6,325 research outputs found

    Strange and singlet form factors of the nucleon: Predictions for G0, A4, and HAPPEX-II experiments

    Get PDF
    We investigate the strange and flavor-singlet electric and magnetic form factors of the nucleon within the framework of the SU(3) chiral quark-soliton model. Isospin symmetry is assumed and the symmetry-conserving SU(3) quantization is employed, rotational and strange quark mass corrections being included. For the experiments G0, A4, and HAPPEX-II we predict the quantities GE0+βGM0G^{0}_E + \beta G^{0}_M and GEs+βGMsG^{\rm s}_E + \beta G^{\rm s}_M. The dependence of the results on the parameters of the model and the treatment of the Yukawa asymptotic behavior of the soliton are investigated.Comment: 16 pages, 3 figures, Final version for publication in Eur. Phys. J.

    Quantitative evaluation of diffusion tensor imaging at 3T in the human lumbar intervertebral disc degeneration

    Get PDF
    Poster presentations: ST4postprintThe 2010 World Forum for Spine Research (WFSR 2010): The Intervertebral Disc, Montreal, Canada, 5-8 July 2010

    Fluorescence quenching studies of structure and dynamics in calmodulin-eNOS complexes

    Get PDF
    This is the peer reviewed version of the following article: Arnett David C.,Persechini Anthony,Tran Quang-Kim,Black D.J. and Johnson Carey K.(2015), Fluorescence quenching studies of structure and dynamics in calmodulin–eNOS complexes, FEBS Letters, 589, doi: 10.1016/j.febslet.2015.03.035, which has been published in final form at http://doi.org/10.1016/j.febslet.2015.03.035. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.Activation of endothelial nitric oxide synthase (eNOS) by calmodulin (CaM) facilitates formation of a sequence of conformational states that is not well understood. Fluorescence decays of fluorescently labeled CaM bound to eNOS reveal four distinct conformational states and single-molecule fluorescence trajectories show multiple fluorescence states with transitions between states occurring on time scales of milliseconds to seconds. A model is proposed relating fluorescence quenching states to enzyme conformations. Specifically, we propose that the most highly quenched state corresponds to CaM docked to an oxygenase domain of the enzyme. In single-molecule trajectories, this state occurs with time lags consistent with the oxygenase activity of the enzyme

    Fluorescence quenching studies of structure and dynamics in calmodulin-eNOS complexes

    Get PDF
    This is the peer reviewed version of the following article: Arnett David C.,Persechini Anthony,Tran Quang-Kim,Black D.J. and Johnson Carey K.(2015), Fluorescence quenching studies of structure and dynamics in calmodulin–eNOS complexes, FEBS Letters, 589, doi: 10.1016/j.febslet.2015.03.035, which has been published in final form at http://doi.org/10.1016/j.febslet.2015.03.035. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.Activation of endothelial nitric oxide synthase (eNOS) by calmodulin (CaM) facilitates formation of a sequence of conformational states that is not well understood. Fluorescence decays of fluorescently labeled CaM bound to eNOS reveal four distinct conformational states and single-molecule fluorescence trajectories show multiple fluorescence states with transitions between states occurring on time scales of milliseconds to seconds. A model is proposed relating fluorescence quenching states to enzyme conformations. Specifically, we propose that the most highly quenched state corresponds to CaM docked to an oxygenase domain of the enzyme. In single-molecule trajectories, this state occurs with time lags consistent with the oxygenase activity of the enzyme

    Explaining Convolutional Neural Networks through Attribution-Based Input Sampling and Block-Wise Feature Aggregation

    Full text link
    As an emerging field in Machine Learning, Explainable AI (XAI) has been offering remarkable performance in interpreting the decisions made by Convolutional Neural Networks (CNNs). To achieve visual explanations for CNNs, methods based on class activation mapping and randomized input sampling have gained great popularity. However, the attribution methods based on these techniques provide lower resolution and blurry explanation maps that limit their explanation power. To circumvent this issue, visualization based on various layers is sought. In this work, we collect visualization maps from multiple layers of the model based on an attribution-based input sampling technique and aggregate them to reach a fine-grained and complete explanation. We also propose a layer selection strategy that applies to the whole family of CNN-based models, based on which our extraction framework is applied to visualize the last layers of each convolutional block of the model. Moreover, we perform an empirical analysis of the efficacy of derived lower-level information to enhance the represented attributions. Comprehensive experiments conducted on shallow and deep models trained on natural and industrial datasets, using both ground-truth and model-truth based evaluation metrics validate our proposed algorithm by meeting or outperforming the state-of-the-art methods in terms of explanation ability and visual quality, demonstrating that our method shows stability regardless of the size of objects or instances to be explained.Comment: 9 pages, 9 figures, Accepted at the Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21

    Regularization-independent study of renormalized non-perturbative quenched QED

    Get PDF
    A recently proposed regularization-independent method is used for the first time to solve the renormalized fermion Schwinger-Dyson equation numerically in quenched QED4_4. The Curtis-Pennington vertex is used to illustrate the technique and to facilitate comparison with previous calculations which used the alternative regularization schemes of modified ultraviolet cut-off and dimensional regularization. Our new results are in excellent numerical agreement with these, and so we can now conclude with confidence that there is no residual regularization dependence in these results. Moreover, from a computational point of view the regularization independent method has enormous advantages, since all integrals are absolutely convergent by construction, and so do not mix small and arbitrarily large momentum scales. We analytically predict power law behaviour in the asymptotic region, which is confirmed numerically with high precision. The successful demonstration of this efficient new technique opens the way for studies of unquenched QED to be undertaken in the near future.Comment: 20 pages,5 figure

    Comparing Sex-Specific Outcomes After Rotator Cuff Repair: A Meta-analysis

    Get PDF
    A grant from the One-University Open Access Fund at the University of Kansas was used to defray the author's publication fees in this Open Access journal. The Open Access Fund, administered by librarians from the KU, KU Law, and KUMC libraries, is made possible by contributions from the offices of KU Provost, KU Vice Chancellor for Research & Graduate Studies, and KUMC Vice Chancellor for Research. For more information about the Open Access Fund, please see http://library.kumc.edu/authors-fund.xml.Background: Rotator cuff repair (RCR) is a well-studied procedure. However, the impact of patient sex on outcomes after RCR has not been well studied. Purpose: To conduct a systematic review and meta-analysis of sex-based differences in outcomes after RCR and to record what proportion of studies examined this as a primary or secondary purpose. Study Design: Systematic review; Level of evidence, 4. Methods: A systematic review was performed using multiple databases according to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Studies were included if they were written in English, performed on humans, consisted of patients who underwent RCR, evaluated at least 1 of the selected outcomes based on patient sex, and had statistical analysis available for their sex-based claim. Excluded were case reports, review studies, systematic reviews, cadaveric studies, and studies that did not report at least 1 sex-specific outcome or included certain other injuries associated with a rotator cuff injury. Results: Of 9998 studies screened and 1283 full-text studies reviewed, 11 (0.11%) studies with 2860 patients (1549 male and 1329 female) were included for quantitative analysis. None of these 11 studies examined the impact of patient sex on outcomes after RCR as a primary outcome. Postoperative Constant-Murley scores were analyzed for 7 studies. Male patients had a postoperative Constant-Murley score of 76.77 ± 15.94, while female patients had a postoperative Constant-Murley score of 69.88 ± 17.02. The random-effects model showed that male patients had significantly higher scores than female patients, with a mean difference of 7.33 (95% CI, 5.21-9.46; P < .0001). Analysis of retear rates in 5 studies indicated that there was no difference in the retear rate between sexes (odds ratio, 0.91 [95% CI, 0.49-1.67]). Conclusion: Female patients had lower postoperative Constant-Murley scores compared with male patients, but there was no difference in the retear rate. However, these results were based on an analysis of only 11 studies. The paucity of studies examining the impact of sex suggests that more research is needed on the impact of patient sex on outcomes after RCR
    • …
    corecore