5 research outputs found

    Accurate calculation of resonances in multiple-well oscillators

    Full text link
    Quantum--mechanical multiple--well oscillators exhibit curious complex eigenvalues that resemble resonances in models with continuum spectra. We discuss a method for the accurate calculation of their real and imaginary parts

    Variational Quark Mass Expansion and the Order Parameters of Chiral Symmetry Breaking

    Get PDF
    We investigate in some detail a "variational mass" expansion approach, generalized from a similar construction developed in the Gross-Neveu model, to evaluate the basic order parameters of the dynamical breaking of the SU(2)L×SU(2)RSU(2)_L \times SU(2)_R and SU(3)L×SU(3)RSU(3)_L \times SU(3)_R chiral symmetries in QCD. The method starts with a reorganization of the ordinary perturbation theory with the addition of an arbitrary quark mass mm. The new perturbative series can be summed to all orders thanks to renormalization group properties, with specific boundary conditions, and advocated analytic continuation in mm properties. In the approximation where the explicit breakdown of the chiral symmetries due to small current quark masses is neglected, we derive ansatzes for the dynamical contribution to the "constituent" masses MqM_q of the u,d,su,d,s quarks; the pion decay constant FπF_\pi; and the quark condensate in terms of the basic QCD scale ΛMSˉ\Lambda_{\bar{MS}} . Those ansatzes are then optimized, in a sense to be specified, and also explicit symmetry breaking mass terms can be consistently introduced in the framework. The obtained values of FπF_\pi and MqM_q are roughly in agreement with what is expected from other non-perturbative methods. In contrast we obtain quite a small value of <qˉq>|< \bar q q >| within our approach. The possible interpretation of the latter results is briefly discussed.Comment: 40 pages, LaTex, 2 PS figures. Additions in section 2.2 to better explain the relation between the current mass and the dynamical mass ansatz. Minor misprints corrected. Version to appear in Phys. Rev.

    (Borel) convergence of the variationally improved mass expansion and the O(N) Gross-Neveu model mass gap

    Full text link
    We reconsider in some detail a construction allowing (Borel) convergence of an alternative perturbative expansion, for specific physical quantities of asymptotically free models. The usual perturbative expansions (with an explicit mass dependence) are transmuted into expansions in 1/F, where F1/g(m)F \sim 1/g(m) for mΛm \gg \Lambda while F(m/Λ)αF \sim (m/\Lambda)^\alpha for m \lsim \Lambda, Λ\Lambda being the basic scale and α\alpha given by renormalization group coefficients. (Borel) convergence holds in a range of FF which corresponds to reach unambiguously the strong coupling infrared regime near m0m\to 0, which can define certain "non-perturbative" quantities, such as the mass gap, from a resummation of this alternative expansion. Convergence properties can be further improved, when combined with δ\delta expansion (variationally improved perturbation) methods. We illustrate these results by re-evaluating, from purely perturbative informations, the O(N) Gross-Neveu model mass gap, known for arbitrary NN from exact S matrix results. Comparing different levels of approximations that can be defined within our framework, we find reasonable agreement with the exact result.Comment: 33 pp., RevTeX4, 6 eps figures. Minor typos, notation and wording corrections, 2 references added. To appear in Phys. Rev.
    corecore