1,749 research outputs found

    Polyhedral monocarbaborane chemistry. Carboxylic acid derivatives of the [closo-2-CB9H10](-) anion

    Get PDF
    Reaction of B10H14 with para-(OHC)C6H4(COOH) in aqueous KOH gives the [nido-6-CB9H11-6-(C6H4-para-COOH)](-) anion I which upon cluster closure with iodine in alkali solution gives the [closo-2-CB9H9-2-(C6H4-para-COOH)](-) anion 2; an analogous procedure with B10H14 and glyoxalic acid OHCCOOH gives the [closo-2-CB9H9-2-(COOH)](-) anion 4 via the [arachno-6-CB9H13-6-(COOH)](-) anion 3

    Development of lanthanum nickelate as a cathode for use in intermediate temperature solid oxide fuel cells

    Get PDF
    The performance of lanthanum nickelate, La2NiO4+δ (LNO), as a cathode in IT-SOFCs with the electrolyte cerium gadolinium oxide, Ce0.9Gd0.1O2−δ (CGO), has been investigated by AC impedance spectroscopy of symmetrical cells. A significant reduction in the area specific resistance (ASR) has been achieved with a layered cathode structure consisting of a thin compact LNO layer between the dense electrolyte and porous electrode. This decrease in ASR is believed to be a result of contact at the electrolyte/cathode boundary enhancing the oxygen ion transfer to the electrolyte. An ASR of 1.0 Ω cm2 at 700 °C was measured in a symmetrical cell with this layered structure, compared to an ASR of 7.4 Ω cm2 in a cell without the compact layer. In addition, further improvements were observed by enhancing the cell current collection and it is anticipated that a symmetrical cell consisting of a layered structure with adequate current collection would lower these ASR values further

    Altering movement parameters disrupts metacognitive accuracy

    Get PDF
    Correctly estimating the confidence we should have in our decisions has traditionally been viewed as a perceptual judgement based solely on the strength or quality of sensory information. However, accumulating evidence has demonstrated that the motor system contributes to judgements of perceptual confidence. Here, we manipulated the speed at which participants' moved using a behavioural priming task and showed that increasing movement speed above participants' baseline measures disrupts their ability to form accurate confidence judgements about their performance. Specifically, after being primed to move faster than they would naturally, participants reported higher confidence in their incorrect decisions than when they moved at their natural pace. We refer to this finding as the adamantly wrong effect. The results are consistent with the hypothesis that veridical feedback from the effector used to indicate a decision is employed to form accurate metacognitive judgements of performance

    Prediction of the functional properties of ceramic materials from composition using artificial neural networks

    Get PDF
    We describe the development of artificial neural networks (ANN) for the prediction of the properties of ceramic materials. The ceramics studied here include polycrystalline, inorganic, non-metallic materials and are investigated on the basis of their dielectric and ionic properties. Dielectric materials are of interest in telecommunication applications where they are used in tuning and filtering equipment. Ionic and mixed conductors are the subjects of a concerted effort in the search for new materials that can be incorporated into efficient, clean electrochemical devices of interest in energy production and greenhouse gas reduction applications. Multi-layer perceptron ANNs are trained using the back-propagation algorithm and utilise data obtained from the literature to learn composition-property relationships between the inputs and outputs of the system. The trained networks use compositional information to predict the relative permittivity and oxygen diffusion properties of ceramic materials. The results show that ANNs are able to produce accurate predictions of the properties of these ceramic materials which can be used to develop materials suitable for use in telecommunication and energy production applications

    Fitness costs associated with building and maintaining the burying beetle's carrion nest

    Get PDF
    It is well-known that features of animal nest architecture can be explained by fitness benefits gained by the offspring housed within. Here we focus on the little-tested suggestion that the fitness costs associated with building and maintaining a nest should additionally account for aspects of its architecture. Burying beetles prepare an edible nest for their young from a small vertebrate carcass, by ripping off any fur or feathers and rolling the flesh into a rounded ball. We found evidence that only larger beetles are able to construct rounder carcass nests, and that rounder carcass nests are associated with lower maintenance costs. Offspring success, however, was not explained by nest roundness. Our experiment thus provides rare support for the suggestion that construction and maintenance costs are key to understanding animal architecture.Cambridge Trust, CONACyT, European Research Council (Consolidators Grant ID: 310785 BALDWINIAN_BEETLES), Royal Society (Wolfson Merit Award), Natural Environment Research Council (Grant ID: NE/H019731/1

    Interstitialcy diffusion of oxygen in tetragonal La<sub>2</sub>CoO<sub>4+δ</sub>

    Get PDF
    We report on the mechanism and energy barrier for oxygen diffusion in tetragonal La2CoO4+δ. The first principles-based calculations in the Density Functional Theory (DFT) formalism were performed to precisely describe the dominant migration paths for the interstitial oxygen atom in La2CoO4+δ. Atomistic simulations using molecular dynamics (MD) were performed to quantify the temperature dependent collective diffusivity, and to enable a comparison of the diffusion barriers found from the force field-based simulations to those obtained from the first principles-based calculations. Both techniques consistently predict that oxygen migrates dominantly via an interstitialcy mechanism. The single interstitialcy migration path involves the removal of an apical lattice oxygen atom out from the LaO-plane and placing it into the nearest available interstitial site, whilst the original interstitial replaces the displaced apical oxygen on the LaO-plane. The facile migration of the interstitial oxygen in this path is enabled by the cooperative titling-untilting of the CoO6 octahedron. DFT calculations indicate that this process has an activation energy significantly lower than that of the direct interstitial site exchange mechanism. For 800-1000 K, the MD diffusivities are consistent with the available experimental data within one order of magnitude. The DFT- and the MD-predictions suggest that the diffusion barrier for the interstitialcy mechanism is within 0.31-0.80 eV. The identified migration path, activation energies and diffusivities, and the associated uncertainties are discussed in the context of the previous experimental and theoretical results from the related Ruddlesden-Popper structures
    corecore