoroughly conducted. In the present work, two commercial casein products, such as lactic casein 720 (LAC) and sodium casein 180 (SC), were chosen to investigate their effects on the performances of the polypropylene (PP) composites. The melt compounding and compression moulding processes were employed to fabricate these casein-based composites. Ammonium polyphosphate (APP) was also selected to explore its combined effects in conjunction with casein on the composite’s flammability. The cone calorimeter results showed that the addition of casein significantly reduced (66%) the peak heat release rate (PHRR) of the composite compared to that of neat PP. In particular, the combination of LAC and APP led to the formation of more compact and rigid char compared to that for SC based sample; hence, a further reduction (80%) in PHRR and self-extinguishment under a vertical burn test were accomplished. Moreover, the tensile modulus of the composite improved (23%) by the combined effects of LAC and APP. The overall research outcome has established the potential of casein as a natural protein FR reducing a polymer’s flammability

    CO<sub>2</sub> Hydrate Nucleation Kinetics Enhanced by an Organo-Mineral Complex Formed at the Montmorillonite–Water Interface

    No full text
    In this study, we investigated experimentally and computationally the effect of organo-mineral complexes on the nucleation kinetics of CO<sub>2</sub> hydrate. These complexes formed via adsorption of zwitter-ionic glycine (Gly-zw) onto the surface of sodium montmorillonite (Na-MMT). The electrostatic attraction between the −NH<sub>3</sub><sup>+</sup> group of Gly-zw, and the negatively charged Na-MMT surface, provides the thermodynamic driving force for the organo-mineral complexation. We suggest that the complexation of Gly-zw on the Na-MMT surface accelerates CO<sub>2</sub> hydrate nucleation kinetics by increasing the mineral–water interfacial area (thus increasing the number of effective hydrate-nucleation sites), and also by suppressing the thermal fluctuation of solvated Na<sup>+</sup> (a well-known hydrate formation inhibitor) in the vicinity of the mineral surface by coordinating with the −COO<sup>–</sup> groups of Gly-zw. We further confirmed that the local density of hydrate-forming molecules (i.e., reactants of CO<sub>2</sub> and water) at the mineral surface (regardless of the presence of Gly-zw) becomes greater than that of bulk phase. This is expected to promote the hydrate nucleation kinetics at the surface. Our study sheds new light on CO<sub>2</sub> hydrate nucleation kinetics in heterogeneous marine environments, and could provide knowledge fundamental to successful CO<sub>2</sub> sequestration under seabed sediments

    Photoelectrochemical Performance of a CuBi<sub>2</sub>O<sub>4</sub> Photocathode with H<sub>2</sub>O<sub>2</sub> as a Scavenger

    No full text
    Photoelectrochemical (PEC) water splitting is an eco-friendly method for producing clean and sustainable hydrogen fuels. Compared with the fabrication of solar hydrogen using n-type metal oxide semiconductor photoanodes, that of solar hydrogen using p-type metal oxide semiconductor photocathodes has not been researched as thoroughly. Therefore, this study investigated the effect of drop casting time on the PEC performance of a prepared CuBi2O4 photocathode. XPS, HRTEM, UV-DRS, Raman spectroscopy, XRD, and SEM analyses were used to characterize the prepared CuBi2O4 photocathode. Owing to the high charge separation and transfer, the photocurrent density of the CuBi2O4 photocathode was ~0.6 mA cm−2 at 0.3 V vs. RHE. The nanoporous CuBi2O4 photocathode exhibited a high photocurrent density of up to 1.2 mA cm−2 at 0.3 V vs. RHE with H2O2 as a sacrificial agent. Mott–Schottky and impedance measurements were also performed on the CuBi2O4 photocathode to estimate its acceptor density and charge-transfer resistance

    Electrostatically assembled layer-by-layer composites containing graphene oxide for enhanced hydrogen gas barrier application

    No full text
    Hydrogen gas barrier properties of polymeric materials are a critical determinant of their practical use in hydrogen gas storage and transportation container applications. We fabricated multi-layered films containing poly(diallyldimethylammonium) chloride (PDDA) and sulfonated polyvinylidene fluoride (SPVDF)-graphene oxide (GO) composites through layer-by-layer (LBL) assembly to enhance the hydrogen gas barrier properties. Polyethylene terephthalate (PET) substrate was rendered hydrophilic by treatment with aqueous sodium hydroxide solution prior to LBL assembly construction. Positively-charged PDDA and negatively-charged SPVDF or SPVDF/GO composites were assembled by spin-coating and were tightly packed by electrostatic attraction. LBL assemblies were characterized by Fourier transform infrared (FT-IR) spectroscopy and Field emission scanning electron microscopy (FE-SEM) analyses. Electrostatic LBL assembled PDDA/SPVDF-GO films showed improved mechanical and gas barrier properties compared to their respective PDDA/SPVDF LBL assemblies without GO. The hydrogen gas transmission rate (GTR) of a 16 bi-layer LBL assembly with 2 wt.% GO was 11.7 cc/m2 d atm, which was much lower than that of PET substrate (329.1 cc/m2 d atm) and a one bi-layer LBL assembly without GO (277.9 cc/m2 d atm). The drastic decrease in GTR indicates that LBL assembled films are suitable for use in high hydrogen barrier applications
    corecore