197 research outputs found

    Orbital pacing of the Early Jurassic carbon cycle, black-shale formation and seabed methane seepage

    Get PDF
    The Early Jurassic (ca 201 to 174 Ma) was marked by a series of rapid perturbations in climate, the environment and global geochemical cycles, which have been linked to volcanic outgassing and the release of biogenic or thermogenic methane into the ocean–atmosphere system. The state of the global carbon cycle and prevailing climatic and environmental conditions that existed at this time are, however, poorly constrained. Here, mudrocks of the Lower Sinemurian Arietites bucklandi ammonite Biozone at coastal exposures at Kilve, Somerset, UK, have been studied. This succession includes laminated organic-rich black shales, which are present throughout the Bristol Channel Basin, and coincides with a 2 to 3‰ negative carbon-isotope excursion, distinct changes in inferred land vegetation and abundant marine prasinophytes (green algae). The event itself does not represent a single perturbation of the regional environment, but follows in a sequence of eccentricity-modulated, precession-paced perturbations that occur throughout the preceding Hettangian stage, with the periodic formation of organic-rich laminated black shales in the Bristol Channel Basin. However, the Early Sinemurian event studied herein is more extreme in nature, with sedimentary total organic carbon values of 5 to 11% persisting over about 2 m, representing ca 100 kyr, possibly in phase with short (ca 100 kyr) and long (ca 405 kyr) eccentricity forcing. The formation of methane-seep carbonate-cemented mounds took place relatively soon after the deposition of laminated black shales. Biogenic methane probably formed in response to microbial methanogenesis in the organic-rich black shale, which was subsequently channelled to the sediment–water interface approximately 5 m above the source bed, and ca 200 kyr after cessation of formation of the black shale

    Medical encounters (including injury and illness) at mass community-based endurance sports events: an international consensus statement on definitions and methods of data recording and reporting

    Get PDF
    Mass participation endurance sports events are popular but a large number of participants are older and may be at risk of medical complications during events. Medical encounters (defined fully in the statement) include those traditionally considered 'musculoskeletal' (eg, strains) and those due to 'illness' (eg, cardiac, respiratory, endocrine). The rate of sudden death during mass endurance events (running, cycling and triathlon) is between 0.4 and 3.3 per 100 000 entrants. The rate of other serious medical encounters (eg, exertional heat stroke, hyponatraemia) is rarely reported; in runners it can be up to 100 times higher than that of sudden death, that is, between 16 and 155 per 100 000 race entrants. This consensus statement has two goals. It (1) defines terms for injury and illness-related medical encounters, severity and timing of medical encounters, and diagnostic categories of medical encounters, and (2) describes the methods for recording data at mass participation endurance sports events and reporting results to authorities and for publication. This unifying consensus statement will allow data from various events to be compared and aggregated. This will inform athlete/patient management, and thus make endurance events safer

    Organic residue analysis of Egyptian votive mummies and their research potential

    Get PDF
    YesVast numbers of votive mummies were produced in Egypt during the Late Pharaonic, Ptolemaic, and Roman periods. Although millions remain in situ, many were removed and have ultimately entered museum collections around the world. There they have often languished as uncomfortable reminders of antiquarian practices with little information available to enhance their value as artefacts worthy of conservation or display. A multi-disciplinary research project, based at the University of Manchester, is currently redressing these issues. One recent aspect of this work has been the characterization of natural products employed in the mummification of votive bundles. Using gas chromatography–mass spectrometry and the well-established biomarker approach, analysis of 24 samples from 17 mummy bundles has demonstrated the presence of oils/fats, natural waxes, petroleum products, resinous exudates, and essential oils. These results confirm the range of organic materials employed in embalming and augment our understanding of the treatment of votives. In this first systematic initiative of its kind, initial findings point to possible trends in body treatment practices in relation to chronology, geography, and changes in ideology which will be investigated as the study progresses. Detailed knowledge of the substances used on individual bundles has also served to enhance their value as display items and aid in their conservation.RCB is supported by a PhD studentship from the Art and Humanities Research Council (43019R00209). L.M. and S.A.W. are supported by a Leverhulme Trust Research Project Award (RPG-2013-143)

    Facile Preparation of Organic Nanoparticles by Interfacial Cross-Linking of Reverse Micelles and Template Synthesis of Subnanometer Au−Pt Nanoparticles

    Get PDF
    A single- and a double-tailed cationic surfactant with the triallylammonium headgroup formed reverse micelles (RMs) in heptane/chloroform containing a small amount of water. The reverse micelles were cross-linked at the interface upon UV irradiation in the presence of a water-soluble dithiol cross-linker and a photoinitiator. The resulting interfacially cross-linked reverse micelles (ICRMs) of the single-tailed surfactant aggregated in a solvent-dependent fashion, whereas those of the double-tailed were identical in size as the corresponding RMs. The ICRMs could extract anionic metal salts, such as AuCl4− and PtCl62−, from water into the organic phase. Au and Pt metal nanoparticles were produced upon reduction of metal salts. The covalent nature of the ICRMs made the template synthesis highly predictable, with the size of the metal particles controlled by the amount of the metal salt and the method of reduction. Nanoalloys were obtained by combining two metal precursors in the same reaction. Reduction of the ICRM-entrapped aurate also occurred without any external reducing agents, and the gold nanoparticles differed dramatically from those obtained through sodium borohydride reduction. The same template allowed the preparation of luminescent Au4, Au8, and Au13−Au23 clusters, as well as gold nanoparticles several nanometers in size, simply by using different amounts of gold precursor and reducing conditions
    • 

    corecore