155,701 research outputs found

    About the chemical composition of delta Scuti - the prototype of the class of pulsating variables

    Full text link
    We present chemical abundances in the photosphere of δ\delta Scuti -- the prototype of the class of pulsating variables -- determined from the analysis of a spectrum obtained at Terskol observatory 2 meter telescope with resolution R=52,000R=52,000, signal to noise ratio 250. VLT and IUE spectra were used also . Abundance pattern of \dsct consists of 49 chemical elements. The abundances of Be, P, Ge, Nb, Mo, Ru, Er, Tb, Dy, Tm, Yb, Lu, Hf, Ta, Os, Pt, Th were not investigated previously. The lines of third spectra of Pr and Nd also are investigated for the first time. The abundances of heavy elements show the overabundances with respect to the Sun up to 1 dex. The abundance pattern of \dsct is similar to that of Am-Fm stars.Comment: 8 pages, 2 figures, subm. to Proc. of IAU Symp. 22

    Impact on multilayered composite plates

    Get PDF
    Stress wave propagation in a multilayer composite plate due to impact was examined by means of the anisotropic elasticity theory. The plate was modelled as a number of identical anisotropic layers and the approximate plate theory of Mindlin was then applied to each layer to obtain a set of difference-differential equations of motion. Dispersion relations for harmonic waves and correction factors were found. The governing equations were reduced to difference equations via integral transforms. With given impact boundary conditions these equations were solved for an arbitrary number of layers in the plate and the transient propagation of waves was calculated by means of a Fast Fourier Transform algorithm. The multilayered plate problem was extended to examine the effect of damping layers present between two elastic layers. A reduction of the interlaminar normal stress was significant when the thickness of damping layer was increased but the effect was mostly due to the softness of the damping layer. Finally, the problem of a composite plate with a crack on the interlaminar boundary was formulated

    Electron Removal Self Energy and its application to Ca2CuO2Cl2

    Full text link
    We propose using the self energy defined for the electron removal Green's function. Starting from the electron removal Green's function, we obtained expressions for the removal self energy Sigma^ER (k,omega) that are applicable for non-quasiparticle photoemission spectral functions from a single band system. Our method does not assume momentum independence and produces the self energy in the full k-omega space. The method is applied to the angle resolved photoemission from Ca_2CuO_2Cl_2 and the result is found to be compatible with the self energy value from the peak width of sharp features. The self energy is found to be only weakly k-dependent. In addition, the Im Sigma shows a maximum at around 1 eV where the high energy kink is located.Comment: 5 pages, 3 figure
    corecore