150 research outputs found

    Skyrmions and Hall viscosity

    Full text link
    We discuss the contribution of magnetic Skyrmions to the Hall viscosity and propose a simple way to identify it in experiments. The topological Skyrmion charge density has a distinct signature in the electric Hall conductivity that is identified in existing experimental data. In an electrically neutral system, the Skyrmion charge density is directly related to the thermal Hall conductivity. These results are direct consequences of the field theory Ward identities, which relate various physical quantities based on symmetries and have been previously applied to quantum Hall systems.Comment: 10 pages, based on the invited talk at the 62nd Annual Conference on Magnetism and Magnetic Materials (MMM conference), November 6-10, Pittsburgh, P

    Entanglement Entropy with Background Gauge Fields

    Get PDF
    We study the entanglement entropy, the R\'enyi entropy, and the mutual (R\'enyi) information of Dirac fermions on a 2 dimensional torus in the presence of constant gauge fields. We derive their general formulas using the equivalence between twisted boundary conditions and the background gauge fields. Novel and interesting physical consequences have been presented in arXiv:1705.01859. Here we provide detailed computations of the entropies and mutual information in a low temperature limit, a large radius limit, and a high temperature limit. The high temperature limit reveals rather different physical properties compared to those of the low temperature one: there exist two non-trivial limits that depend on a modulus parameter and are not smoothly connected.Comment: 37 pages, v2: some formulas in section 4.3 are correcte

    Skyrmions and Hall Transport

    Get PDF
    We derive a generalized set of Ward identities that captures the effects of topological charge on Hall transport. The Ward identities follow from the 2+1 dimensional momentum algebra, which includes a central extension proportional to the topological charge density. In the presence of topological objects like Skyrmions, we observe that the central term leads to a direct relation between the thermal Hall conductivity and the topological charge density. We extend this relation to incorporate the effects of a magnetic field and an electric current. The topological charge density produces a distinct signature in the electric Hall conductivity, which is identified in existing experimental data, and yields further novel predictions. For insulating materials with translation invariance, the Hall viscosity can be directly determined from the Skyrmion density and the thermal Hall conductivity to be measured as a function of momentum.Comment: 6+1 pages including Supplemental Material. Version to appear in Physical Review Letter

    Generalizing Thiele Equation

    Full text link
    We generalize the Thiele equation with a transverse velocity to the skyrmion motion described by the collective coordinate of magnetization vector. It is applied to investigate significant disparity in the existing data sets of skyrmion and antiskyrmion Hall angles. Our analysis further reveals interesting differences of these Hall angles near the angular momentum compensation point. We identify a possible physical quantity that is responsible for the disparity.Comment: 6 pages, 3 figures, published versio

    Holographic Renormalization of Einstein-Maxwell-Dilaton Theories

    Get PDF
    We generalize the boundary value problem with a mixed boundary condition that involves the gauge and scalar fields in the context of Einstein-Maxwell-Dilaton theories. In particular, the expectation value of the dual scalar operator can be a function of the expectation value of the current operator. The properties are prevalent in a fixed charge ensemble because the conserved charge is shared by both fields through the dilaton coupling, which is also responsible for non-Fermi liquid properties. We study the on-shell action and the stress energy tensor to note practical importances of the boundary value problem. In the presence of the scalar fields, physical quantities are not fully fixed due to the finite boundary terms that manifest in the massless scalar or the scalar with mass saturating the Breitenlohner-Freedman bound
    corecore