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1 Introduction & salient features

Einstein-Maxwell-Dilaton (EMD) theories are natural from the dimensional reductions

of consistent string theory. They have provided various distinctive physical properties

depending on the parameters present in the theory and have been studied extensively. See

some earlier literature [1]–[5] and recent ones for condensed matter applications [6]–[12] in

the holographic context [13]–[16].

EMD theories have a U(1) gauge field Aµ and a dilaton φ in addition to a metric gµν ,

where µ, ν run for all the coordinates. Compared to the minimal coupling between the

gauge field and a scalar, these theories have a scalar coupling with the form W (φ)F 2 where

F = dA is the field strength. There is a conserved current Jµ that can be evaluated by the

variation of the gauge field Aµ.

Jµ ∝ √−gW (φ)F rµ , (1.1)

when the field Aµ(r) is only a function of a radial coordinate r. g is the determinant of the

metric. Upon a close examination, one finds the charge J0 has contributions not only from

the gauge field, but also from the scalar field through the function W (φ). Here we investi-

gate the holographic renormalization of EMD theories with emphasis on the role of this cou-

pling. We are going to focus on the theories with AdS asymptotics and analytic examples.

The variation of the term
√−gW (φ)F 2 in an action with respect to the gauge field Aν

provides a boundary contribution of the form

√−γW (φ) nrF
rνδAν , (1.2)

where γ is the determinant of a boundary metric, and nr is a unit normal vector for a

fixed radius. The notations are systematically explained below. It is consistent to impose

the Dirichlet boundary condition δAν = 0 to have a well defined variational problem.

This is the case of fixing the constant part of the gauge field, the chemical potential.

Holographic renormalization of EMD theories with this Dirichlet boundary condition has

been considered in [17].

Now let us consider an alternative quantization that sets δF rν = 0. We are directed

to add the boundary term
√−γW (φ) nrF

rνAν . (1.3)

One can easily see a new feature for the variation of this term. We produce not only the

variation δF rν , but also the scalar variation δφ because of W (φ). As we see below, it is

natural to couple the variation of the gauge and scalar fields to have a consistent variational

problem. Thus we seek a possibility to impose a generalized mixed boundary condition on

both fields. The coupling term
√−gW (φ)F 2 brings forth this possibility naturally. The

variation of (1.3) combined with (1.2) gives

√−γW (φ)nrAν

(

δF rν + F rν ∂ logW (φ)

∂φ
δφ

)

. (1.4)

– 2 –
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The first term is expected, and one can impose the variational condition δF rν = 0. As one

already anticipated, there is an additional term. It can be simplified, using (1.1), to

(JνAν)
∂ logW (φ)

∂φ
δφ . (1.5)

Note the combination JνAν is usually finite at the boundary.

This term prompts us to consider the variation of the gauge field together with that

of the scalar. The canonically normalized scalar kinetic term, upon variation, gives the

boundary contribution −√−γnr∂rφ(δφ). We consider two possible boundary terms for

the scalar field with appropriate coefficients following the previously developed variational

approaches [18]
√−γ

[

Λφ

2L
φ2 + cφφn

r∂rφ

]

. (1.6)

Here we leave the coefficients Λφ, cφ unfixed. Then putting the variations together, we get

√−γ

{[

(cφ − 1)nr∂rφ+
Λφ

L
φ+ 4

∂W

∂φ
nrF

rνAν

]

(δφ) (1.7)

+ cφφn
rδ(∂rφ) + 4WnrAν(δF

rν)

}

.

Note the term ∂W
∂φ nrF

rνAν(δφ) mixes the scalar variation with the gauge field dependent

term and plays a crucial role.

Investigating this variational problem in more general context is the main task of the

paper. The basics of the variational problem are described in two sections, section 2.1 and

section 2.2, with some review. The program is carried out systematically for two different

forms of the coupling W (φ), the exponential coupling W (φ) ∼ eφ in section 3.1 (with

two examples in section 4.1 and section 4.2) and the polynomial coupling W (φ) ∼ φk in

section 3.2 (with an example in section 4.3). We contrast the boundary value problem of

the EMD theories with that of the theories with a minimal coupling in section 2.4.

In parallel, we also carefully examine the on-shell action and the stress energy tensor

of the EMD theories. The basics along with some review are presented in the beginning

of section 2 and in section 2.3. They are applied to the three examples in section 4. It

is pleasant to see that the results of the general variational problem actually fit together

nicely with the analysis of the on-shell action and the stress energy tensor.

Along the way, our investigations direct us to appreciate two physical implications.

One is the finite boundary or counter terms considered in section 5.1. There we attempt to

compare the holographic finite boundary terms to the similar notion of finite radiative cor-

rections in Quantum field theory à la Jackiw. We also try to survey earlier literature with

finite counter terms in holography. Another implication is non-Fermi liquid properties and

splitting of the conserved charge due to the dilaton coupling. It is presented in section 5.2.

Before moving on, let us list some lessens we have learned with this investigation.

• In the context of EMD theories, the boundary variational problem can be generalized

to include the mixed boundary condition between the gauge and scalar fields.

– 3 –
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• For the fixed charge ensemble, the expectation value of the dual scalar operator 〈Oα〉
can be a function of the expectation value of the dual current operator 〈OQF

〉

〈Oα〉 = c QF 〈OQF
〉+ · · · , (1.8)

with some additional contributions in general. There are some conditions on α and

QF at the boundary. c is a constant.

• The general boundary value problem can impose conditions on the parameters, Λφ

and cφ, of the boundary terms. This can be different from the condition that renders

the on-shell action and the stress energy tensor finite. This happens when the bound-

ary terms provide finite contributions. Then the on-shell action and the stress energy

tensor depend on the parameters. The condition obtained from the variation problem

can be used to render the mass evaluated by the stress energy tensor to ADM mass.

Furthermore, the differential form of the first law of thermodynamics is satisfied.

• Our variational problem reveals that the finite boundary terms, whose coefficients

are not fixed by the requirements of the theory, are general features of the theories

with the scalar fields. This is especially clear for the massless scalar and for the scalar

with mass saturating the BF bound when their solutions are realized with the faster

falloff at the boundary.

• The dilaton coupling provides a way to share the conserved charge between the gauge

and scalar fields through the coupling. The physical properties due to this coupling

can be clarified with examples. The first two examples in section 4 have W ∼ 1/4

at the boundary, and thus effectively the entire charge comes from the gauge field.

The other example gives a non-trivial boundary profile for W . The conserved charge

is shared by the scalar, and the system exhibits a non-trivial and interesting physics

such as a non-Fermi liquid state.

These lessens are summarized in conclusion section 6 with two illustrations, one for the

variational problem and another for the on-shell action.

2 Generalities

We consider the Einstein-Maxwell-Dilaton theory in d+1 dimensional asymptotically AdS

space

S =
1

2κ2

∫

dd+1x
√−g

[

R−W (φ)F 2 − 1

2
(∂φ)2 − V (φ)

]

,

ds2 =

[

r2

L2
+ · · ·

]

(

−h1(r)dt
2 + d~x2

)

+

[

r2

L2
+ · · ·

]−1
dr2

h2(r)
,

(2.1)

where κ2 = 8πG, and h1(r) = 1 + · · · , h2(r) = 1 + · · · , where · · · are possible sub-leading

terms in large r expansion.

– 4 –
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The Einstein, Maxwell and scalar equations are

Rµν −
1

2
Rgµν =

1

2
∂µφ∂νφ+ 2WFµρF

ρ
ν − gµν

(

1

4
(∂φ)2 +

W

2
F 2 +

1

2
V (φ)

)

,

∂µ
(√−gWFµν

)

= 0 ,

1√−g
∂µ
(√−ggµν∂νφ

)

− ∂W

∂φ
F 2 − ∂V

∂φ
= 0 .

(2.2)

A particular solution depends on the form of the gauge coupling W (φ). We consider the

gauge and scalar fields depending only on the radial coordinate, F = dA,A = At(r)dt and

φ(r). Then the second equation gives a finite and constant value that can be identified as

a charge

q = − 4

2κ2
√−gWF rt . (2.3)

In two sections section 2.1 and section 2.2, we investigate the general boundary vari-

ational problem of the EMD theories. With the results of the two sections, we carefully

revisit the on-shell action and the stress energy tensor in section 2.3. They are contrasted

to the boundary value problem of the theories with a minimal coupling in section 2.4.

2.1 Scalar or vector variation

Holographic renormalization is a central part of extracting physical quantities of the dual

field theory from the gravity side [19]–[23]. See also a previous work in the context of EMD

theories [17] that considered the scalar and vector variations separately. We examine the

possible boundary terms, the on-shell action, and stress energy tensor.

The variational principle for scalar and Maxwell fields have been studied in [18, 24–26].

Here we review them following [18] to have a fresh look on the problems. The variation of

the canonically conjugate scalar kinetic term contains the boundary contribution

δSφ = − 1

2κ2

∫

ddx
√−γ nr∂rφ(δφ) . (2.4)

To satisfy the equation of motion, it is required to impose a boundary condition for the

scalar. For this purpose, we introduce a general boundary term

Sb(φ) =
1

2κ2

∫

ddx
√−γ

(

cφφn
r∂rφ+

Λφ

2L
φ2

)

. (2.5)

Note that we introduce the coefficients Λφ and cφ unfixed. Both terms were considered

in [18] mostly with some particular values of Λφ and cφ, while the general mixed boundary

conditions were also advertised.

The boundary behavior of the scalar

φ → α(x)

rλ−
+

β(x)

rλ+
, λ± =

d

2
± 1

2

√

d2 + 4m2
φL

2 , (2.6)

depends on its mass

m2
φL

2 = L2 ∂2

∂φ2

(

V (φ) +W (φ)F 2
)

∣

∣

∣

∣

φ=0

. (2.7)
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To have a well defined variational problem, one needs to impose a boundary condition.

There are three different cases with three different mass ranges, m2
φL

2 ≥ 1−d2/4, −d2/4 <

m2
φL

2 < 1−d2/4, and m2
φL

2 = −d2/4. The last one saturates the Breitenlohner-Freedman

(BF) bound [27, 28]. For the mass range slightly above the BF bound, −d2/4 < m2
φL

2 <

1− d2/4, the two falloffs are both normalizable [29], and it is possible to impose boundary

condition on α, β or on a linear combination of them [24]. See also previous discussions on

the generalized boundary conditions on the scalar variations [30]–[38].

Here we illustrate the variational problem with the scalar mass saturating the BF

bound, m2
φL

2 = −d2/4. The scalar behaves as

φ → α(x) log r

rd/2
+

β(x)

rd/2
. (2.8)

Consider the boundary contribution (2.4) and the variation of boundary term (2.5) for

special case of cφ = 0

δSφ + δSb(φ) =

∫

ddx
(δα log r + δβ)

2κ2Ld+1

[(

Λφ +
d

2

)

(α log r + β)− α

]

. (2.9)

Here setting Λφ = −d/2 and α = 0 provides a well defined variational problem.

On the other hand, for cφ = 1, the variation yields

δSφ + δSb(φ) =

∫

ddx
(α log r + β)

κ̃2

[

δα

(

1 +

(

Λφ − d

2

)

log r

)

+ δβ

(

Λφ − d

2

)]

. (2.10)

Here we define κ̃2 = 2κ2Ld+1. There are two different ways to have a well defined variational

problem. First it works for Λφ = d/2 followed by setting α = 0. Then the expectation

value (density for both space and time) of the dual scalar operator is given by

〈Oα=0〉 =
β

κ̃2
. (2.11)

Second, we consider to impose the condition with a standard log r dependence

Λφ =
d

2
− 1

log r
. (2.12)

The resulting variation is

δSφ + δSb(φ) = −
∫

ddx
αδβ

κ̃2
. (2.13)

Then the variational principle is well defined for fixed β. And the corresponding scalar

expectation value is

〈Oβ〉 = − α

κ̃2
. (2.14)

There are more than one possible quantization for different values of the parameter Λφ.

Below we seek more general possibilities by utilizing the parameters Λφ and cφ.

The variational problem for the gauge field is also closely examined in [18]. For the

Maxwell action with W = 1/4, the condition (2.3) enables us to read off the sub-leading

contribution for At at the boundary

At = µ+
2qκ2

2− d

Ld−1

rd−2
+ · · · , for W (φ) =

1

4
. (2.15)

– 6 –
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Where · · · are sub-leading contributions in the large r expansion. The variation of the

action with respect to the gauge field A produces the boundary contribution

− 1

2κ2

∫

ddx
√−γ nrF

rν(δAν) . (2.16)

Once δAν = 0 is imposed at the boundary, the variational problem is well defined. This fixes

the chemical potential µ of the time component At. There is an alternative quantization,

fixing the charge, that can be done by adding the boundary term

1

2κ2

∫

ddx
√−γ nrF

rνAν . (2.17)

Then the variation (2.17) combined with (2.16) shows that the variational problem is

well defined with the condition δF rν = 0. This fixes the coefficient of the sub-leading

contribution of At, which is the electric charge.

2.2 Scalar and vector variations: coupled

Let us examine the Maxwell term of the EMD action. The variation of the action with

respect to the gauge field A produces the boundary contribution

δSA = − 2

κ2

∫

ddx
√−γW (φ) nrF

rν(δAν) . (2.18)

Again imposing δAν = 0 at the boundary renders the variational problem well defined, and

it amounts to fix the chemical potential µ of At.

Do the EMD theories have an analogous quantization of fixing charge? To answer the

question, let us add the following boundary term

Sb(A) =
2

κ2

∫

ddx
√−γW (φ) nrF

rνAν , (2.19)

which is a direct generalization of the (2.17). The boundary term − 4
2κ2

√−γ WnrF
rtAt =

µq is actually finite. By combining the (2.18) and the variation of (2.19), we get

2

κ2

∫

ddx
√−γW (φ)F rνnrAν

(

δF rt

F rt
+

∂ logW (φ)

∂φ
δφ

)

. (2.20)

In general, the alternative quantization for δAν in EMD theories is not just fixing the sub-

leading boundary contribution of the gauge field Frt = ∂rAt. This allows more freedom for

the boundary condition for the gauge field. The combination

δF rt

F rt
+

∂ logW (φ)

∂φ
δφ (2.21)

needs to be fixed. The boundary condition depends on the details of the solution W (φ), φ

and F rt at the boundary. Note that the variation of gauge field is tied to the variation of

the scalar. As we see below, it is natural to fix a mixed boundary condition between the

gauge and scalar fields.

– 7 –
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Thus we consider general boundary contributions and boundary terms.

δSM = δSφ + δSA + δSb(φ) + δSb(A)

=
1

2κ2

∫

ddx
√−γ

[

− nr∂rφ(δφ)− 4WnrF
rν(δAν) +

Λφ

2L
δ(φ2)

+ cφδ(φn
r∂rφ) + 4cF δ(WnrF

rνAν)

]

(2.22)

=
1

2κ2

∫

ddx
√−γ

{[

(cφ − 1)nr∂rφ+
Λφ

L
φ+ 4cF

∂W

∂φ
nrF

rνAν

]

(δφ) + cφφn
rδ(∂rφ)

+ 4(cF − 1)WnrF
rν(δAν) + 4cFWnrAν(δF

rν)

}

.

If one considers cF = 0, the gauge and scalar variations are separated, and one already

considered the case above. This case is usually corresponding to fix the chemical potential,

and is referred as grand canonical ensemble.

For EMD theories with cF = 1, we get

δSs−can
M =

∫

ddx

√−γ

2κ2

{[

(cφ − 1)nr∂rφ+
Λφ

L
φ+ 4

∂W

∂φ
nrF

rνAν

]

(δφ)

+ cφφn
rδ(∂rφ) + 4WnrAν(δF

rν)

}

.

(2.23)

Here we note the mixing term 4∂W
∂φ nrF

rνAν(δφ). If W is independent of the scalar field

φ, it correspond to fix the charge of the gauge field and to a canonical ensemble. EMD

theories are different. We call it semi canonical ensemble.

We consider both the grand and semi canonical cases by using (2.22). The boundary

condition depends on the form of the coupling W (φ), and thus we examine two different

classes separately, W (φ) ∼ eφ and W (φ) ∼ φk, in section 3. For the rest of the section, we

lay out the general formulas for the on-shell action and stress energy tensors.

2.3 On-shell action & stress energy tensor

Let us introduce some notations following Brown and York [39]. Our formalism utilize two

kinds of hyper-surfaces, the time-like boundary surface at a large fixed r and the space-like

surface at a fixed time x0. The projections onto these hyper-surfaces require two normal

vectors to the surfaces. The ADM form of the metric for the d dimensional time-like

hyper-surface homomorphic to boundary ∂M has the form

ds2 = N2
r dr

2 + γij(dx
i +N idr)(dxj +N jdr) , (2.24)

where xi (i = 0, 1, · · · , d− 1) are the coordinates spanning a given time-like surface, while

r is the holographic coordinate. The corresponding unit normal vector is

nµ = Nr(0, 0, · · · , 0, 1) , (2.25)

where the components are ordered as (xi, r). We also define the time-like unit normal of a

space-like surface by

uµ = −NΣ(1, 0, · · · , 0, 0) , (2.26)

– 8 –
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where uµ defines the local flow of time in ∂M , and NΣ comes from another ADM decom-

position

ds2γ = γijdx
idxj = −N2

Σdx
0dx0 + σab(dx

a +Na
Σdx

0)(dxb +N b
Σdx

0) . (2.27)

Where a = 1, · · · , d− 1, spanning the spatial coordinates at the boundary ∂M .

The projections onto the d-dimensional time-like boundary hyper-surface and the (d−
1)-dimensional space-like intersection surface are given by

γµν = gµν − nµnν , σµν = gµν − nµnν + uµuν . (2.28)

Since they are projection operators, they do not have inverses and the (d+1)-dimensional

indices are raised and lowered by the metric gµν . However, if we restrict them to the

appropriate components, for example, γij with i, j on the time-like hyper-surface, they

have well-defined inverses and can be defined as the metric on the surface.

We evaluate the corresponding on-shell action. The first equation of (2.2) gives

R =
d+ 1

d− 1
V (φ) +

1

2
(∂φ)2 +

d− 3

d− 1
WF 2 . (2.29)

Then we have the on-shell action

Son−shell =
1

2κ2

∫

ddx

∫ rǫ

r0

dr
√−g

2

d− 1

[

V −WF 2
]

+ Sb , (2.30)

where rǫ is the UV boundary cut-off, and r0 can be a horizon in the presence of black hole

or 0 for a zero temperature background. Sb has possible boundary terms that make the

variational principle work and counter terms that yield the action finite. It contains the

well known Gibbons-Hawking [40] and Balasubramanian-Kraus counter terms [20]

Sb = − 1

κ2

∫

r=rǫ

ddx
√−γ

[

Θ+
d− 1

L
+

L

2(d− 2)
Rd

]

+ Sb(A) + Sb(φ) . (2.31)

Here γ and Rd are the metric at fixed r, and the scalar curvature of the metric γ. The

Gibbon-Hawking term is the trace of Θij , the extrinsic curvature, defined as

Θij = γi
µγj

νΘµν , Θµν = −1

2
(∇µnν +∇νnµ) . (2.32)

The last two terms in (2.31), Sb(A) and Sb(φ), are possible boundary terms for the

gauge and scalar fields introduced in the previous section. Collecting all the boundary

terms that are used for the variation (2.22), we get

Son−shell =
1

2κ2

∫

ddx

{
∫ rǫ

r0

dr
√−g

2

d− 1

[

V −WF 2
]

(2.33)

−2
√−γ

[

Θ+
d− 1

L
− LR(d)

2(d− 2)
− cφ

2
φnr∂rφ− Λφ

4L
φ2 − 2cFWnrF

rtAt

]}

.

This on-shell action is one central object we consider.
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Another key objects are the Brown-York conserved quantities such as mass (energy),

pressure, and angular momentum, which can be worked out from the stress energy tensor.

Once one has the full on-shell action (2.33), one can compute the corresponding stress

energy tensor [20, 39]. It is given by

κ2 Tij = Θij −Θγij −
2√−γ

δLb

δγij
, (2.34)

where Lb is the Lagrangian for the boundary action Sb without the Gibbons-Hawking term.

Explicitly for (2.33)

κ2Tij = Θij −Θγij −
d− 1

L
γij −

L

d− 2
G

(3)
ij + γij

[

cφ
2
φnr∂rφ+

Λφ

4L
φ2

]

(2.35)

+ cF

[

2γijWnrF
rtAt − 4WnrFriAj

]

.

Note that the first four terms on the right hand side are from the Gibbons-Hawking term

and the counter terms for AdS [20, 39]. The terms with cφ and Λφ has been also considered

in the context of the variational problem in [18] for particular fixed coefficients.

Given the stress energy tensor, we can proceed to compute a conserved charge associ-

ated with a killing vector ξi that generates an isometry of the boundary geometry as in [39]

Qξ =

∫

Σ
dd−1x

√
σ(uiTijξ

j) . (2.36)

In particular, the mass density M and trace of pressure P can be computed solely from

the stress energy tensor Tij and metric as

M =

∫

dd−1x M =

∫

dd−1x
√
σNΣuiujT

ij ,

P =
1

d− 1
σabsab =

1

d− 1
σabσaiσbjT

ij .

(2.37)

The mass density M is identified as the time component of the stress energy tensor 〈T00〉
of the field theory.

There is an equivalent way to extract the energy and pressure. To do so, we convert

the stress energy tensor Tij to the field theory stress energy tensor 〈Tij〉. Let us identify

the metric g̃ of the field theory, which can be read off at r → ∞ from the metric in (2.1)

ds2 −−→r → ∞
r2

L2

(

−dt2 + d~x2
)

+
L2

r2
dr2 ≡ r2

L2
g̃ijdx

idxj +
L2

r2
dr2 , (2.38)

where i, j = 0, 1, · · · , d− 1 are the coordinates of the field theory and a, b = 1, 2, · · · , d− 1

are the spatial ones, while µ, ν includes the radial coordinate as well. The field theory stress

energy tensor 〈T ij〉 can be computed using the relation [41] (also used recently in [42, 43])

√

−g̃g̃ik〈T kj〉 = lim
r→∞

√−γγikT
kj . (2.39)

We note that the field theory metric is flat. With this we get

〈Tij〉 =
rd−2

Ld−2
Tij . (2.40)
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The indices are raised or lowered by the metric g̃. 〈T00〉 and 〈Taa〉 are the energy density

and pressure of the field theory side. They coincide with the expressions (2.37), which were

evaluated using the stress energy tensor Tij .

〈T00〉 = E =
√
σNΣuiujT

ij , 〈Taa〉 = P = σaiσbjT
ij . (2.41)

We have checked this equivalence for the examples we considered below and also other

examples in [44], where the equivalence is established as a function of a finite radius r = R.

2.4 Comparison to minimal coupling

From above, we have learned the boundary value problem is modified due to the dilaton

coupling. Especially the variation of the scalar field has an additional term proportional

to the charge.

Will there be a qualitative difference for the minimal coupling in d + 1 dimensions?

Let us consider the action

S =
1

2κ2

∫

dd+1x
√−g

[

R− 1

4
F 2 − 1

2
(Dφ)2 − V (φ)

]

, (2.42)

where Dµ = ∂µ − iAµ. We focus on the solution with φ(r) and F = dA,A = At(r)dt. The

boundary terms for the matter are

δSminimal = − 1

2κ2

∫

ddx
√−γ

[

nrF
rν(δAν) + nr(∂rφ− iArφ)(δφ)

]

. (2.43)

Is there a coupling between the gauge field and scalar at the boundary? The term

− inrAr φ(δφ) : pure gauge (2.44)

does not have physical effects because Ar can be gauged away. Thus we confirm that there

is no direct coupling between the gauge and scalar fields at the boundary.

3 Dilaton coupling W (φ)

In this section we perform a detailed analysis on the variational problem with some general

forms of the Dilaton couplingW (φ). We consider in detail the exponential couplingW (φ) ∼
eφ and the polynomial coupling W (φ) ∼ φk.

3.1 Exponential coupling: W (φ) ∼ eφ

We consider the exponential coupling W (φ) = 1
4e

cWφ. Then, ∂W (φ)
∂φ = cWW (φ). The new

term in (2.22), after using (2.3), becomes

cF
4

2κ2
√−γ

∂W

∂φ
nrF

rνAν(δφ) = cF cWµq(δφ) . (3.1)

It is independent of the details of the gauge field except the dependence of cW and µq.

Here we consider several different cases for the scalar mass, including the mass slightly

above the BF bound with two different normalizable modes, the mass saturating the BF

bound, and the massless scalar in turn.
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3.1.1 Scalar mass above the BF bound

For the scalar mass slightly above the BF bound, we use (2.6). For general Λφ and cφ, the

variation (2.22) has the form

δSM =

∫

ddx

{

(Λφ + [1− 2cφ]λ−)αδα(x)

κ̃2r−d+2λ−

+
(Λφ − cφλ− − [cφ − 1]λ+)βδα+ (Λφ − cφλ+ − [cφ − 1]λ−)αδβ(x)

κ̃2

+(cF − 1)µq
δµ(x)

µ
+ cFµq

δQF (x)

QF

}

,

(3.2)

where we abbreviate κ̃2 = 2κ2Ld+1, and use the form for the field strength

Frt =
QF (x)

rλQ
. (3.3)

Note that q and QF can be, in general, different due to the non-trivial coupling W . This

is more clear in the following section 3.2. The term (3.1) that couples the charge and the

scalar variation decays at least r−λ− and does not contribute. Thus the case at hand is

effectively the same as the variational problem for the constant coupling W . Hereafter we

suppress the coordinate dependence of the variations for simplicity.

Here we impose

Λφ + [1− 2cφ]λ− = 0 (3.4)

to have a well defined variational problem. This also renders the on-shell action finite.

Then

δSM ∝ (λ− − λ+)
[cφ − 1]βδα+ cφαδβ

κ̃2
+ (cF − 1)µq

δµ

µ
+ cFµq

δQF

QF
= 0 . (3.5)

Now it is clear to see the possible quantizations. We emphasize that cφ and cF are pa-

rameters that interpolate different field theories living on the boundary. In general we

can impose two independent mixed boundary conditions among δα, δβ, δµ, δQF . The need

for the general mixed boundary condition become more obvious in the massless case sec-

tion 3.1.3 and the next section 3.2.

Let us consider some particular examples for simplicity. When cφ = 0 and cF = 0,

it is required to fix α and µ at the boundary. The dual field theory operators have the

expectation values

〈Oα〉 =
(λ+ − λ−)

κ̃2
β , 〈Oµ〉 = −q . (3.6)

For a different choice, cφ = 1 and cF = 1, it is required to fix β and QF at the boundary.

Then

〈Oβ〉 =
(λ− − λ+)

κ̃2
α , 〈OQF

〉 = µq

QF
. (3.7)

For cF = 0 with fixed µ, one can have the following quantization condition for the scalar

[cφ − 1]βδα+ cφαδβ = 0 . (3.8)
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As we see below with a particular EMD background, a requirement from the thermody-

namic first law fixes the parameter cφ to be 1/3.

Before moving on, let us consider α = 0 in (3.2).

δSM ∝ (Λφ − cφλ− − [cφ − 1]λ+)βδα

κ̃2
+ (cF − 1)µq

δµ

µ
+ cFµq

δQF

QF
= 0 . (3.9)

If we choose µ = const. for cF = 0 or QF = const. for cF = 1, the scalar expectation value is

〈Oα=0〉 =
Λφ + [1− cφ]λ+ − cφλ−

κ̃2
β . (3.10)

Thus the expectation value depends on both the boundary terms Λφ, cφ and is not fixed.

This happens also for the scalar with the mass saturated at the BF bound as we see below.

3.1.2 Scalar mass saturating the BF bound

For general cφ and cF , the variation (2.22) has the following form for the scalar mass

saturating the BF bound (2.8)

δSM =

∫

ddx

{{[Λφ − (2cφ − 1)d/2] log r + (2cφ − 1)}(α log r + β)− β(cφ − 1)

κ̃2
δα

+
[Λφ − (2cφ − 1)d/2](α log r + β) + (cφ − 1)α

κ̃2
δβ

+(cF − 1)µq
δµ

µ
+ cFµq

δQF

QF

}

.

(3.11)

Again the term (3.1) decays quickly compared to the other terms. In general we can impose

two independent conditions among δα, δβ, δµ, δQF . Yet, before that, we need to take care

of the divergent parts. We find the following choice works best.

Λφ = (2cφ − 1)

(

d

2
− 1

log r

)

. (3.12)

Then

− (cφ − 1)βδα+ cφαδβ

κ̃2
+ (cF − 1)µq

δµ

µ
+ cFµq

δQF

QF
= 0 . (3.13)

For this to satisfy, we can impose two mixed conditions in general.

There are various ways to find specific cases for the well defined variational problem.

It works, for example, if one imposes the mixed boundary condition

(cφ − 1)βδα+ cφαδβ = 0 , (3.14)

for the scalar contribution. This include the special case for cφ = 0. For this case with

cF = 0, it is required to fix α and µ at the boundary. The corresponding field theory dual

operators have the following expectation values

〈Oα〉 =
β

κ̃2
, 〈Oµ〉 = −q . (3.15)
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When α = 0, we require to set

Λφ = (2cφ − 1)d/2 (3.16)

in (3.2), then the variation becomes

cφβ

κ̃2
δα+ (cF − 1)µq

δµ

µ
+ cFµq

δQF

QF
= 0 . (3.17)

Thus we impose α = const. and µ = const. for cF = 0 to find

〈Oα〉 =
cφβ

κ̃2
, 〈Oµ〉 = −q . (3.18)

In this case, the terms
√−γφ2 and

√−γφnr∂rφ are finite at the boundary. One of the

parameters cφ and Λφ can not be fixed from the variational problem and the holographic

renormalization. Different parameters are associated with different field theories at the

boundary. This indicates that fixing the boundary terms are intrinsically ambiguous when

the scalar mass saturates the BF bound. This is also reflected in an example below.

3.1.3 Massless scalar

For a massless scalar, we have λ− = 0 and λ+ = d. (2.22) gives for general cφ

δSM =

∫

ddx

{[

Λφα

κ̃2r−d
+

(Λφ − (cφ − 1)d)β

κ̃2
+ cFµqcW

]

δα

+

[

(Λφ − dcφ)α

κ̃2r−d
+

(Λφ − (2cφ − 1)d)β

κ̃2
+ cFµqcW

]

δβ

rd

+(cF − 1)µq
δµ

µ
+ cFµq

δQF

QF

}

.

(3.19)

The new term (3.1) actually contributes and provides interesting options.

Let us impose Λφ = 0. Then the expression simplifies to

[

(1− cφ)dβ

κ̃2
+ cFµqcW

]

δα− dcφα

κ̃2
δβ + (cF − 1)µq

δµ

µ
+ cFµq

δQF

QF
= 0 . (3.20)

For the grand canonical case, cF = 0, it is natural to treat the variational problem between

the gauge and scalar fields separately. The case cF 6= 0 gives us new possibilities. From

the condition (3.20), it is reasonable to fix two mixed conditions among δα, δβ, δµ, δQF .

For example, if we choose cφ = 1, it is natural to impose a mixed condition among δα, δµ

and δQF as

µq

[

cF cW δα+ (cF − 1)
δµ

µ
+ cF

δQF

QF

]

= 0 , & δβ = 0 . (3.21)

Let us mention some particular cases that can be done by fixing the parameters. If

one chooses cφ = 0 and cF = 1, the variational problem is well defined for α = const. and

QF = const., and the corresponding expectation values are

〈Oα〉 =
dβ

κ̃2
+ 〈OQF

〉QF cW , 〈OQF
〉 = µq

δQF

QF
. (3.22)
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Thus the expectation value of the dual scalar operator is a function of the expectation value

of the dual current operator. Another case, cφ = 1 and cF = 1, provides a rather different

situation in contrast to the Maxwell case, W = 1/4. This happens due to the presence of the

term cWµq. One simple choice is to set α = 0 for the well defined variational problem. Then

〈Oα=0〉 = 〈OQF
〉QF cW , 〈OQF

〉 = µq

QF
. (3.23)

Now we check this is a particular case we consider momentarily for α = 0.

Let us consider α = 0.
[

(Λφ − (cφ − 1)d)β

κ̃2
+ cFµqcW

]

δα+ (cF − 1)µq
δµ

µ
+ cFµq

δQF

QF
= 0 . (3.24)

Thus the variational problem is well defined for QF = const. if cF = 1. The corresponding

expectation values are

〈Oα=0〉 =
(Λφ − (cφ − 1)d)β

κ̃2
+ 〈OQF

〉QF cW , 〈OQ〉 =
µq

QF
. (3.25)

Note that the expectation value of the operator dual to the scalar depends on the unde-

termined parameters Λφ and cφ. This is consistent with and yet more general than the

result (3.23), where we have been forced to set α = 0 after choosing Λφ = 0 and cφ = 1.

This happens for the massless scalar with the boundary falloff φ = β
rd
. Once again the

boundary terms
√−γφ2 and

√−γφnr∂rφ are finite at the boundary. The coefficients cφ,Λφ

of the boundary terms are not fixed by the variational problem.

3.2 Polynomial coupling: W (φ) ∼ φk

The case with the polynomial coupling W (φ) ∼ φk is more subtle. The boundary term
∂W (φ)
∂φ has the form

2

κ2

∫

ddx
√−γ

k

φs
W nrF

rνAν(δφ) . (3.26)

Here we treat this term semi-classically, meaning that δφ has the full variational property

as δφ = δα
rλ−

+ δβ

rλ+
, while the rest of the term are evaluated according to a given particular

solution. For example, φs =
φ0

rλ−
or φs =

φ0

rλ+
. One might try to understand the variational

problem with full non-linear properties of coupled scalar and gauge fields at the boundary,

which is beyond the scope of this paper.

We consider the polynomial coupling W (φ) = 1
4W0φ

k and the gauge field

At = µ+
1

1− λQ

QF

rλQ−1
(3.27)

at the boundary. This gives the same form for Frt as in (3.3). From the conserved quan-

tity (2.3), the scalar field behaves as

φs = cW r−
d−λQ−1

k , (cW )k = 2κ2Ld−1 q

QF
. (3.28)

Note that the radial dependence of the scalar should be either r−λ+ or r−λ− . The coefficient

(cW )k determines the way to split the charge q between the gauge field and the coupling

W . W0 cancels out once we use the relation (2.3). Here we consider three different cases

for the scalar mass as in section 3.1.

– 15 –



J
H
E
P
1
1
(
2
0
1
6
)
0
4
4

3.2.1 Scalar mass above the BF bound

Let us first consider φs = cW r−λ− . The scalar solution is realized by its slower falloff. For

general Λφ and cφ, the variation (2.22) has the following form, after using (2.6) and (3.3),

δSM =

∫

ddx

{

(Λφ + [1− 2cφ]λ−)αδα

κ̃2r−d+2λ−

+
{(Λφ−cφλ−−[cφ−1]λ+)β+

kcF
cW

µqκ̃2}δα+(Λφ−cφλ+−[cφ − 1]λ−)αδβ

κ̃2

+(cF − 1)µq
δµ

µ
+ cFµq

δQF

QF

}

. (3.29)

Note that the term (3.26) provides a finite contribution. Here we impose

Λφ + [1− 2cφ]λ− = 0 , (3.30)

to have a well defined variational problem. This also yield the on-shell action to be finite.

After that, one can impose two conditions among δα, δβ, δµ, δQF for given cφ and cF .

Instead, we consider some special cases. If one choose cF = 0, then the term (3.26)

vanishes, and it is natural to fix µ at the boundary. The scalar and vector variations

separate. We can use the mixed condition on the scalar variation for general cφ.

(λ− − λ+)[cφ − 1]βδα+ (λ− − λ+)cφαδβ = 0 . (3.31)

If we choose a special case cφ = 0, it is required to fix α at the boundary. Then

〈Oα〉 =
(λ+ − λ−)

κ̃2
β , 〈Oµ〉 = −q . (3.32)

In contrast, the case cF 6= 1 is different. Consider cF = 1 for simplicity. Then (3.29)

with the condition (3.30) gives
[

(λ− − λ+)[cφ − 1]
β

κ̃2
+

k

cW
µq

]

δα+ (λ− − λ+)cφ
α

κ̃2
δβ + µq

δQF

QF
= 0 . (3.33)

Let us consider this in detail with some special cases. For cφ = 0, it is natural to fix α and

QF at the boundary. Then

〈Oα〉 =
(λ+ − λ−)

κ̃2
β − k

cW
QF 〈OQF

〉 , 〈OQF
〉 = µq

QF
. (3.34)

The expectation value 〈Oα〉 for cφ = 0 depends not only β, but also QF 〈OQF
〉.

For cφ = 1, fixing β is no longer an option due to the presence of the term proportional

to µq. Actually there is a more general mixed condition involving δα and δQF . The

variation is
(λ− − λ+)αδβ

κ̃2
+ µq

(

k

cW
δα+

δQF

QF

)

= 0 . (3.35)

We need to impose two conditions. It is possible to choose β = const. and a mixed condition

k

cW
δα+ δ logQF = 0 . (3.36)
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Thus QF variation is tied with that of α. Of course, we should not fix α because it is too

restrictive. This signifies a new possibility to have a mixed boundary condition between

the scalar and gauge variations.

Now we come to the other scalar solution, φs = cW r−λ+ . For general Λφ and cφ, (2.22)

gives

δSM =

∫

ddx

{{(Λφ + [1− 2cφ]λ−)α+ kcFµqκ̃
2/cW }δα

κ̃2r−d+2λ−

+
(Λφ − cφλ− − [cφ − 1]λ+)βδα+ {(Λφ − cφλ+ − [cφ − 1]λ−)α+ kcFµqκ̃

2/cW }δβ
κ̃2

+(cF − 1)µq
δµ

µ
+ cFµq

δQF

QF

}

. (3.37)

To make things a little more clear, let us fix cF = 1 and QF = const. first. Then the

expectation value for the operator dual to QF is 〈OQF
〉 = µq

QF
. We consider the case

〈OQF
〉 = const. and

α = −kκ̃2

cW

QF 〈OQF
〉

Λφ + [1− 2cφ]λ−
, (3.38)

which is constant. The on-shell action is finite. We further require cφ = 0 to have a well

defined variational problem. The resulting expectation value is given by

〈Oα〉 =
(Λφ + λ+)

κ̃2
β . (3.39)

If cφ 6= 0, the variational problem is too restrictive for cF = 1. Of course, we can choose

more general mixed boundary condition including cF 6= 1.

3.2.2 Scalar mass saturating the BF bound

Here we again consider two separate cases depending on the scalar solution, either φs =

cW r−d/2 or φs = cW r−d/2 log r. Let us focus on φs = cW r−d/2. For general cφ and cF , the

variation (2.22) gives, after using (2.8)

δSM=

∫

ddx

{

([Λφ+(1−2cφ)d/2] log r+2cφ−1)(α log r+β)−(cφ−1)β+cF κ̃
2µqk log r/cW

κ̃2
δα

+
(Λφ + [1− 2cφ]d/2)(α log r + β) + (cφ − 1)α+ cF κ̃

2µqk/cW
κ̃2

δβ (3.40)

+(cF − 1)µq
δµ

µ
+ cFµq

δQF

QF

}

.

If one chooses cF = 0, the variational problem reduces to the case we considered before in

section 3.1.2.

Let us focus on the case with cF 6= 0, specifically cF = 1. We impose the condition

Λφ = (2cφ − 1)d/2 . (3.41)

Then (3.40) gives

cφβ + {(2cφ − 1)α+ κ̃2µqk/cW } log r
κ̃2

δα+
(cφ − 1)α+ κ̃2µqk/cW

κ̃2
δβ + µq

δQF

QF
= 0 .

(3.42)

– 17 –



J
H
E
P
1
1
(
2
0
1
6
)
0
4
4

In general, we need to impose two boundary conditions among δα, δβ and δQF .

Once we consider special cases, we see that only cφ = 0 or cφ = 1 can work for cF = 1

due to the non-trivial coefficients of δα and δβ. If one chooses cφ = 0, the variation is

proportional to δα log r + δβ. Similar case was considered in [18].

{κ̃2µqk/cW − α}(δα log r + δβ)

κ̃2
+ µq

δQF

QF
= 0 . (3.43)

We can fix α = κ̃2k
cW

µq = const. and impose the condition δQF = 0. If we consider cφ = 1.

This brings the variation to the form

β + {α+ κ̃2µqk/cW } log r
κ̃2

δα+ µq
k

cW
δβ + µq

δQF

QF
= 0 . (3.44)

Now we can fix α = − κ̃2k
cW

µq = const. and impose the variational condition

δα = 0 , δ logQF = − k

cW
δβ . (3.45)

Thus the variation of QF is directly related to that of β, which is not fixed at the boundary.

The expectation value of the scalar is also given by β.

〈Oα〉 =
β

κ̃2
. (3.46)

Before moving on, it is interesting to examine the case α = 0. The variation (3.40)

gives

δSM =

∫

ddx

{{(Λφ + [1− 2cφ]d/2)β + cF κ̃
2µqk/cW } log r − cφβ

κ̃2
δα

+
(Λφ + [1− 2cφ]d/2)β + cF κ̃

2µqk/cW
κ̃2

δβ + (cF − 1)µq
δµ

µ
+ cFµq

δQF

QF

}

=

∫

ddx

{−cφβ

κ̃2
δα+ (cF − 1)µq

δµ

µ
+ cFµq

δQF

QF

}

. (3.47)

In the last line, we use the relation

(Λφ + [1− 2cφ]d/2)β +
cF
cW

kκ̃2µq = 0 , (3.48)

which is to be understood that µq are adjusted to satisfy the relation for general β. The

variational problem fixes α = 0 and requires the mixed condition

δα = 0 , (cF − 1)δ log µ+ cF δ logQF = 0 . (3.49)

The vacuum expectation value of the operator dual to the scalar is

〈Oα=0〉 = − cφ
κ̃2

β . (3.50)

This case is actually realized in an example below with the condition (3.48) satisfied.
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Let us be brief on the other case φs = cW r−d/2 log r. Again, the variation (2.22) has

the form for general cφ and cF

δSM=

∫

ddx

{

([(1−2cφ)d/2+Λφ] log r+2cφ−1)(α log r+β)−(cφ−1)β+cF κ̃
2µqk/cW

κ̃2
δα

+
([1− 2cφ]d/2 + Λφ)(α log r + β) + (cφ − 1)α

κ̃2
δβ (3.51)

+(cF − 1)µq
δµ

µ
+ cFµq

δQF

QF

}

.

For cF = 0, one can refer to section 3.1.2. cF 6= 0 provides various possibilities. For cF = 1,

we set Λφ = 0 and cφ = 1/2. Then

β/2 + κ̃2µqk/cW
κ̃2

δα− α/2

κ̃2
δβ + µq

δQF

QF
= 0 . (3.52)

In general, we can impose two conditions. For example α = const. and one mixed condition
α/2
κ̃2 δβ = µq δQF

QF
by coupling the variation of QF to the variation of δβ. Another simple

case is to fix β = − 2k
cW

〈OQF
〉QF with condition 〈OQF

〉 = const., then

〈Oβ〉 = − α

2κ̃2
, 〈OQF

〉 = µq

QF
. (3.53)

3.2.3 Massless scalar

For the massless scalar, there are two solutions φs ∼ r0, r−d. Let us start with φs = cW .

Then

δSM =

∫

ddx

{

Λφαδα

κ̃2r−d
+

[(Λφ − (cφ − 1)d)β + cFµqkκ̃
2/cW ]δα+ (Λφ − cφd)αδβ

κ̃2

+(cF − 1)µq
δµ

µ
+ cFµq

δQF

QF

}

.

(3.54)

We can impose two general mixed condition. For simplicity, we consider cF = 1 below.

For Λφ = 0, the variation (3.54) simplifies to

[(1− cφ)dβ + µqkκ̃2/cW ]δα− cφdαδβ

κ̃2
+ µq

δQF

QF
= 0 . (3.55)

One can work out a variation for general cφ. We consider some specific cases. For cφ = 0,

a simple choice is to fix α = const. and QF = const.. Then

〈Oα〉 =
d

κ̃2
β + 〈OQF

〉QF
k

cW
, 〈OQF

〉 = µq

QQF
. (3.56)

It is interesting to see that the scalar expectation value depends on that of the charge

operator due to the coupling term WF 2. Similarly, for cφ = 1, we have

−dαδβ

κ̃2
+ µq

kδα

cW
+ µq

δQF

QF
= 0 . (3.57)
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One can impose a mixed condition as familiar from previous examples

δβ = 0 , kδα+ cW δ logQF = 0 . (3.58)

Finally, we consider the case φs = cW r−d.

δSM =

∫

ddx

{

[Λφα+ cFµqkκ̃
2/cW ]δα

κ̃2r−d

+
(Λφ − (cφ − 1)d)βδα+ [(Λφ − cφd)α+ cFµqkκ̃

2/cW ]δβ

κ̃2

+(cF − 1)µq
δµ

µ
+ cFµq

δQF

QF

}

.

(3.59)

For cF = 1, we fix QF = const. and consider the expectation value for the operator dual

to QF is constant

〈OQF
〉 = µq

QF
= const. . (3.60)

We impose

α = − kκ̃2

ΛφcW
QF 〈OQF

〉 . (3.61)

Then, the expression (3.59) simplifies to

(Λφ − (cφ − 1)d)βδα− cφdαδβ

κ̃2
+ µq

δQF

QF
= 0 . (3.62)

Let’s consider some specific examples. For cφ = 0, it is straightforward to fix α = const.

and QF = const. to find

〈Oα〉 =
Λφ + d

κ̃2
β , 〈OQF

〉 = µq

QF
. (3.63)

If we choose Λφ = (cφ − 1)d, we can fix β = const. and QF = const. to find

〈Oβ〉 =
−cφd

κ̃2
α , 〈OQF

〉 = µq

QF
. (3.64)

Note that both the cases the expectation values of the scalar are functions of the unfixed

parameters.

4 EMD solutions

In this section, we apply the general programs of the boundary variational problem, the on-

shell action and the stress energy tensors to some analytic EMD solutions with asymptotic

AdS boundary. It is pleasant to check that all these programs fit together nicely.
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4.1 AdS4 background

The AdS4 solution considered in [7] has the following action and metric

S =
1

2κ2

∫

d4x
√−g

[

R−W (φ)F 2 − 1

2
(∂φ)2 − V (φ)

]

,

ds2 = e2C(−hdt2 + d~x2) +
e−2C

h
dr2 ,

W (φ) =
1

4
eφ/

√
3 , V (φ) = − 6

L2
cosh(φ/

√
3) ,

C = log
( r

L

)

+
3

4
log

(

1 +
Q

r

)

, h = 1− ωL2

(Q+ r)3
,

F = dA , A =

(

−
√
3Qω

Q+ r
+

√
3Q ω1/6

L2/3

)

dt , φ =

√
3

2
log

(

1 +
Q

r

)

.

(4.1)

One can check the equations of motion (2.2) are satisfied. As noted in [7], this solution

has a naked singularity in the extremal limit ω = Q3/L2. Note Q 6= QF . There have been

extensive literature works that have dealt with this issue [45]–[9, 48]. This solution can be

uplifted to resolve the singularity by including stringy degrees of freedom as noted in [7].

A solution with similar potential in asymptotic AdS is also analyzed in [49].

From the gauge field A, we can see

At =

√
3Qω1/6

L2/3
−

√
3Qω

r
+O(r−2) . (4.2)

The constant term is the chemical potential µ =
√
3Qω1/6

L2/3 , and the coefficient of the second

term is proportional to the charge density, q = 1
2κ2

√
3Qω
L2 . Thus µq = 3Q

2κ2
ω2/3

L8/3 . Depending

on the choice of the boundary term, we can either fix the chemical potential or the charge.

The mass of the scalar can be evaluated

m2
φL

2 = − ∂2

∂φ2

(

6 cosh

(

φ√
3

)

− L2

4
e

φ√
3F 2

) ∣

∣

∣

∣

φ=0

= −2 . (4.3)

The gauge field term decay sufficiently fast and does not contribute to the mass. Thus the

scalar field has λ− = 1 and λ+ = 2 in (2.6). They are slightly above the BF bound. Both

of the scalar falloffs are normalizable. Note that the particular solution is supported by

the slower falloff of the scalar field

φ =

√
3

2

Q

r
+O(r−2) . (4.4)

The temperature and entropy density can be readily evaluated

T =
3µ

√

−Q+ (L2ω)1/3

4π (L2ω)5/6
, s =

2πµ1/2

√

−Q+ (L2ω)1/3

Lκ2
. (4.5)

We express physical quantities in terms of Q,ω using (Q+rh)
3 = ωL2 where rh is a horizon

radius.
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4.1.1 On-shell action

Let us evaluate the on-shell action following section 2.3. From the Einstein equation, we get

R =
1

2
(∂φ)2 − 12

L2
cosh(φ/

√
3) , (4.6)

which can be used to evaluate to find

Son−shell =
1

2κ2

∫

d4x

∫ rǫ

rh

dr
√−g

2

3

[

V −WF 2
]

+ Sb , (4.7)

where the boundary terms include the Gibbons-Hawking term, the Balasubramanian-Kraus

terms, and the scalar and vector boundary terms

Sb = − 1

κ2

∫

∂M
d4x

√−γ

[

Θ+
2

L
− L

2
R(3) − cφ

2
φnr∂rφ− Λφ

4L
φ2 − 2cFWnrF

rtAt

]

. (4.8)

To have a finite on-shell action, we impose the condition

Λφ = 2cφ − 1 . (4.9)

This is consistent with the condition (3.4), with λ− = 1, that is used to make the variational

problem well defined. Then we get

son−shell =
(1− 3cφ)Q

3 − 48cFQω2/3L4/3 + 16L2ω

32L4κ2
. (4.10)

Here son−shell is a density, the on-shell action divided by the volume of the field theory

coordinates including the compactified time. From this on-shell action (density), we identify

the thermodynamic potential (density)

G = −(1− 3cφ)Q
3 − 48cFQω2/3L4/3 + 16L2ω

32L4κ2
. (4.11)

Below we also check that this grand potential is identical to the pressure of the system.

The corresponding stress energy tensor (2.35) is

κ2Tij = Θij −Θγij −
2

L
γij − LG

(3)
ij + γij

[

cφ
2
φnr∂rφ+

Λφ

4L
φ2

]

(4.12)

+ cF

[

2γijWnrF
rtAt − 4WnrFriAj

]

.

Explicit computation gives the following data (after imposing the condition Λφ = 2cφ − 1

given in (4.9) so that the stress energy tensor is finite)

E = 〈Ttt〉 =
(3cφ − 1)Q3 − 48cFQω2/3L4/3 + 32L2ω

32κ2L4
,

P = 〈Txx〉 = 〈Tyy〉 =
(1− 3cφ)Q

3 − 48cFQω2/3L4/3 + 16L2ω

32κ2L4
.

(4.13)

Here E and P are identified as energy density and pressure. The pressure is nothing but

the grand potential, P = −G.
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One can also explicitly compute the mass density

M =
(3cφ − 1)Q3 − 48cFQω2/3L4/3 + 32L2ω

32κ2L4
. (4.14)

Thus we confirm that the mass and the grand potential both depends on the parameters

cφ and cF . At this point, one can readily check that the following thermodynamic relation

holds if we set cF = 0.

Ω = M − Ts− µq , for cF = 0 . (4.15)

4.1.2 Grand canonical ensemble cF = 0

For the grand canonical ensemble (cF = 0), we examine possible quantizations with the

results in section 3.1.1. A priori, as far as the condition (4.9) is satisfied, all the possible

quantizations are legitimate. The solution (4.1) is realized with the scalar field (4.4). We

are going to see how the parameters cφ is fixed for this solution.

Let us start tentatively by examine the case cφ = 0. Then we get the following data

for the dual field theory

〈Oα∼Q=fixed〉 =
(λ+ − λ−)

κ̃2
β =

1

κ̃2
β = 0 , 〈Oµ〉 = −q = −

√
3Qω

2κ2L2
. (4.16)

Where we use α =
√
3
2 Q, β = 0, λ+ = 2, λ− = 1. Note Q 6= QF . The corresponding on-shell

action and thus the grand potential Ω are

Ω = −son−shell = −Q3 + 16L2ω

32L4κ2
, (4.17)

and the field theory stress energy tensors are

E = M = 〈Ttt〉 =
−Q3 + 32L2ω

32κ2L4
, P = 〈Txx〉 = 〈Tyy〉 =

Q3 + 16L2ω

32κ2L4
. (4.18)

Here E and P are identified as energy and pressure. We check that the grand potential

is nothing but the negative of the pressure, Ω = −P . One can easily check the relation,

Ω = M − Ts+ µq. In fact, it holds for any cφ as in (4.15).

Now there is a troublesome fact. It turns out that the grand potential (4.17) does not

satisfy the differential from of the first law

dΩ = −sdT − qdµ . (4.19)

If one think a little more, the reason is obvious. The term Q3 is nowhere found in tem-

perature, entropy, charge and chemical potential. Thus, even though this is legitimate

quantization from the point of view of the variational problem, it is not acceptable from

the point of view of the thermodynamic first law.

Let us consider the general form of the grand potential with cφ 6= 0

G = −(1− 3cφ)Q
3 + 16L2ω

32L4κ2
. (4.20)
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Now we can actually fix this parameter cφ from the thermodynamic data. If one uses the dif-

ferential form of the first law, dΩ = −sdT −qdµ, then the parameter cφ is uniquely fixed as

cφ =
1

3
, Λφ = −1

3
, (4.21)

where Λφ is fixed by (4.9). Thus it is required to put a mixed boundary condition discussed

in (3.8). Thus the differential form of the first law actually put more stringent constraint

than that of the exact form. This demonstrates that the importance of the general bound-

ary value problem along with the on-shell action to get consistent physical quantities.

Summarizing, the AdS4 theory is described by the grand potential Ω

Ω = − ω

2L2κ2
, (4.22)

and the field theory energy and pressure

E =
ω

κ2L2
, P =

ω

2κ2L2
. (4.23)

By demanding the differential form of the first law, all the parameters are fixed. One can

also check that the trace condition is satisfied.

〈Tµ
µ〉 = −E + 2P = 0 . (4.24)

4.1.3 Semi canonical ensemble cF = 1

The necessary information for the semi canonical ensemble is the same as that given in

section 4.1.2. The on-shell action, from (4.10), goes as

son−shell =
(1− 3cφ)Q

3 − 48Qω2/3L4/3 + 16L2ω

32L4κ2
, (4.25)

and the free energy

F = −(1− 3cφ)Q
3 − 48Qω2/3L4/3 + 16L2ω

32L4κ2
. (4.26)

Thus it is consistent with the picture that the Helmholtz free energy is a Legendre trans-

formation from the grand potential,

F = Ω+ µq = M − Ts . (4.27)

We further confirm that the differential form of the first law

dF = −sdT + µdq (4.28)

satisfies, again, for

cφ =
1

3
. (4.29)

Thus the semi canonical ensemble is well defined as a Legendre transform from the grand

potential.
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For the rest of this sub-section, we comments on some results of the holographic renor-

malization of the semi canonical ensemble. The stress energy tensor can be obtained

from (4.13) by using cφ = 1/3,Λφ = −1/3. It has a further contribution from the bound-

ary term compared to the grand canonical ensemble

EF = 〈Ttt〉 =
2L2ω − 3Qω2/3L4/3

2κ2L4
,

PF = 〈Txx〉 = 〈Tyy〉 =
L2ω − 3Qω2/3L4/3

2κ2L4
.

(4.30)

Here EF and PF are identified as energy and pressure for semi canonical ensemble evaluated

from the stress energy tensor. We note the pressure is again the negative of the free energy

PF = −F . One can also explicitly compute the mass, (4.14), to find

MF = EF =
2L2ω − 3Qω2/3L4/3

2κ2L4
. (4.31)

Now it is curious to find that this mass MF does not play the role of mass in the Helmholtz

free energy. It will be interesting to figure out the meaning of the mass MF which is directly

computed through the holographic renormalization for the semi canonical ensemble. For

RNAdS black holes with a fixed charge, the energy is identified as the energy above the

ground state (the extremal black hole) [50, 51]. Here we find that the energy of the fixed

charge differs by the µq not by the energy of the extremal black hole, EF = E − µq.

4.2 AdS5 background

The AdS5 solution considered in [7] has the following action and metric

S =
1

2κ2

∫

d4x
√−g

[

R−W (φ)F 2 − 1

2
(∂φ)2 − V (φ)

]

,

ds2 = e2C(−hdt2 + d~x2) +
e2D

h
dr2 ,

C = log
( r

L

)

+
1

3
log

(

1 +
Q2

r2

)

, D = − log
( r

L

)

− 2

3
log

(

1 +
Q2

r2

)

,

h = 1− ωL2

(Q2 + r2)2
, W (φ) =

1

4
e2φ/

√
6 , V (φ) = − 1

L2

(

8eφ/
√
6 + 4e−2φ/

√
6
)

,

F = dA , A =

(

− Q
√
2ω

Q2 + r2
+

Q
√
2ω

Q2 + r2h

)

dt , φ =
2√
6
log

(

1 +
Q2

r2

)

.

(4.32)

The equations of motion for the metric, gauge and scalar fields, (2.2), are satisfied. The

extremal limit is given by ω = Q3/L2. Note Q 6= QF . Again the system has a naked

singularity at the extremal limit. Further discussions can be found in section 4.1.

From the gauge field A, we have

At =
Q
√
2

L
− Q

√
2ω

r2
+O(r−2) . (4.33)

The constant term is the chemical potential µ = Q
√
2

L and the coefficient of the second term

is proportional to the charge density q = 1
κ2

Q
√
2ω

L3 . The mass of the scalar comes from the
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potential term as m2
φL

2 = −4. Thus the scalar field has the boundary behavior (2.8) with

d = 4. It saturates the so-called BF bound. This is consistent with the radial fall-off of the

scalar field

φ =

√

2

3

Q2

r2
+O(r−2) . (4.34)

Compared to (2.8), this scalar solution realizes with the faster falloff at the boundary.

The temperature and entropy density are

T =

√

−Q2 + Lω1/2

L2π
, s =

2πω1/2
√

−Q2 + Lω1/2

L2κ2
. (4.35)

To write all the expressions in terms of Q and ω, we use the relation r2h +Q2 =
√
ωL.

4.2.1 On-shell action

Following closely the previous section on AdS4, we evaluate the on-shell action.

son−shell =
(2− 4cφ + Λφ)Q

3 − 12cFQ
2ω1/2L+ 3L2ω

6L5κ2
. (4.36)

Note that the scalar boundary terms are finite at the boundary. We do not need to impose

a condition on Λφ or cφ, which is different compared to the AdS4 case. From this on-shell

action, we identify the thermodynamic potential (density)

G = −(2− 4cφ + Λφ)Q
3 − 12cFQ

2ω1/2L+ 3L2ω

6L5κ2
. (4.37)

Again we check that this grand potential is identical to the pressure of the system.

The corresponding stress energy tensor is given by (2.35)

E = 〈Ttt〉 =
(4cφ − 2− Λφ)Q

3 − 12cFQ
2ω1/2L+ 9L2ω

6κ2L5
,

P = 〈Txx〉 = 〈Tyy〉 =
(2− 4cφ + Λφ)Q

3 − 12cFQ
2ω1/2L+ 3L2ω

6κ2L5
.

(4.38)

Here E and P are identified as energy and pressure. The pressure is nothing but the grand

potential, P = −G.

One can also explicitly compute the mass to find from (2.37) and (2.41)

M =
(4cφ − 2− Λφ)Q

3 − 12cFQ
2ω1/2L+ 9L2ω

6κ2L5
. (4.39)

Thus we confirm that the mass and the grand potential both depends on the parameters

Λφ, cφ and cF . One can readily check that the following thermodynamic relation holds

Ω(T, V, µ) = −P = M − Ts− µq , for cF = 0 . (4.40)
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4.2.2 Grand canonical ensemble cF = 0

For the grand canonical ensemble (cF = 0), we examine possible quantizations as we have

done in the previous section 3.1. All the possible quantizations are legitimate with general

Λφ and cφ. One crucial information on the possible quantization is the falloff of the scalar

field given in (2.8) for mass saturating the BF bound. If α 6= 0, we are required to impose

the condition (3.12) or special cases of that.

For α = 0, we impose the condition

Λφ = 4cφ − 2 , (4.41)

that comes from (3.16) for d = 4 to have a consistent variational problem. Here the scalar

is realized as (4.34) with the faster falloff. This has an important implication. Below this

condition is shown to be consistent with the differential form of the thermodynamic first

law and also to fix the mass to ADM mass.

This quantization gives the expectation value for the dual field theory (3.18)

〈Oα=0〉 =
cφβ

κ̃2
=

√

2

3

cφQ
2

κ̃2
, 〈Oµ〉 = −q . (4.42)

The on-shell action and the grand potential Ω are

G = −son−shell = −(2− 4cφ + Λφ)Q
3 + 3L2ω

6L5κ2
. (4.43)

Note that we do not impose a condition on Λφ or cφ yet. The stress energy tensor is

E = M = 〈Ttt〉 =
(4cφ − 2− Λφ)Q

3 + 9L2ω

6κ2L5
,

P = 〈Txx〉 = 〈Tyy〉 =
(2− 4cφ + Λφ)Q

3 + 3L2ω

6κ2L5
.

(4.44)

Here E and P are energy density and pressure. The pressure is nothing but the grand

potential. The grand potential has the relation G = −P = M −Ts−µq for general Λφ, cφ.

Upon imposing the differential from of the first law of thermodynamics dΩ = −sdT −
qdµ, we are required to impose the same condition given in (4.41). Note this condition

is the one we have from the consistent variational problem. This happens because the

grand potential depends on the parameters Λφ, cφ, while s, T, q, µ are independent of the

parameters similar to AdS4. Then

G = − 3L2ω

6L5κ2
, (4.45)

and

E = M = 〈Ttt〉 =
9L2ω

6κ2L5
, P = 〈Txx〉 = 〈Tyy〉 =

3L2ω

6κ2L5
. (4.46)

We mention an important implication of the boundary terms. We only fix the com-

bination of Λφ and cφ through (4.41). One parameter remains unfixed. Even though the

grand potential and stress energy tensors are all fixed, the expectation value of the dual
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scalar field remains unfixed as can be checked in (4.42). We further comment on this below

as field theory shares similar properties [52] (see also [53, 54]).

Previously, three counter terms (different from ours) with undetermined coefficients

were considered in the context of linear dilaton gravity [37]. For a certain value of dilaton

coupling, one of the coefficient remains unfixed for a well defined variational problem. The

resulting on-shell action and conserved charges are shown to be independent of the unfixed

coefficient, while the field theory expectation value was not mentioned there. This is similar

to our observation done in this section.

4.2.3 Semi canonical ensemble cF = 1

The on-shell action and Free energy, after imposing the condition (4.41), are

F = −son−shell = −3L2ω − 12Q2ω1/2L

6L5κ2
. (4.47)

Thus this Helmholtz free energy is a Legendre transformation from the grand potential,

F = Ω + µq = M − Ts. We further confirmed that the differential form of the first law is

satisfied, dΩ = −sdT + µdq.

We comments on some results of the holographic renormalization of the semi canonical

ensemble. Energy and pressure are given by

EF = 〈Ttt〉 =
9L2ω − 12Q2ω1/2L

6κ2L5
,

PF = 〈Txx〉 = 〈Tyy〉 =
3L2ω − 12Q2ω1/2L

6κ2L5
.

(4.48)

It is curious to notice that the pressure is again the negative of the free energy PF = −F .

One can also explicitly compute the mass, (4.14), to find

MF = EF =
9L2ω − 12Q2ω1/2L

6κ2L5
. (4.49)

This mass MF does not play the role of mass in the Helmholtz free energy. See the similar

discussion at the end of the section 4.1.

4.3 Interpolating solution

In this section, we consider the interpolation solution with scaling solution in IR and the

AdS4 in UV, which has attracted much attentions recently [55, 56]. The action is the same

as (2.1) with d = 3, and we use the coordinates system considered in [55]

ds2 = − r2

L2
f(r)dt2 +

r2

L2
dx2 +

r2

L2
dy2 +

L2

r2
g(r)dr2 ,

g(r) =

(

1 +
r4F
r4

)

1

2

, f(r) =
k0(r/rF )

3

1 + k0(r/rF )3
.

(4.50)
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The solution is specified by

W (r) =
2L6Q2κ4

3

(

k0r
3 + rF

3
)2 (

r4 + rF
4
)3/2

r6rF 6 (9r4 + 2k0r3rF + 11rF 4)
,

V (r) = −8k20r
8
(

3r4 + 4rF
4
)

+ 7rF
6r2
(

9r4 + 11rF
4
)

+ 2k0r
5
(

30r4rF
3 + 41rF

7
)

4L2 (k0r3 + rF 3)2 (r4 + rF 4)3/2
,

φ′(r) = −
√

2rF 3 (3r4 − 2k0r3rF + rF 4)

r2 (k0r3 + rF 3) (r4 + rF 4)
.

(4.51)

The solution reveals that the gauge field A has the following form

At =
3rF

3

2k0L4Qκ2
− 9rF

6

4
(

k20L
4Qκ2

)

r3
+O(r−4) . (4.52)

As usual, the constant term is the chemical potential, µ = 3rF
3

2k0L4Qκ2 . We compute the

charge q = − 2
κ2

√−gW (φ)F rt = Q. Thus µq = 3rF
3

2k0L4κ2 . Note that the coefficient of the

second term in (4.52) is not directly related to the charge density. This is essential feature

due to a nontrivial dilaton coupling. Some fraction of the conserved charge comes from

the scalar field through the dilaton coupling W (φ). This is contrast to the EMD solutions

we consider in section 4.1 and section 4.2. They have the property W ∼ 1
4 at the spatial

boundary, and thus effectively the charge come from the gauge field alone.

The mass of the scalar field can be shown to be

m2
φL

2 = −9

4
. (4.53)

It saturates the BF bound. This is consistent with the radial fall-off of the scalar field

φ =
2
√
2√

3k0

r
3/2
F

r3/2
+O(r−5/2) . (4.54)

Compared to the general falloff behavior of the scalar, φ → α
r3/2

log r+ β
r3/2

, this particular

solution is realized with the faster falloff. Thus the analysis is similar to the AdS5 done

in section 4.2. The variational problem at hand is the case with α = 0. We come back to

details below.

4.3.1 On-shell action

Let us compute the on-shell action and the corresponding stress energy tensor. Similar to

AdS5, the scalar boundary contributions are finite. This is related to the fact that the mass

of the scalar field saturates the BF bound. By keeping cφ,Λφ explicitly, we get the density

son−shell =
(9− 12cφ + 4Λφ − 9cF )rF

3

6k0L4κ2
. (4.55)

We follow the notations of the previous sections by abusing our notation, even though

the concept of the thermodynamic relations are not appropriate for the zero temperature
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solutions. In particular, the time direction is not compact and infinite. It is a ‘density’ in

time coordinate as well. We identify the ‘potential’ as the negative of the on-shell action

G = −(9− 12cφ + 4Λφ − 9cF )rF
3

6k0L4κ2
. (4.56)

The corresponding stress energy tensor is given by (2.35)

E = 〈Ttt〉 =
(12cφ − 4Λφ − 9cF )rF

3

6k0L4κ2
,

P = 〈Txx〉 = 〈Tyy〉 =
(9− 12cφ + 4Λφ − 9cF )rF

3

6k0L4κ2
.

(4.57)

The physical quantities depend on the boundary contributions through the parameters

cφ,Λφ and cF . Note that the energy would vanish if one would be able to choose cφ =

Λφ = cF = 0, while the pressure would be finite. We see below that it is not the case. Let

us consider the cF = 0 and cF 6= 0 cases separately.

4.3.2 Case with cF = 0

If one chooses cF = 0, one works with fixed chemical potential. For α = 0, the variational

problem we considered in section 3.2.2 (and in section 3.1.2 for cF = 0), instruct us to

choose (3.16)

Λφ = (2cφ − 1)
d

2
= 3cφ − 3/2 . (4.58)

The parameters are partially fixed by the consistency condition of the well-defined vari-

ational problem. The corresponding expectation values of the dual operators are given

in (3.18)

〈Oα=0〉 =
cφβ

κ̃2
=

cφ
κ̃2

2
√
2√

3k0
r
3/2
F , 〈Oµ〉 = −q . (4.59)

Thus the expectation value of the scalar in dual field theory depends on the undetermined

parameter cφ. To fix this, it is required to have further input from the field theory side.

Let us go back to energy and pressure for cF = 0. After using Λφ = 3cφ − 3/2 given

in (4.58), we get

E =
rF

3

k0L4κ2
, G = −P = − rF

3

2k0L4κ2
. (4.60)

It is interesting to observe that the ‘potential’ G satisfies a relation even at zero temperature

G = −P = E − µq . (4.61)

It resembles that of thermodynamics without the term Ts. We also note that the energy

and pressure satisfy the traceless condition

〈Tµ
µ〉 = −E + 2P = 0 . (4.62)

Apparently the interpolating solution still respect the conformal invariance even though

the interior is much modified with the hyperscaling violation geometry.
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4.3.3 Case with cF 6= 0

Let us briefly mention on cF 6= 0. This case requires the sub-leading part of the gauge field

in the analysis of the variational problem. It is different from fixing the conserved charge

because the scalar coupling also contributes to the charge.

For α = 0, the general variational problem is analyzed in section 3.2.2. In particular,

the mixed boundary condition is given by (3.49)

(cF − 1)δ logµ+ cF δ logQF = δ log
(

µ3cF−1qcF
)

= 0 , (4.63)

where the solution gives QF = 3(µq)µL4κ2. The corresponding vacuum expectation value

of the dual scalar operator is

〈Oα=0〉 = − cφ
κ̃2

β = − cφ
κ̃2

2
√
2√

3k0
r
3/2
F , (4.64)

where we use β = 2
√
2√

3k0
r
3/2
F . The expectation value depends on the parameter cφ. Moreover,

the variational problem requires the following condition given in (3.48).

(

Λφ + [1− 2cφ]
d

2

)

β +
cF
cW

kκ̃2µq = 0 . (4.65)

For the particular solution (4.50), satisfying the condition (4.65) amounts to

Λφ = 3cφ − 3

2
+

3

2
cF , (4.66)

where we use d = 3, k = −4/3, cW = 2
√
2√

3k0
r
3/2
F . Note also this condition reduces to the

previous case (4.58) for cF = 0.

To consider the ‘semi canonical’ ensemble, we add the boundary term (2.17). The

on-shell action and ‘Free energy’ are modified, after imposing the condition (4.66), to

F = −son−shell =
(cF − 1)rF

3

2k0L4κ2
. (4.67)

Here again, we abuse our notation for the ‘free energy.’ The corresponding stress energy

tensor is given by

E =
(2− 5cF )rF

3

2k0L4κ2
, P =

(1− cF )rF
3

2k0L4κ2
. (4.68)

These are functions of cF . Setting cF = 1 does not correspond to fixing charge, the

coefficient cF can be considered on equal footing as the other two coefficients Λφ and cφ.

5 Two physical implications

Here we consider two physical implications that manifest themselves throughout the paper.
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5.1 Finite boundary terms

In this section we have a fresh look for the finite boundary or counter terms we encountered

above. In particular, we compare the situation to that of the field theory side.

Renormalization in Quantum field theory is a way to render divergent physical quan-

tities, such as mass and coupling constants, into finite ones by subtracting the divergence

using the radiative corrections. Analogous to the gravity theories we considered above,

there have been cases when the radiative corrections of field theories are undetermined,

not to mention finite. This phenomena has been investigated by Roman Jackiw [52] (see

also [53, 54]).

Jackiw asked the following question. Can one formulate a criterion that will settle a

priori whether the radiative correction produces a definite or indefinite result? In [52], the

basic rule of thumb has been provided. If the computed radiative correction, when inserted

into the bare Lagrangian, preserves the renormalizability and retains the symmetries of the

theory, the radiative correction does not produce a definite result. Three different classes

of examples are presented in [52]: (a) radiative corrections are uniquely determined by

spoiling renormalizability or gauge invariance such as g−2 Pauli term in QED or photon

mass in Schwinger model, (b) radiative corrections are not determined because, due to chiral

anomaly, there is no symmetry prohibiting to insert photon mass in the chiral Schwinger

model, and (c) Radiative correction can be determined depending on which symmetry,

vector or axial vector, we choose to preserve in the case of triangular graph of axial vector

anomaly. Thus for the cases (b) and (c), further ‘experimental’ inputs are necessary to fix

the radiative corrections. See more details in [52]. We examine the available examples in

holography and compare them with those of the examples in field theory.

5.1.1 Examples in holography

Here we consider several known examples in holography that claim to have finite counter

terms as well as some relevant cases that provide close connection to field theory radiative

corrections. The holographic boundary terms are required by well defined variational

problems. The counter terms are required to yield the finite on-shell action and stress

energy tensor. Sometimes the boundary terms are also used to cancel the divergences, and

thus we put them in equal footing. They are far from unique, even though constructed

from the local and covariant functions of the intrinsic boundary geometry, such as the

induced metric γij and the Ricci scalar and tensor built from γ,R(d). This is true even

for the simplest geometry. For example, AdS3 requires only a term Sct = −1
ℓ

∫ √−γ to

cancel the divergence in the stress energy tensor. In general, one can add the terms such

as cnRn, n ≥ 1. The coefficients cn are not determined because these terms vanish too fast

to contribute to the finite part of the stress tensor. Let us recount a few examples.

Anomalies. In [19, 20], holographic renormalization for the AdS has been carried out

to match the field theory expectations for various physical quantities including anomalies.

Trace anomaly for dilaton coupled theories also has been considered in [57].
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For the metric of the pure AdS3

ds2 =
L2

r2
dr2 + γijdx

idxj , (5.1)

one can compute the extrinsic curvature to be

Θij = − r

2ℓ
∂rγij , Θ = − r

2ℓ
γij∂rγij . (5.2)

To evaluate this we use the expansion of the metric

γµν = r2γ(0)µν + γ(2)µν + · · · , γµν = r−2γ(0)µν + r−4γ(2)µν + · · · . (5.3)

Then by taking the trace of the stress energy tensor for pure AdS3, we get

T i
i = − 1

8πG3

(

Θ+
2

ℓ

)

= − 1

8πGd+1

1

ℓr2
γ(2)µνγ(0)µν = − ℓ

16πGd+1
R , (5.4)

where boundary limit is taken and γ(2)µνγ
(0)
µν = ℓ2r2

2 R.

This conformal anomaly is a consequence of breaking conformal invariance in the pro-

cess of regularization and renormalization. Due to the divergences of the effective action

and of the boundary extrinsic curvature term, they should be regularized in a way to pre-

serve the general covariance, analogue of the gauge invariance of the quantum field theory.

The regularization procedure picks up a particular representation of the conformal class of

the boundary theory. In this way, conformal invariance is explicitly broken, and the trace

of the stress energy tensor is expected to have a unique answer after the renormalization.

Compared to the field theory expectations, the features we describe here are similar to the

case (a) rather than (b) described above [52]. The holographic renormalization process

spoils the general covariance to fix the coefficient of the boundary counter terms.

Casimir energy. Similar to the anomalies computed and determined above, some holo-

graphic examples provide a definite answers for Casimir energy in global AdS. We consider

AdS5 in global coordinate with (t, θ, φ, ψ, r)

ds2 = −
(

1 +
r2

L2

)

dt2 +

(

1 +
r2

L2

)−1

dr2 + r2dΩ2
3 , (5.5)

where dΩ2
3 is the metric for 3 dimensional sphere. The energy density by including the

standard counter terms [20] gives

Ttt =
3L

8κ2r2
+ · · · . (5.6)

We use the following metric of the field theory living at r → ∞

ds2FT = −dt2 + L2
(

dθ2 + sin2 θdφ2 + cos2 θdψ2
)

. (5.7)

The field theory energy density is given by (see section 2.3)

E = 〈Ttt〉 =
3

8κ2L
. (5.8)
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This is identified as a Casimir energy in the field theory side [20]. Similar computations

give the energy density for AdS3 in global coordinate

E = 〈Ttt〉 = − 1

κ2L
. (5.9)

See also [41, 58, 59] for more general discussion of Casimir energies in the holographic

context.

Holographic examples with finite boundary terms. Here we briefly mention some

examples of the finite boundary or counter terms in holography that have been discussed

in the literature.

One class of the examples that has introduced the finite counter term in holographic

setup is in the context of R-charged black holes [60, 61]. The black hole solutions have gauge

fields and scalar fields. There the finite counter term, φ2, was introduced to match the ex-

pected mass in AdS5 [60]. In other wards, the first law of thermodynamics requires to have

the counter term φ2, which is actually finite. Similarly, the thermodynamic properties of

the R-charged black holes have been analyzed in the context of Schödinger space-time [61],

where again the finite counter term proportional to φ2 is required to satisfy the first law.

Another class of finite counter terms has been considered in holographic studies of

thermal and electric responses in [62, 63]. It has been argued that finite counter terms are

necessary to yield a consistent physical picture that matches with field theory expectations.

These two classes of holographic examples are similar to the field theory finite radia-

tive corrections. The finite counter terms are undetermined until ‘experimental’ data are

provided. Here the expectations from field theory, such as first law of thermodynamics or

transport properties, are required to determine the finite counter terms.

The third class of examples of finite counter term has been related to the probe brane

wrapping around AdS5 × S3 in the D3-D7 brane system [64]. It is noted that a new type

of finite term is possible. The finite counter term is used to set the on-shell action to

vanish for super-symmetric theory. This is an example that the finite term can be fixed by

demanding the symmetry discussed in the case (c).

5.1.2 EMD theories

Here we summarize the results of the holographic renormailzation of the EMD theories and

compare them with the situations of the field theory.

We start with the boundary term for the gauge field, which is describe by the term.

SF
b =

1

κ2

∫

∂M
ddx

√−γ 2cFWnrF
rtAt . (5.10)

This is actually the best known finite boundary term. If we do not decide the field theory

physical systems, say grand canonical ensemble or semi canonical ensemble, the parameter

cF remains unfixed. This is even more clear with the W (φ) that bring out the mixing

between the gauge and scalar variations. As one can check, the boundary term associated

with cF is always finite because it is nothing but the conserved charge (2.3). This boundary

finite counter term is not directly related to any finite radiative corrections discussed in [52].
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There are two additional boundary terms for the scalar fields

Sφ
b =

1

κ2

∫

∂M
ddx

√−γ

[

cφ
2
φnr∂rφ+

Λφ

4L
φ2

]

. (5.11)

These two terms have the same boundary falloffs in the asymptotic AdS boundary because

nr∂r is independent of r. We consider the general Λφ and cφ until we are forced to fix

them. Choosing cφ = 0, for example, from the beginning could lead a consistent theory in

the end, but we do not take that approach.

As we demonstrate above, the variational problem at the boundary provides certain

conditions for the parameters such that the theory is well defined. It turns out that

this condition is, in general, different from the conditions that we can get by requiring

finiteness of the on-shell action and stress energy tensor. Theses two conditions coincide

if the boundary terms are used to cancel divergent contributions. They are in general

different when the boundary terms are finite. In that case, the parameters of the theory

are not completely fixed even after imposing the first law of thermodynamics. We encounter

numerous examples from the consistency of the general variational problem.

Let us consider the three examples we have considered one by one.

• AdS4: the boundary contribution of the scalar kinetic term has a divergent contribu-

tion. It is required to cancel the divergence with a condition, Λφ = 2cφ−1 for cF = 0,

from the boundary counter terms (5.11). And then one of the remaining parameter

can be fixed by requiring the differential form of the first law of thermodynamics,

which we consider as an independent input. Thus the EMD theory with AdS4 asymp-

totics itself can completely determine the parameters with the thermodynamic first

law.

• AdS5: the scalar mass saturates the BF bound, and the boundary contribution of the

scalar kinetic term is actually finite. Nevertheless, a condition is necessary to have a

well defined boundary variational problem Λφ = 4cφ−2 for cF = 0. Surprisingly, this

particular condition coincides with the requirement to satisfy the differential form of

the first law of thermodynamics! The thermodynamic potential, energy and pressure

are determined with the condition. Yet, the expectation value of the operator dual

to the scalar is a function of a parameter, say cφ. Thus the physical quantities are

not completely fixed even after imposing the first law.

• Interpolating solution: the example gives the conserved charge different from the

charge provided by the gauge field. Part of the conserved charge comes from the

dilaton coupling, and thus from the scalar. The scalar mass saturates the BF bound.

The features of the holographic renormalization are similar to the AdS5 example.

General variational problem provides a condition Λφ = 3cφ − 3/2 + 3/2cF . For

cF = 0, the energy and pressure are fixed and independent of the parameters, while

the expectation value of the scalar depends on the parameter cφ. Thus the boundary

terms are not completely determined by the gravity theory. It requires further input

or experimental data from the boundary field theory.
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5.2 Non-Fermi liquids & charge splitting

In this last section we examine the conserved charge from the gauge field point of view.

We focus on the case with asymptotic AdS boundary. Using the dominant profile of the

gauge field at the boundary r = ∞ used in (3.3)

Frt =
QF

rλQ
, (5.12)

where λQ and QF depend on the details of the solution. The corresponding conserved

charge (2.3) at the boundary can be expressed in a slightly different form

q = − 4

2κ2
√−gWF rt =

4

2κ2Ld−1

QF

rλQ+1−d
W (φ) . (5.13)

Because the charge q is conserved, there are tension between the field strength Frt and

W (φ). We go back to our examples to see the qualitatively different physics.

Let us consider the AdS5 example in section 4.2, it is easy to see that the coupling

W (φ) and gauge field behave, at the boundary, as

W =
1

4
, Frt =

2
√
2ωQ

r3
, (5.14)

where λQ = 3, QF = 2
√
2ωQ. Thus the conserved charge for AdS5 (and thus d = 4) is

q =

√
2ωQ

κ2L3
. (5.15)

Thus we check that the contribution to the conserved charge entirely come from the gauge

field in this particular solution. It is also straightforward to see the same for the AdS4
solution in section 4.1.

These examples provide the physical properties that resembles the Fermi liquid state

of matter at low temperature T [7]. For example, entropy density s is proportional to

the temperature. Similarly, the specific heats C at constant charge density and constant

chemical potential are also coincide with the entropy density

s ∼ C ∼ T . (5.16)

Let us turn to the interpolating solution we consider in section 4.3. There we see that

W =
2k20L

6Q2κ4

27r6F
r2 ∝ φ−4/3 , Frt =

27r6F
4
(

k20L
4Qκ2

)

1

r4
, (5.17)

which give the conserved charge q = Q. This example is very different from the previous

examples. In particular, the coupling has a rather non-trivial behavior at the boundary.

(The physical coupling, e in W ∼ 1
e2
, behaves as e → 0 at the boundary.) It actually

dominates at large radius compared to the field strength. This means that the conserved

charge does not entirely come from the gauge field. In a way, the charge is hidden in the

geometry because the dilaton field can be considered as a part of the geometry from the

string theory point of view. It will be interesting to closely examine whether this charge
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splitting has some direct or indirect connections to the fractionalization of charge that has

been considered in the holographic context [49, 56, 65].

Due to this interesting competition between the gauge and scalar fields in contributing

to the conserved charge, the model provides a highly non-trivial and interesting physics. For

example, it provides an example of non-Fermi liquid state of matter. Physical properties

are much deviated from the conventional ones. The interpolating solution we consider in

section 4.3 reveals

s ∼ C ∼ T 4/7 , (5.18)

where s and C are the entropy density and specific heat [55]. They are readily different

from the Fermi liquid case s ∼ C ∼ T .

In closing, we mention that the dilaton coupling and a scalar potential in general EMD

theories can be used to accommodate two independent parameters (dynamical and Hyper-

scaling violation exponents), which are directly and/or indirectly responsible for various

interesting physical properties. For example, the existence of the exotic phases of mat-

ter [42, 43] can be signified by the holographic entanglement entropy [66–68]. For certain

parameter ranges of the dynamical and Hyperscaling violation exponents, the holographic

entanglement entropy interpolates between the logarithmic violation and extensive vol-

ume dependence of entanglement entropy. The former has been advertised to indicate the

presence of the Fermi surfaces [55, 56] (see also [69]).

6 Conclusion

We have examined the holographic renormalization focusing on the role of the dilaton

coupling. Due to this coupling, we consider the boundary variational problem that includes

the boundary terms for the gauge and scalar fields together in (2.22). There the parameters

Λφ, cφ are introduced for the scalar, and cF for the gauge field. The corresponding on-shell

action and stress energy tensor are determined in (2.33) and (2.35). We also check that

the mass density and pressure evaluated by the Brown-York formula [39] are equivalently

given by the components of the field theory stress energy tensor (2.41).

From the analysis of the boundary value problem, we conclude that the mixed boundary

condition between the gauge and scalar fields are indeed possible. Let us illustrate this

with a simple example for a scalar with α = 0 in the boundary expansion of the massless

scalar φ → α+ β
rd
, along with the gauge field (3.3) in the context of exponential coupling

W ∼ eφ given in section 3.1. We have the general variation for α = 0 as (3.24)

[

(Λφ − (cφ − 1)d)β

κ̃2
+ cFµqcW

]

δα+ (cF − 1)µq
δµ

µ
+ cFµq

δQF

QF
= 0 . (6.1)

We impose the condition QF = const. for cF = 1 that gives the expectation value for the

dual current operator as 〈OQF
〉 = µq

QF
as in (3.25). Now the expectation value of the dual

scalar operator is given by the expectation value of the dual current operator (3.25)

〈Oα=0〉 =
(Λφ − (cφ − 1)d)

κ̃2
β + cW 〈OQF

〉QF . (6.2)
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This example demonstrates several important results we have advertised throughout the

paper.

• First, the expectation value of a scalar is not only a function of β, but also the

expectation value of the dual current operator 〈OQF
〉.

• QF is not identical to q, which is conserved charge. This happens because of the

dilaton coupling. This demonstrates that the fixed charge ensemble q is not coincide

with the fixed QF ensemble.

• The expectation value of the dual scalar actually depends on the parameters Λφ and

cφ. This demonstrates the finite boundary terms that are prevalent for the theories

with a scalar field. The finite boundary or counter terms are examined along with

previous examples in the literature in section 5.1.

We examine the program with three EMD solutions with asymptotic AdS bound-

ary. Depending on the particular solutions, we demonstrate the consistency between the

boundary variational problem and the on-shell action. Let us take the example of AdS5 in

section 4.2 to summarize. The gauge field A at the boundary is given by

At =
Q
√
2

L
− Q

√
2ω

r2
. (6.3)

The two terms are directly related to the chemical potential µ = Q
√
2

L and the charge

density q = 1
κ2

Q
√
2ω

L3 . This happens because W ∼ 1/4 at the boundary. The same property

is shared by the example given in section 4.1 as well. The corresponding physical properties

are similar to those of the Fermi liquid states in section 5.2. This is contrasted to the other

example in section 4.3 that demonstrates non-Fermi liquid states. It is related to the

non-trivial boundary profile of W given in (5.17). The scalar field saturates the BF bound.

φ =

√

2

3

Q2

r2
. (6.4)

This solution is realized with the faster falloff of the scalar with α = 0 in φ → α
r2

log r+ β
r2
.

The on-shell action and the Grand potential have been evaluated in section 4.2.2

G = −son−shell = −(2− 4cφ + Λφ)Q
3 + 3L2ω

6L5κ2
. (6.5)

They are functions of the two parameters cφ and Λφ. These coefficients are partially fixed by

imposing the differential form of the first law of thermodynamics dΩ = −sdT−qdµ to satisfy

Λφ = 4cφ − 2 , (6.6)

as in (4.41). This condition turns out to be the same condition (3.16) required by the

consistent variational problem for α = 0. Then the mass evaluated by stress energy tensor

agrees with the ADM mass.

– 38 –



J
H
E
P
1
1
(
2
0
1
6
)
0
4
4

While all the thermodynamic quantities are fixed with this condition, the expectation

value of the dual scalar operator depends on the parameter cφ in (4.42)

〈Oα=0〉 =
cφβ

κ̃2
=

√

2

3

cφQ
2

κ̃2
. (6.7)

It is an example of finite boundary term. To fix the expectation value, further information

is required from the field theory side. Finite counter terms have been considered previously

and briefly summarized in section 5.1.

In this paper, we have explored general possibilities to have a mixed boundary condition

between the scalar and gauge fields. For example, we have observed the expectation value

of the dual scalar field can be a function of the expectation value of the current operator.

It will be interesting to find their applications.

It will be also interesting to generalize this program to the backgrounds with different

asymptotic boundaries such as Lifshitz space or Schrödinger space with emphasis on the

dilaton coupling. Holographic renormalization has been done successfully in [9] in the

context of the EMD theories with Lifshiz asymptotics.
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