48 research outputs found

    High-throughput three-dimensional lithographic microfabrication

    Get PDF
    A 3D lithographic microfabrication process has been developed that is high throughput, scalable, and capable of producing arbitrary patterns. It offers the possibility for industrial scale manufacturing of 3D microdevices such as photonic crystals, tissue engineering scaffolds, and microfluidics chips. This method is based on depth-resolved wide-field illumination by temporally focusing femtosecond light pulses. We characterized the axial resolution of this technique, and the result is consistent with the theoretical prediction. As proof-of-concept experiments, we demonstrated photobleaching of 3D resolved patterns in a fluorescent medium and fabricating 3D microstructures with SU-8 photoresist.Deshpande Center for Technological Innovation (Massachusetts Institute of Technology. School of Engineering)Singapore-MIT Alliance for Research and Technology (SMART

    Dual-Channel Two-Photon Microscopy Study of Transdermal Transport in Skin Treated with Low-Frequency Ultrasound and a Chemical Enhancer

    Get PDF
    Visualization of transdermal permeant pathways is necessary to substantiate model-based conclusions drawn using permeability data. The aim of this investigation was to visualize the transdermal delivery of sulforhodamine B (SRB), a fluorescent hydrophilic permeant, and of rhodamine B hexyl ester (RBHE), a fluorescent hydrophobic permeant, using dual-channel two-photon microscopy (TPM) to better understand the transport pathways and the mechanisms of enhancement in skin treated with low-frequency ultrasound (US) and/or a chemical enhancer (sodium lauryl sulfate – SLS) relative to untreated skin (the control). The results demonstrate that (1) both SRB and RBHE penetrate beyond the stratum corneum and into the viable epidermis only in discrete regions (localized transport regions – LTRs) of US treated and of US/SLS-treated skin, (2) a chemical enhancer is required in the coupling medium during US treatment to obtain two significant levels of increased penetration of SRB and RBHE in US-treated skin relative to untreated skin, and (3) transcellular pathways are present in the LTRs of US treated and of US/SLS-treated skin for SRB and RBHE, and in SLS-treated skin for SRB. In summary, the skin is greatly perturbed in the LTRs of US treated and US/SLS-treated skin with chemical enhancers playing a significant role in US-mediated transdermal drug delivery

    Wide-field two-photon microscopy with temporal focusing and HiLo background rejection

    Get PDF
    Scanningless depth-resolved microscopy is achieved through spatial-temporal focusing and has been demonstrated previously. The advantage of this method is that a large area may be imaged without scanning resulting in higher throughput of the imaging system. Because it is a widefield technique, the optical sectioning effect is considerably poorer than with conventional spatial focusing two-photon microscopy. Here we propose wide-field two-photon microscopy based on spatio-temporal focusing and employing background rejection based on the HiLo microscope principle. We demonstrate the effects of applying HiLo microscopy to widefield temporally focused two-photon microscopy

    Ultrafast optical pulse manipulation in three dimensional-resolved microscope imaging and microfabrication

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2009.Includes bibliographical references.The availability of lasers with femtosecond, ultrafast light pulses provides new opportunities and challenges in instrument design. This thesis addresses three aspects of utilizing ultrafast light pulses in two-photon excitation microscopy. First, optical fibers are routinely used in many optical instruments but their use in two-photon microscopy is very limited. As ultrafast light pulses propagate through conventional fiber optics, light pulses are dispersed and broadened, as a result of nonlinear interactions between light and material. Two-photon excitation efficiency is reduced with pulse broadening. The recent development of photonic crystal fibers allows unprecedented control of light properties through them. This thesis provides a thorough quantitative characterization of different conventional optical fibers and photonic crystal fibers enabling better utilization of these fibers for two-photon microscopic imaging. Second, two-photon microscopic imaging is relatively slow due to the sequential nature of raster scanning. Several groups have recently sought to overcome this limitation by developing a 3D-resolved wide-field two-photon microscope using the concept of temporal focusing that is based on manipulating the dispersion of ultrafast light pulses spatially. However, the existing temporal focusing systems have poor optical sectioning capability and, due to a shortage of illumination power, low actual frame rate. In this thesis, a comprehensive mathematical model is derived for temporal focusing two-photon microscope taking key instrument design parameters into account.(cont.) By optimizing instrument design and the use of high two-photon cross section quantum dots, we demonstrate single quantum dot imaging at micron level resolution at video rate. Lastly, we realize that the temporal focus concept may also be used for microfabrication. A prototype three-dimensional lithographic microfabrication system is developed and micro patterning capability based on photobleaching process is demonstrated.by Daekeun Kim.Ph.D

    Non-descanned multifocal multiphoton microscopy with a multianode photomultiplier tube

    Get PDF
    Multifocal multiphoton microscopy (MMM) improves imaging speed over a point scanning approach by parallelizing the excitation process. Early versions of MMM relied on imaging detectors to record emission signals from multiple foci simultaneously. For many turbid biological specimens, the scattering of emission photons results in blurred images and degrades the signal-to-noise ratio (SNR). We have recently demonstrated that a multianode photomultiplier tube (MAPMT) placed in a descanned configuration can effectively collect scattered emission photons from each focus into their corresponding anodes significantly improving image SNR for highly scattering specimens. Unfortunately, a descanned MMM has a longer detection path resulting in substantial emission photon loss. Optical design constraints in a descanned geometry further results in significant optical aberrations especially for large field-of-view (FOV), high NA objectives. Here, we introduce a non-descanned MMM based on MAPMT that substantially overcomes most of these drawbacks. We show that we improve signal efficiency up to fourfold with limited image SNR degradation due to scattered emission photons. The excitation foci can also be spaced wider to cover the full FOV of the objective with minimal aberrations. The performance of this system is demonstrated by imaging interneuron morphological structures deep in the brains of living mice.Grant RO1 EY017656National Institutes of Health (U.S.) (9P41EB015871)5 R01 NS0513204R44EB012415National Science Foundation (U.S.) (CBET-0939511)Singapore-MIT Alliance for Research and TechnologyMIT Skoltech InitiativeHamamatsu CorporationDavid H. Koch Institute for Integrative Cancer Research at MIT (Bridge Project Initiative

    Blockade of Airway Inflammation by Kaempferol via Disturbing Tyk-STAT Signaling in Airway Epithelial Cells and in Asthmatic Mice

    Get PDF
    Asthma is characterized by bronchial inflammation causing increased airway hyperresponsiveness and eosinophilia. The interaction between airway epithelium and inflammatory mediators plays a key role in the asthmatic pathogenesis. The in vitro study elucidated inhibitory effects of kaempferol, a flavonoid found in apples and many berries, on inflammation in human airway epithelial BEAS-2B cells. Nontoxic kaempferol at ≤20 μM suppressed the LPS-induced IL-8 production through the TLR4 activation, inhibiting eotaxin-1 induction. The in vivo study explored the demoting effects of kaempferol on asthmatic inflammation in BALB/c mice sensitized with ovalbumin (OVA). Mouse macrophage inflammatory protein-2 production and CXCR2 expression were upregulated in OVA-challenged mice, which was attenuated by oral administration of ≥10 mg/kg kaempferol. Kaempferol allayed the airway tissue levels of eotaxin-1 and eotaxin receptor CCR3 enhanced by OVA challenge. This study further explored the blockade of Tyk-STAT signaling by kaempferol in both LPS-stimulated BEAS-2B cells and OVA-challenged mice. LPS activated Tyk2 responsible for eotaxin-1 induction, while kaempferol dose-dependently inhibited LPS- or IL-8-inflamed Tyk2 activation. Similar inhibition of Tyk2 activation by kaempferol was observed in OVA-induced mice. Additionally, LPS stimulated the activation of STAT1/3 signaling concomitant with downregulated expression of Tyk-inhibiting SOCS3. In contrast, kaempferol encumbered STAT1/3 signaling with restoration of SOCS3 expression. Consistently, oral administration of kaempferol blocked STAT3 transactivation elevated by OVA challenge. These results demonstrate that kaempferol alleviated airway inflammation through modulating Tyk2-STAT1/3 signaling responsive to IL-8 in endotoxin-exposed airway epithelium and in asthmatic mice. Therefore, kaempferol may be a therapeutic agent targeting asthmatic diseases

    Optimization of Airport Surface Traffic: A Case-Study of Incheon International Airport

    Get PDF
    This study aims to develop a controllers decision support tool for departure and surface management of ICN. Airport surface traffic optimization for Incheon International Airport (ICN) in South Korea was studied based on the operational characteristics of ICN and airspace of Korea. For surface traffic optimization, a multiple runway scheduling problem and a taxi scheduling problem were formulated into two Mixed Integer Linear Programming (MILP) optimization models. The Miles-In-Trail (MIT) separation constraint at the departure fix shared by the departure flights from multiple runways and the runway crossing constraints due to the taxi route configuration specific to ICN were incorporated into the runway scheduling and taxiway scheduling problems, respectively. Since the MILP-based optimization model for the multiple runway scheduling problem may be computationally intensive, computation times and delay costs of different solving methods were compared for a practical implementation. This research was a collaboration between Korea Aerospace Research Institute (KARI) and National Aeronautics and Space Administration (NASA)

    Operational Characteristics Identification and Simulation Model Verification for Incheon International Airport

    Get PDF
    Incheon International Airport (ICN) is one of the hub airports in East Asia. Airport operations at ICN have been growing more than 5% per year in the past five years. According to the current airport expansion plan, a new passenger terminal will be added and the current cargo ramp will be expanded in 2018. This expansion project will bring 77 new stands without adding a new runway to the airport. Due to such continuous growth in airport operations and future expansion of the ramps, it will be highly likely that airport surface traffic will experience more congestion, and therefore, suffer from efficiency degradation. There is a growing awareness in aviation research community of need for strategic and tactical surface scheduling capabilities for efficient airport surface operations. Specific to ICN airport operations, a need for A-CDM (Airport - Collaborative Decision Making) or S-CDM(Surface - Collaborative Decision Making), and controller decision support tools for efficient air traffic management has arisen since several years ago. In the United States, there has been independent research efforts made by academia, industry, and government research organizations to enhance efficiency and predictability of surface operations at busy airports. Among these research activities, the Spot and Runway Departure Advisor (SARDA) developed and tested by National Aeronautics and Space Administration (NASA) is a decision support tool to provide tactical advisories to the controllers for efficient surface operations. The effectiveness of SARDA concept, was successfully verified through the human-in-the-loop (HITL) simulations for both spot release and runway operations advisories for ATC Tower controllers of Dallas/Fort Worth International Airport (DFW) in 2010 and 2012, and gate pushback advisories for the ramp controller of Charlotte/Douglas International Airport (CLT) in 2014. The SARDA concept for tactical surface scheduling is further enhanced and is being integrated into NASA's Airspace Technology Demonstration - 2 (ATD-2) project for technology demonstration of Integrated Arrival/Departure/Surface (ADS) operations at CLT. This study is a part of the international research collaboration between KAIA (Korea Agency for Infrastructure Technology Advancement)/KARI (Korea Aerospace Research Institute) and NASA, which is being conducted to validate the effectiveness of SARDA concept as a controller decision support tool for departure and surface management of ICN. This paper presents the preliminary results of the collaboration effort. It includes investigation of the operational environment of ICN, data analysis for identification of the operational characteristics of the airport, construction and verification of airport simulation model using Surface Operations Simulator and Scheduler (SOSS), NASA's fast-time simulation tool

    Removal Characteristics of Gas-Phase D-Limonene in Biotrickling Filter and Stoichiometric Analysis of Biological Reaction Using Carbon Mass Balance

    No full text
    Volatile organic compounds (VOCs) pose significant risks to human health and environmental quality, prompting stringent regulations on their emissions from various industrial processes. Among VOCs, d-limonene stands out due to its low threshold and contribution to malodorous emissions. While biofiltration presents a promising approach for VOC removal, including d-limonene, a comprehensive understanding of its performance and kinetics is lacking. This study aims to comprehensively assess the performance of a lab-scale biotrickling filter in treating gas-phase d-limonene. The experimental results indicate that the biotrickling filter efficiently removed d-limonene, achieving a critical loading rate of 19.4 g m−3 h−1 and a maximum elimination capacity of 31.8 g m−3 h−1 (correspondingly, up to 85% removal) at the condition of 94.2 s of EBRT. Microbial activity played a significant role in biotrickling filter performance, with a strong linear correlation being observed between CO2 production and substrate consumption. The Michaelis–Menten model was employed to represent enzyme-catalyzed reactions, suggesting no inhibition during biotrickling filter operation
    corecore