161 research outputs found

    Nerve growth factor signaling through p75 induces apoptosis in Schwann cells via a Bcl-2-independent pathway

    Get PDF
    Apoptosis is involved in the regulation of Schwann cell numbers during normal development and after axonal damage, but the molecular regulation of Schwann cell death remains unknown. We have used stably transfected rat Schwann cell lines to study the potential roles of nerve growth factor (NGF), the antiapoptotic protein Bcl-2 and the cytokine response modifier A (CrmA) in modulating Schwann cell death in vitro. Bcl-2 inhibited Schwann cell apoptosis induced by survival factor withdrawal, whereas CrmA did not. In contrast, Bcl-2-transfected Schwann cells were susceptible to apoptosis in response to exogenous NGF, whereas CrmA-expressing cell lines were resistant. Demonstration of high levels of the low-affinity neurotrophin receptor p75 but not the high-affinity TrkA receptor on the Bcl-2-transfected cell lines suggested that the NGF-induced killing was mediated by p75. This was confirmed by resistance of Schwann cells isolated from p75 knockout mice to the NGF-induced cell death. Nerve growth factor also promoted the death of wild-type mouse and rat Schwann cells in the absence of survival factor withdrawal. Endogenous Bcl-2 mRNA was expressed by wild-type Schwann cells in all conditions that promoted survival but was downregulated to undetectable levels after survival factor withdrawal. In conclusion, our results demonstrate the existence of two separate pathways that expedite apoptosis in Schwann cells: a Bcl-2-blockable pathway initiated on loss of trophic support, and a Bcl-2-independent, CrmA-blockable pathway mediated via the p75 receptor

    Cladribine Treatment for MS Preserves the Differentiative Capacity of Subsequently Generated Monocytes, Whereas Its Administration In Vitro Acutely Influences Monocyte Differentiation but Not Microglial Activation

    Get PDF
    Cladribine (2-chlorodeoxyadenosine, 2CdA) is one of the most effective disease-modifying drugs for multiple sclerosis (MS). Cladribine is a synthetic purine nucleoside analog that induces cell death of lymphocytes and oral cladribine treatment leads to a long-lasting disease stabilization, potentially attributable to immune reconstitution. In addition to its effects on lymphocytes, cladribine has been shown to have immunomodulatory effects on innate immune cells, including dendritic cells and monocytes, which could also contribute to its therapeutic efficacy. However, whether cladribine can modulate human macrophage/microglial activation or monocyte differentiation is currently unknown. The aim of this study was to determine the immunomodulatory effects of cladribine upon monocytes, monocyte-derived macrophages (MDMs) and microglia. We analyzed the phenotype and differentiation of monocytes from MS patients receiving their first course of oral cladribine both before and three weeks after the start of treatment. Flow cytometric analysis of monocytes from MS patients undergoing cladribine treatment revealed that the number and composition of CD14/CD16 monocyte subsets remained unchanged after treatment. Furthermore, after differentiation with M-CSF, such MDMs from treated MS patients showed no difference in gene expression of the inflammatory markers compared to baseline. We further investigated the direct effects of cladribine in vitro using human adult primary MDMs and microglia. GM-CSF-derived MDMs were more sensitive to cell death than M-CSF-derived MDMs. In addition, MDMs treated with cladribine showed increased expression of costimulatory molecules CD80 and CD40, as well as expression of anti-inflammatory, pro-trophic genes IL10 and MERTK, depending on the differentiation condition. Cladribine treatment in vitro did not modulate the expression of activation markers in human microglia. Our study shows that cladribine treatment in vitro affects the differentiation of monocytes into macrophages by modulating the expression of activation markers, which might occur similarly in tissue after their infiltration in the CNS during MS

    Gas6 Increases Myelination by Oligodendrocytes and Its Deficiency Delays Recovery following Cuprizone-Induced Demyelination

    Get PDF
    Multiple sclerosis (MS) is a complex demyelinating disease of the central nervous system. Current research has shown that at least in some cases, the primary insult in MS could be directed at the oligodendrocyte, and that the earliest immune responses are primarily via innate immune cells. We have identified a family of receptor protein tyrosine kinases, known as the TAM receptors (Tyro3, Axl and Mertk), as potentially important in regulating both the oligodendrocyte and immune responses. We have previously shown that Gas6, a ligand for the TAM receptors, can affect the severity of demyelination in mice, with a loss of signalling via Gas6 leading to decreased oligodendrocyte survival and increased microglial activation during cuprizone-induced demyelination. We hypothesised TAM receptor signalling would also influence the extent of recovery in mice following demyelination. A significant effect of the absence of Gas6 was detected upon remyelination, with a lower level of myelination after 4 weeks of recovery in comparison with wild-type mice. The delay in remyelination was accompanied by a reduction in oligodendrocyte numbers. To understand the molecular mechanisms that drive the observed effects, we also examined the effect of exogenous Gas6 in in vitro myelination assays. We found that Gas6 significantly increased myelination in a dose-dependent manner, suggesting that TAM receptor signalling could be directly involved in myelination by oligodendrocytes. The reduced rate of remyelination in the absence of Gas6 could thus result from a lack of Gas6 at a critical time during myelin production after injury. These findings establish Gas6 as an important regulator of both CNS demyelination and remyelination

    Targeted ablation of oligodendrocytes induces axonal pathology independent of overt demyelination

    Get PDF
    The critical role of oligodendrocytes in producing and maintaining myelin that supports rapid axonal conduction in CNS neurons is well established. More recently, additional roles for oligodendrocytes have been posited, including provision of trophic factors and metabolic support for neurons. To investigate the functional consequences of oligodendrocyte loss, we have generated a transgenic mouse model of conditional oligodendrocyte ablation. In this model, oligodendrocytes are rendered selectively sensitive to exogenously administered diphtheria toxin (DT) by targeted expression of the diphtheria toxin receptor in oligodendrocytes. Administration of DT resulted in severe clinical dysfunction with an ascending spastic paralysis ultimately resulting in fatal respiratory impairment within 22 d of DT challenge. Pathologically, at this time point, mice exhibited a loss of ∼26% of oligodendrocyte cell bodies throughout the CNS. Oligodendrocyte cell-body loss was associated with moderate microglial activation, but no widespread myelin degradation. These changes were accompanied with acute axonal injury as characterized by structural and biochemical alterations at nodes of Ranvier and reduced somatosensory-evoked potentials. In summary, we have shown that a death signal initiated within oligodendrocytes results in subcellular changes and loss of key symbiotic interactions between the oligodendrocyte and the axons it ensheaths. This produces profound functional consequences that occur before the removal of the myelin membrane, i.e., in the absence of demyelination. These findings have clear implications for the understanding of the pathogenesis of diseases of the CNS such as multiple sclerosis in which the oligodendrocyte is potentially targeted

    Serial Diffusion Tensor Imaging of the Optic Radiations after Acute Optic Neuritis

    Get PDF
    Previous studies have reported diffusion tensor imaging (DTI) changes within the optic radiations of patients after optic neuritis (ON). We aimed to study optic radiation DTI changes over 12 months following acute ON and to study correlations between DTI parameters and damage to the optic nerve and primary visual cortex (V1). We measured DTI parameters [fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD), and mean diffusivity (MD)] from the optic radiations of 38 acute ON patients at presentation and 6 and 12 months after acute ON. In addition, we measured retinal nerve fibre layer thickness, visual evoked potential amplitude, optic radiation lesion load, and V1 thickness. At baseline, FA was reduced and RD and MD were increased compared to control. Over 12 months, FA reduced in patients at an average rate of −2.6% per annum (control = −0.51%; = 0.006). Change in FA, RD, and MD correlated with V1 thinning over 12 months (FA: = 0.450, = 0.006; RD: = −0.428, = 0.009; MD: = −0.365, = 0.029). In patients with no optic radiation lesions, AD significantly correlated with RNFL thinning at 12 months ( = 0.489, = 0.039). In conclusion, DTI can detect optic radiation changes over 12 months following acute ON that correlate with optic nerve and V1 damage

    Longitudinal Assessment of Antisaccades in Patients with Multiple Sclerosis

    Get PDF
    We have previously demonstrated that assessment of antisaccades (AS) provides not only measures of motor function in multiple sclerosis (MS), but measures of cognitive control processes in particular, attention and working memory. This study sought to demonstrate the potential for AS measures to sensitively reflect change in functional status in MS. Twenty-four patients with relapsing-remitting MS and 12 age-matched controls were evaluated longitudinally using an AS saccade task. Compared to control subjects, a number of saccade parameters changed significantly over a two year period for MS patients. These included saccade error rates, latencies, and accuracy measures. Further, for MS patients, correlations were retained between OM measures and scores on the PASAT, which is considered the reference task for the cognitive evaluation of MS patients. Notably, EDSS scores for these patients did not change significantly over this period. These results demonstrate that OM measures may reflect disease evolution in MS, in the absence of clinically evident changes as measured using conventional techniques. With replication, these markers could ultimately be developed into a cost-effective, non-invasive, and well tolerated assessment tool to assist in confirming progression early in the disease process, and in measuring and predicting response to therapy

    Common and low Frequency variants in MERTK are independently associated with multiple sclerosis susceptibility with discordant association dependent upon HLA-DRB1*15:01 status

    Get PDF
    Multiple Sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system. The risk of developing MS is strongly influenced by genetic predisposition, and over 100 loci have been established as associated with susceptibility. However, the biologically relevant variants underlying disease risk have not been defined for the vast majority of these loci, limiting the power of these genetic studies to define new avenues of research for the development of MS therapeutics. It is therefore crucial that candidate MS susceptibility loci are carefully investigated to identify the biological mechanism linking genetic polymorphism at a given gene to the increased chance of developing MS. MERTK has been established as an MS susceptibility gene and is part of a family of receptor tyrosine kinases known to be involved in the pathogenesis of demyelinating disease. In this study we have refined the association of MERTK with MS risk to independent signals from both common and low frequency variants. One of the associated variants was also found to be linked with increased expression of MERTK in monocytes and higher expression of MERTK was associated with either increased or decreased risk of developing MS, dependent upon HLA-DRB1*15:01 status. This discordant association potentially extended beyond MS susceptibility to alterations in disease course in established MS. This study provides clear evidence that distinct polymorphisms within MERTK are associated with MS susceptibility, one of which has the potential to alter MERTK transcription, which in turn can alter both susceptibility and disease course in MS patients

    A Transcription Factor Map as Revealed by a Genome-Wide Gene Expression Analysis of Whole-Blood mRNA Transcriptome in Multiple Sclerosis

    Get PDF
    Background: Several lines of evidence suggest that transcription factors are involved in the pathogenesis of Multiple Sclerosis (MS) but complete mapping of the whole network has been elusive. One of the reasons is that there are several clinical subtypes of MS and transcription factors that may be involved in one subtype may not be in others. We investigate the possibility that this network could be mapped using microarray technologies and contemporary bioinformatics methods on a dataset derived from whole blood in 99 untreated MS patients (36 Relapse Remitting MS, 43 Primary Progressive MS, and 20 Secondary Progressive MS) and 45 age-matched healthy controls. Methodology/Principal Findings: We have used two different analytical methodologies: a non-standard differential expression analysis and a differential co-expression analysis, which have converged on a significant number of regulatory motifs that are statistically overrepresented in genes that are either differentially expressed (or differentially co-expressed) in cases and controls (e.g., VKROXQ6,p−value,3.31E−6;VKROX_Q6, p-value ,3.31E-6; VCREBP1_Q2, p-value ,9.93E-6, V$YY1_02, p-value ,1.65E-5). Conclusions/Significance: Our analysis uncovered a network of transcription factors that potentially dysregulate several genes in MS or one or more of its disease subtypes. The most significant transcription factor motifs were for the Early Growth Response EGR/KROX family, ATF2, YY1 (Yin and Yang 1), E2F-1/DP-1 and E2F-4/DP-2 heterodimers, SOX5, and CREB and ATF families. These transcription factors are involved in early T-lymphocyte specification and commitment as well as in oligodendrocyte dedifferentiation and development, both pathways that have significant biological plausibility in MS causation
    • …
    corecore