179 research outputs found

    LTP interferometer - noise sources and performance

    No full text
    The LISA Technology Package (LTP) uses laser interferometry to measure the changes in relative displacement between two inertial test masses. The goals of the mission require a displacement measuring precision of 10 pm Hz-1/2 at frequencies in the 3–30 mHz band. We report on progress with a prototype LTP interferometer optical bench in which fused silica mirrors and beamsplitters are fixed to a ZERODUR® substrate using hydroxide catalysis bonding to form a rigid interferometer. The couplings to displacement noise of this interferometer of two expected noise sources—laser frequency noise and ambient temperature fluctuations—have been investigated, and an additional, unexpected, noise source has been identified. The additional noise is due to small amounts of signal at the heterodyne frequency arriving at the photodiode preamplifiers with a phase that quasistatically changes with respect to the optical signal. The phase shift is caused by differential changes in the external optical paths the beams travel before they reach the rigid interferometer. Two different external path length stabilization systems have been demonstrated and these allowed the performance of the overall system to meet the LTP displacement noise requirement

    Construction and testing of the optical bench for LISA pathfinder

    Get PDF
    eLISA is a space mission designed to measure gravitational radiation over a frequency range of 0.1–100 mHz (European Space Agency LISA Assessment Study Report 2011). It uses laser interferometry to measure changes of order 10 pm/Hz10\,{\rm pm /\sqrt{Hz}} in the separation of inertial test masses housed in spacecraft separated by 1 million km. LISA Pathfinder (LPF) is a technology demonstrator mission that will test the key eLISA technologies of inertial test masses monitored by laser interferometry in a drag-free spacecraft. The optical bench that provides the interferometry for LPF must meet a number of stringent requirements: the optical path must be stable at the few pm/Hz{\rm pm /\sqrt{Hz}} level; it must direct the optical beams onto the inertial masses with an accuracy of better than ±25 μm, and it must be robust enough not only to survive launch vibrations but to achieve full performance after launch. In this paper we describe the construction and testing of the flight optical bench for LISA Pathfinder that meets all the design requirements

    LISA pathfinder optical interferometry

    No full text
    The LISA Technology Package (LTP) aboard of LISA pathfinder mission is dedicated to demonstrate and verify key technologies for LISA, in particular drag free control, ultra-precise laser interferometry and gravitational sensor. Two inertial sensor, the optical interferometry in between combined with the dimensional stable Glass ceramic Zerodur structure are setting up the LTP. The validation of drag free operation of the spacecraft is planned by measuring laser interferometrically the relative displacement and tilt between two test masses (and the optical bench) with a noise levels of 10pm/[square root of]Hz and 10 nrad/[square root of]Hz between 3mHz and 30mHz. This performance and additionally overall environmental tests was currently verified on EM level. The OB structure is able to support two inertial sensors ([approximate]17kg each) and to withstand 25 g design loads as well as 0...40°C temperature range. Optical functionality was verified successfully after environmental tests. The engineering model development and manufacturing of the optical bench and interferometry hardware and their verification tests will be presented

    A strategy to characterize the LISA-Pathfinder cold gas thruster system

    Get PDF
    The cold gas micro-propulsion system that will be used during the LISA-Pathfinder mission will be one of the most important component used to ensure the "free-fall" of the enclosed test masses. In this paper we present a possible strategy to characterize the effective direction and amplitude gain of each of the 6 thrusters of this system

    Design and construction of an optical test bed for LISA imaging systems and tilt-to-length coupling

    Get PDF
    The laser interferometer space antenna (LISA) is a future space-based interferometric gravitational-wave detector consisting of three spacecraft in a triangular configuration. The interferometric measurements of path length changes between satellites will be performed on optical benches in the satellites. Angular misalignments of the interfering beams couple into the length measurement and represent a significant noise source. Imaging systems will be used to reduce this tilt-to-length coupling. We designed and constructed an optical test bed to experimentally investigate tilt-to-length coupling. It consists of two separate structures, a minimal optical bench and a telescope simulator. The minimal optical bench comprises the science interferometer where the local laser is interfered with light from a remote spacecraft. In our experiment, a simulated version of this received beam is generated on the telescope simulator. The telescope simulator provides a tilting beam, a reference interferometer and an additional static beam as a phase reference. The tilting beam can either be a flat-top beam or a Gaussian beam. We avoid tilt-to-length coupling in the reference interferometer by using a small photo diode placed at an image of the beam rotation point. We show that the test bed is operational with an initial measurement of tilt-to-length coupling without imaging systems. Furthermore, we show the design of two different imaging systems whose performance will be investigated in future experiments

    Design and construction of a telescope simulator for LISA optical bench testing

    Get PDF
    LISA (Laser Interferometer Space Antenna) is a proposed space-based instrument for astrophysical observations via the measurement of gravitational waves at mHz frequencies. The triangular constellation of the three LISA satellites will allow interferometric measurement of the changes in distance along the arms. On board each LISA satellite there will be two optical benches, one for each testmass, that measure the distance to the local test mass and to the remote optical bench on the distant satellite. For technology development, an Optical Bench Elegant Bread Board (OB EBB) is currently under construction. To verify the performance of the EBB, another optical bench - the so-called telescope simulator bench - will be constructed to simulate the beam coming from the far spacecraft. The optical beam from the telescope simulator will be superimposed with the light on the LISA OB, in order to simulate the link between two LISA satellites. Similarly in reverse, the optical beam from the LISA OB will be picked up and measured on the telescope simulator bench. Furthermore, the telescope simulator houses a test mass simulator. A gold coated mirror which can be manipulated by an actuator simulates the test mass movements. This paper presents the layout and design of the bench for the telescope simulator and test mass simulator

    Free-flight experiments in LISA Pathfinder

    Get PDF
    The LISA Pathfinder mission will demonstrate the technology of drag-free test masses for use as inertial references in future space-based gravitational wave detectors. To accomplish this, the Pathfinder spacecraft will perform drag-free flight about a test mass while measuring the acceleration of this primary test mass relative to a second reference test mass. Because the reference test mass is contained within the same spacecraft, it is necessary to apply forces on it to maintain its position and attitude relative to the spacecraft. These forces are a potential source of acceleration noise in the LISA Pathfinder system that are not present in the full LISA configuration. While LISA Pathfinder has been designed to meet it's primary mission requirements in the presence of this noise, recent estimates suggest that the on-orbit performance may be limited by this `suspension noise'. The drift-mode or free-flight experiments provide an opportunity to mitigate this noise source and further characterize the underlying disturbances that are of interest to the designers of LISA-like instruments. This article provides a high-level overview of these experiments and the methods under development to analyze the resulting data.Comment: 13 pages, 5 figures. Accepted to Journal Of Physics, Conference Series. Presented at 10th International LISA Symposium, May 2014, Gainesville, FL, US

    Experimental Demonstration of Reduced Tilt-to-length Coupling by Using Imaging Systems in Precision Interferometers

    Get PDF
    Angular misalignment of one of the interfering beams in laser interferometers can couple into the interferometric length measurement and is called tilt-to-length (TTL) coupling in the following. In the noise budget of the planned space-based gravitational-wave detector evolved Laser Interferometer Space Antenna (eLISA) [1, 2] TTL coupling is the second largest noise source after shot noise [3
    • …
    corecore