95 research outputs found

    Faceting of Twin Grain Boundaries in High-Purity Copper Subjected to High Pressure Torsion

    Get PDF

    Nanocrystalline Zr3Al Made through Amorphization by Repeated Cold Rolling and Followed by Crystallization

    Full text link
    The intermetallic compound Zr3Al is severely deformed by the method of repeated cold rolling. By X-ray diffraction it is shown that this leads to amorphization. TEM investigations reveal that a homogeneously distributed debris of very small nanocrystals is present in the amorphous matrix that is not resolved by X-ray diffraction. After heating to 773 K, the crystallization of the amorphous structure leads to a fully nanocrystalline structure of small grains (10 - 20 nm in diameter) of the non-equilibrium Zr2Al phase. It is concluded that the debris retained in the amorphous phase acts as nuclei. After heating to 973 K the grains grow to about 100 nm in diameter and the compound Zr3Al starts to form, that is corresponding to the alloy composition

    Gradient bandgap narrowing in severely deformed ZnO nanoparticles

    Get PDF
    Gradient nanostructured metallic materials with a gradual change of grain boundary and dislocation density display unprecedent mechanical properties. Herein, we uncover a gradient of point defects concentration and concomitant gradient bandgap (E g) narrowing in metal oxide nanoparticles processed by a combination of severe shearing and frictional sliding deformation. Using the valence electron-energy loss spectroscopy technique, we find a gradual decrease of E g from 2.93 eV in the interior to 2.43 eV at the edge of the high-pressure torsion processed ZnO flake-shaped particle. This work paves the way to strain engineering of gradient-structured metal oxide semiconductors for unique functional properties

    The Phase Transformations Induced by High-Pressure Torsion in Ti–Nb-Based Alloys

    Get PDF
    The study of the fundamentals of the α → ω and β → ω phase transformations induced by high-pressure torsion (HPT) in Ti–Nb-based alloys is presented in the current work. Prior to HPT, three alloys with 5, 10, and 20 wt% of Nb were annealed in the temperature range of 700–540°C in order to obtain the (α + β)-phase state with a different amount of the β-phase. The samples were annealed for a long time in order to reach equilibrium Nb content in the α-solid solution. Scanning electron microscope (SEM), transmission electron microscopy, and X-ray diffraction techniques were used for the characterization of the microstructure evolution and phase transformations. HPT results in a strong grain refinement of the microstructure, a partial transformation of the α-phase into the ω-phase, and a complete β → ω phase transformation. Two kinds of the ω-phase with different chemical compositions were observed after HPT. The first one was formed from the β-phase, enriched in Nb, and the second one from the almost Nb-pure α-phase. It was found that the α → ω phase transformation depends on the Nb content in the initial α-Ti phase. The less the amount of Nb in the α-phase, the more the amount of the α-phase is transformed into the ω-phase

    The Enrichment of (Cu, Sn) Solid Solution Driven by High-Pressure Torsion

    Get PDF
    Cu–14 wt% Sn alloy was annealed at temperatures of 320 and 500 °C. The concentration of tin cinit_{init} in the copper-based matrix increased with annealing temperature. The annealed samples were subjected to high-pressure torsion (HPT) at 6 GPa, 5 turns, 1 rpa. HPT led to the refinement of Cu grains. The shape of the colonies of α + ε phases changed only slightly. The HPT-driven enrichment of the Cu-based solid solution with Sn atoms cHPT_{HPT}–cinit_{init} decreased with increasing cinit_{init}. The performed theoretical analysis explained this behavior of the HPT-driven enrichment

    Structural and Mechanical Properties of Ti-Co Alloys Treated by High Pressure Torsion

    Get PDF
    The microstructure and properties of titanium-based alloys can be tailored using severe plastic deformation. The structure and microhardness of Ti–4 wt.% Co alloy have been studied after preliminary annealing and following high pressure torsion (HPT). The Ti–4 wt.% Co alloy has been annealed at 400, 500, and 600 °C, i.e., below the temperature of eutectoid transformation in the Ti–4 wt.% Co system. The amount of Co dissolved in α-Ti increased with increasing annealing temperature. HPT led to the transformation of α-Ti in ω-Ti. After HPT, the amount of ω-phase in the sample annealed at 400 °C was about 80­85%, i.e., higher than in pure titanium (about 40%). However, with increasing temperature of pre-annealing, the portion of ω-phase decreased (60–65% at 500 °C and about 5% at 600 °C). The microhardness of all investigated samples increased with increasing temperature of pre-annealing

    Influence of β-Stabilizers on the α-Ti→ω-Ti Transformation in Ti-Based Alloys

    Get PDF
    The development of next generation Ti-based alloys demand completely new processes and approaches. In particular, the Ti-alloys of next generation will contain not only α-Ti and β-Ti phases, but also small amounts of ω-phase and intermetallic compounds. The β→ω phase transformation induced by high-pressure torsion (HPT) has been studied in detail recently. In this work, we investigated the HPT-induced α→ω phase transformation. For this purpose, we added various β-stabilizers into α-Ti matrix of studied Ti-alloys. Ti-alloys with 4% Fe, 2% Cr, 3% Ni, and 4% Co (wt. %) have been annealed at the temperatures below their point of eutectoid decomposition, from β-Ti to α-Ti, and respective intermetallics (TiFe, Ti2_{2}Co, Ti2_{2}Ni, TiCr2_{2}). Volume fraction of HPT-driven ω-phase (from ≤5 up to ~80%) depended on the amount of alloying element dissolved in the α-matrix. Evaluation of lattice parameters revealed accelerated mass transfer during HPT at room temperature corresponding to bulk diffusion in α-Ti at ~600 °С

    Microstructure, microhardness and corrosion resistance of WE43 alloy based composites after high-pressure torsion

    Get PDF
    The structure and properties of a composite consisting of Mg-Y-Nd-Zr alloy (WE43) and various oxides are studied. The particles of the WE43 powder were coated by the nanocrystalline oxide layer by means of a wet chemical deposition process. After that the powder is compressed into solid samples and deformed using high-pressure torsion at room temperature. A second phase is present, both, in pure WE43 alloy and in the one with deposited oxides. We observed that the modification of the alloy by the oxide layer deposition and deformation by high-pressure torsion changes the phase composition and properties of the samples. The samples modified by TiO2 showed the best microhardness and corrosion resistanc

    Formation and thermal stability of ω-Ti(Fe) in α-phase-based Ti(Fe) alloys

    Get PDF
    In this work, the formation and thermal stability of the ω-Ti(Fe) phase that were produced by the high-pressure torsion (HPT) were studied in two-phase α-Ti + TiFe alloys containing 2 wt.%, 4 wt.% and 10 wt.% iron. The two-phase microstructure was achieved by annealing the alloys at 470 °C for 4000 h and then quenching them in water. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were utilized to characterize the samples. The thermal stability of the ω-Ti(Fe) phase was investigated using differential scanning calorimetry (DSC) and in situ high-temperature XRD. In the HPT process, the high-pressure ω-Ti(Fe) phase mainly formed from α-Ti. It started to decompose by a cascade of exothermic reactions already at temperatures of 130 °C. The decomposition was finished above ~320 °C. Upon further heating, the phase transformation proceeded via the formation of a supersaturated α-Ti(Fe) phase. Finally, the equilibrium phase assemblage was established at high temperatures. The eutectoid temperature and the phase transition temperatures measured in deformed and heat-treated samples are compared for the samples with different iron concentrations and for samples with different phase compositions prior to the HPT process. Thermodynamic calculations were carried out to predict stable and metastable phase assemblages after heat-treatments at low (α-Ti + TiFe) and high temperatures (α-Ti + β-(Ti,Fe), β-(Ti,Fe))

    High-Pressure torsion-Induced Grain Growth in Electrodeposited Nanocrystalline Ni

    Get PDF
    Deformation-induced grain growth has been reported in nanocrystalline (nc) materials under indentation and severe cyclic loading, but not under any other deformation mode. This raises an issue on critical conditions for grain growth in nc materials. This study investigates deformation-induced grain growth in electrodeposited nc Ni during high-pressure torsion (HPT). Our results indicate that high stress and severe plastic deformation are required for inducing grain growth, and the upper limit of grain size is determined by the deformation mode and parameters. Also, texture evolution suggests that grain-boundary-mediated mechanisms played a significant role in accommodating HPT strain
    corecore