3,943 research outputs found
Demonstration of dispersive rarefaction shocks in hollow elliptical cylinder chains
We report an experimental and numerical demonstration of dispersive
rarefaction shocks (DRS) in a 3D-printed soft chain of hollow elliptical
cylinders. We find that, in contrast to conventional nonlinear waves, these DRS
have their lower amplitude components travel faster, while the higher amplitude
ones propagate slower. This results in the backward-tilted shape of the front
of the wave (the rarefaction segment) and the breakage of wave tails into a
modulated waveform (the dispersive shock segment). Examining the DRS under
various impact conditions, we find the counter-intuitive feature that the
higher striker velocity causes the slower propagation of the DRS. These unique
features can be useful for mitigating impact controllably and efficiently
without relying on material damping or plasticity effects
Engineering multiple levels of specificity in an RNA viral vector
Synthetic molecular circuits could provide powerful therapeutic capabilities, but delivering them to specific cell types and controlling them remains challenging. An ideal "smart" viral delivery system would enable controlled release of viral vectors from "sender" cells, conditional entry into target cells based on cell-surface proteins, conditional replication specifically in target cells based on their intracellular protein content, and an evolutionarily robust system that allows viral elimination with drugs. Here, combining diverse technologies and components, including pseudotyping, engineered bridge proteins, degrons, and proteases, we demonstrate each of these control modes in a model system based on the rabies virus. This work shows how viral and protein engineering can enable delivery systems with multiple levels of control to maximize therapeutic specificity
Influence of Social Motivations on Spectator Consumption Behavior of a Formula One Grand Prix Event
The purpose of this study was to examine the relationship between spectator motivation and sport consumption behavior in the context of F-1 events. Respondents were spectators from three Formula One (F-1) races held in Shanghai, China. Through a structural equation modeling analysis, Achievement Seeking and Salubrious Effects were found to be related to repurchase intentions. Three motivating factors (i.e., Achievement Seeking, Entertainment, and Catharsis) were also found to be associated with Word-of-Mouth intentions concerning F-1 events
Programmable protein circuits in living cells
Synthetic protein-level circuits could enable engineering of powerful new cellular behaviors. Rational protein circuit design would be facilitated by a composable protein-protein regulation system in which individual protein components can regulate one another to create a variety of different circuit architectures. In this study, we show that engineered viral proteases can function as composable protein components, which can together implement a broad variety of circuit-level functions in mammalian cells. In this system, termed CHOMP (circuits of hacked orthogonal modular proteases), input proteases dock with and cleave target proteases to inhibit their function. These components can be connected to generate regulatory cascades, binary logic gates, and dynamic analog signal-processing functions. To demonstrate the utility of this system, we rationally designed a circuit that induces cell death in response to upstream activators of the Ras oncogene. Because CHOMP circuits can perform complex functions yet be encoded as single transcripts and delivered without genomic integration, they offer a scalable platform to facilitate protein circuit engineering for biotechnological applications
Prognostic utility of ADAMTS13 activity for the atypical hemolytic uremic syndrome (aHUS) and comparison of complement serology between aHUS and thrombotic thrombocytopenic purpura
Background
Atypical hemolytic uremic syndrome (aHUS) involves dysregulation of the complement system, but whether this also occurs in thrombotic thrombocytopenic purpura (TTP) remains unclear. Although these conditions are difficult to differentiate clinically, TTP can be distinguished by low (<10%) ADAMTS13 activity. The aim was to identify the differences in complement activation products between TTP and aHUS and investigate ADAMTS13 activity as a prognostic factor in aHUS.
Methods
We analyzed patients with thrombotic microangiopathy diagnosed as TTP (N=48) or aHUS (N=50), selected from a Korean registry (N=551). Complement activation products in the plasma samples collected from the patients prior to treatment and in 40 healthy controls were measured by ELISA.
Results
The levels of generalized (C3a), alternate (factor Bb), and terminal (C5a and C5b-9) markers were significantly higher (all P<0.01) in the patients than in the healthy controls. Only the factor Bb levels significantly differed (P=0.008) between the two disease groups. In aHUS patients, high normal ADAMTS13 activity (≥77%) was associated with improved treatment response (OR, 6.769; 95% CI, 1.605–28.542; P=0.005), remission (OR, 6.000; 95% CI, 1.693–21.262; P=0.004), exacerbation (OR, 0.242; 95% CI, 0.064–0.916; P=0.031), and disease-associated mortality rates (OR, 0.155; 95% CI, 0.029–0.813; P=0.017).
Conclusion
These data suggest that complement biomarkers, except factor Bb, are similarly activated in TTP and aHUS patients, and ADAMTS13 activity can predict the treatment response and outcome in aHUS patients
Recommended from our members
Mechanisms of airfoil noise near stall conditions
The focus of this paper is on investigating the noise produced by an airfoil at high angles of attack over a range of Reynolds number
Re≈2×10⁵–4×10⁵. The objective is not modeling this source of noise but rather understanding the mechanisms of generation for surface pressure fluctuations, due to a separated boundary layer, that are then scattered by the trailing edge. To this aim, we use simultaneous noise and surface pressure measurement in addition to velocimetric measurements by means of hot wire anemometry and time-resolved particle image velocimetry. Three possible mechanisms for the so-called “separation-stall noise” have been identified in addition to a clear link between far-field noise, surface pressure, and velocity fields in the noise generation
Exciting and Harvesting Vibrational States in Harmonically Driven Granular Chains
This article explores the excitation of different vibrational states in a spatially extended dynamical system through theory and experiment. As a prototypical example, we consider a one-dimensional packing of spherical particles (a so-called granular chain) that is subject to harmonic boundary excitation. The combination of the multi-modal nature of the system and the strong coupling between the particles due to the nonlinear Hertzian contact force leads to broad regions in frequency where different vibrational states are possible. In certain parametric regions, we demonstrate that the Nonlinear Schr¨odinger (NLS) equation predicts the corresponding modes fairly well. We propose that nonlinear multi-modal systems can be useful in vibration energy harvesting and discuss a prototypical framework for its realization. The electromechanical model we derive predicts accurately the conversion from mechanical to electrical energy observed in the experiments
Engineering multiple levels of specificity in an RNA viral vector
Synthetic molecular circuits could provide powerful therapeutic capabilities, but delivering them to specific cell types and controlling them remains challenging. An ideal "smart" viral delivery system would enable controlled release of viral vectors from "sender" cells, conditional entry into target cells based on cell-surface proteins, conditional replication specifically in target cells based on their intracellular protein content, and an evolutionarily robust system that allows viral elimination with drugs. Here, combining diverse technologies and components, including pseudotyping, engineered bridge proteins, degrons, and proteases, we demonstrate each of these control modes in a model system based on the rabies virus. This work shows how viral and protein engineering can enable delivery systems with multiple levels of control to maximize therapeutic specificity
- …