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Abstract

We investigate in some detail a “variational mass” expansion approach, gener-

alized from a similar construction developed in the Gross-Neveu model, to evaluate

the basic order parameters of the dynamical breaking of the SU(2)L × SU(2)R and

SU(3)L×SU(3)R chiral symmetries in QCD. The method starts with a reorganiza-

tion of the ordinary perturbation theory with the addition of an arbitrary quark mass

m. The new perturbative series can be summed to all orders thanks to renormal-

ization group properties, with specific boundary conditions, and advocated analytic

continuation in m properties. In the approximation where the explicit breakdown

of the chiral symmetries due to small current quark masses is neglected, we derive

ansatzes for the dynamical contribution to the “constituent” masses Mq of the u, d, s

quarks; the pion decay constant Fπ; and the quark condensate 〈q̄q〉 in terms of the

basic QCD scale ΛMS . Those ansatzes are then optimized, in a sense to be specified,

and also explicit symmetry breaking mass terms can be consistently introduced in

the framework. The values of Fπ and Mq obtained are roughly in agreement with

what is expected from other non-perturbative methods. In contrast we obtain quite

a small value of |〈q̄q〉| within our approach. The possible interpretation of the latter

results is briefly discussed.
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1 Introduction

Although QCD is certainly established as the correct theoretical framework underlying
the strong interaction physics, a still challenging issue is to derive the low-energy proper-
ties of the strongly interacting spectrum from QCD “first principle”, due to our limited
present skill with non-perturbative technics. At very low energy, where the (ordinary) per-
turbation theory cannot be applied, Chiral Perturbation theory (ChPT) [1] or extended
Nambu–Jona-Lasinio models (ENJL) [2, 3] give a consistent framework in terms of basic
parameters that have to be fixed from the data. Yet the link between those effective
parameters and the basic QCD ones, the gauge coupling and the quark masses, remains
largely unsolved. To have, typically, a determination of the pion decay constant Fπ and
other similar low energy quantities directly in terms of the basic QCD coupling constant
αS, is clearly a desirable task. Lattice simulations are perhaps at present the only system-
atic approach to such questions, and indeed provide, among many other things, a deter-
mination of αS [4] and also evidence for dynamical chiral symmetry breakdown (CSB) [5].
Yet a fully consistent treatment of the chiral symmetry on the lattice is still missing, and
there are also inherent difficulties of dealing with truly dynamical “unquenched” quarks,
light meson masses, and related problems.

In the present paper, we investigate a new method to implement CSB directly from
the basic QCD degrees of freedom, the quarks and gluons. More precisely we shall explore
how far the basic QCD Lagrangian can provide, in a self-consistent way, at least the basic
CSB parameters, namely the formation of dynamical quark masses, quark condensates,
and the pion decay constant, in the limit of vanishing Lagrangian (current) quark masses.
Such a qualitative picture of CSB can be made more quantitative by applying a new
“variational mass” approach, recently developed within the framework of the anharmonic
oscillator [6], and the Gross-Neveu (GN) model [7, 8].

Before developing our construction, let us remind that there are in fact two main
phenomena which are believed to emerge from non-perturbative dynamics (and which are
not fully understood from first principle), namely the Confinement and CSB respectively.
Even if those are certainly intimately related in the full QCD dynamics, it is legitimate
to consider, at least in a first approximation, those two issues separately. QCD is a very
rich theory involving many different non-perturbative aspects, therefore any new method
or model can most likely deal with a selected or simplified aspect of the full dynam-
ics. After all, as far as the gross features of the chiral dynamics are concerned (that is,
the existence of light pions and consequences in the form of low energy theorems [9]),
a picture without confinement but with CSB would not look very much different from
the true QCD one. On the other hand, there is a large evidence that the confinement
forces do play a more major role in the formation of heavier hadrons [10]. This relatively
neat separation of the relevant scales is indeed one of the basic assumptions underlying
several successful approaches to chiral dynamics, like the above-mentioned ChPT, ENJL
models etc, which generally do not include the confinement properties in their framework.
Somewhat closer to the present investigation, similar assumptions are often made in many
dynamical CSB models, dealing with various levels of approximations in the treatment of
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the Schwinger-Dyson equations for the Green functions relevant to chiral dynamics 1. In
contrast, there exists a quite radically different attitude towards CSB in QCD, advocating
that the responsible mechanism is most probably the non-perturbative effects due to the
instanton vacuum [13], or even more directly related to confinement [14]. However, even
if the instanton picture of CSB is on general grounds well motivated, and many fruitful
ideas have been developed in that context 2, as far as we are aware there is at present no
sufficiently rigorous or compelling evidence for it. In any event, it is certainly of interest
to investigate quantitatively the “non-instantonic” contribution to CSB, and we hope that
our method is a more consistent step in that direction.

Although the basic idea was already developed in refs [7, 8] (see also [15] for a first
acquaintance in QCD), we shall reformulate here the construction in some details for
self-containedness reasons, and to take into account some crucial differences between
QCD and the GN model. In addition we introduce explicit symmetry breaking mass
terms consistently in the framework, which as we shall see play an important role in the
determination of 〈q̄q〉.
The method thus starts by considering an arbitrary quark mass term m added to the
massless QCD Lagrangian, whose dependence is calculated in perturbation theory with
an expansion parameter x, interpolating between the massive free theory, at x = 0,
and the relevant interacting theory, at x = 1. This starting point is similar to the one
developed a long time ago and implemented in various different forms in refs.[16]–[27].
There, it was advocated that the convergence of conventional perturbation theory may
be improved by such a variational procedure in which the separation of the action into
“free” and “interaction” parts is made to depend on some set of auxiliary parameters.
The results obtained by expanding to finite order in this redefined perturbation series
are optimal in regions of the space of auxiliary parameters where they are least sensitive
to these parameters. Indeed, such regions are those expected to best approximate the
exact answer, where there should simply be no dependence on the auxiliary parameters 3.
Moreover it recently appeared strong evidence that this optimized perturbation theory
may lead to a rigorously convergent series of approximations even in strong coupling
cases. In particular, the convergence of this variational-like procedure has been rigorously
established in the case of zero and one dimensional field theories[30].

An essential novelty however is that the construction in [7, 8] combines in a specific
manner the renormalization group (RG) invariance of the theory together with analytic
continuation in m properties: this, at least in a certain approximation to be motivated,
allows to reach infinite order of perturbation in the parameter x, therefore presumably
optimal, provided it converges. This leads to a set of non-perturbative ansatzs for the
relevant CSB quantities, as functions of the variational mass parameter m and renormal-
ization scheme (RS) dependence parameters as well, which can be studied for extrema
and optimized. Quite essentially, our construction also provides a simple and consistent
treatment of the renormalization, reconciling the variational approach with the inherent

1See e.g. ref. [11] and the textbook by V. A. Miransky [12] for reviews and original references.
2For a review on such issues and an extended collection of original references, we refer to the textbook

by E. V. Shuryak [10].
3For variants of the optimized variational-perturbation theory ideas, not based on minimization, but

leading in many field-theoretical applications to similar results, see also refs. [28, 29].
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infinities of quantum field theory and the RG properties. A comparison of the variational
calculations with the known exact results [31] for the mass gap in the O(N) GN model [32]
is very satisfactory[8], in view of the fact that for arbitrary N the (only known at present)
second order non-logarithmic perturbative terms have been used in the optimization. For
QCD, one might however argue that the truly non-perturbative effects are lying in the
infrared domain, for which a complete non-perturbative treatment is clearly beyond the
scope of the present framework. We shall see in fact that our RG invariant ansatz can
be viewed as an (optimized) perturbation theory around a non-trivial fixed point of the
RG evolution solutions, which in that sense avoids having to treat the infrared prob-
lems inherent to non-perturbative QCD 4. The physical relevance of such a framework
can be judged a posteriori, e.g. by comparing our estimates with the results from other
non-perturbative methods (like the lattice simulations [4, 5] or the spectral sum rules
approach [35] typically), but unfortunately there is at present no rigorous way of defining
the intrinsic error and convergence properties of the method, at least in four dimension.

The paper is organized as follows: in section 2, we explain and motivate in details
the construction and derive the main ansatz for the dynamical CSB contribution to the
“constituent” quark mass, in the exact chiral limit. A dynamical quark mass in QCD is
not, strictly speaking, an order parameter, but it is interesting for at least two reasons:
first it appears as a direct generalization of the rather intuitive concept of a (fermion)
mass gap originating from dynamical CSB, as illustrated in many simpler models. Second,
as we shall see, the concept and known properties of a gauge-invariant and infrared finite
pole mass enters as a basic ingredient in the ansatz, and plays also some role in the
determination of the genuine order parameters, 〈q̄q〉 and Fπ. Concisely, our construction
will be shown to amount to:
i) taking the pole mass, as expressed as a function of the Lagrangian (arbitrary) running
mass parameter m(µ) in some appropriate renormalisation scheme (RS);
ii) constructing an ansatz as a (contour) integral over the analytically continued mass
parameter m(µ), which can be shown to formally resum the reorganized x series, with a
specific contour and appropriate RS choices avoiding some singularities;
iii) finally optimizing the result with respect to m(µ) and the RS arbitrariness.
In section 3 the construction is generalized to the case of a composite operator of arbitrary
mass dimension n, and applied to the determination of the pion decay constant, Fπ. In
section 4 we apply the construction to derive from similar arguments an expression for
〈q̄q〉, introducing for this purpose explicit symmetry breaking mass terms. Summary and
conclusions are given in section 5. We have also collected in Appendix A the relevant
material on renormalization group properties, which fixes our normalizations and some
definitions, and in Appendix B the analytic continuation technics used in the derivation
of the main ansatzs. For completeness we also display in Appendix C the perturbative
expressions which are used as basic ingredients in the different ansatzs.

4Quite recently, an interesting approach has been developed [33] to determine the same CSB quantities,
by using the exact “renormalization group flow” formulation [34]. Due to the central role played by RG
properties, our present approach may be considered as having some similarities in aim with the latter
one, albeit being totally different in the technics used.
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2 Dynamical quark masses

2.1 Preliminaries: QCD Lagrangian with variational mass

Let us start with the bare QCD Lagrangian (for nf quark fields qi of identical masses)

LQCD = −
1

4
Gµν
a G

a
µν +

nf∑
i=1

qi(iγµD
µ −m0)qi (2.1)

where

Gµν
a ≡ ∂µGν

a − ∂
νGµ

a − g0f
abcGµ

bG
ν
c ;

Dµqi ≡ ∂µqi + ig0TaG
µ
aqi ; (2.2)

are respectively the gluon field strength tensor and the covariant derivative, a is the color
index, i is flavor index, Ta the SU(3)c generator, and m0, g0 the bare mass and gauge
coupling constant, respectively. As is well known the QCD lagrangian (2.1) possesses for
m0 = 0 the additional chiral symmetry SU(nf )L × SU(nf )R × U(1)L × U(1)R, at the
classical level 5. In what follows we only consider the SU(nf )L × SU(nf )R part of the
chiral symmetry, and for nf = 2 or nf = 3 as physically relevant applications.

Following the treatment of the GN model [8], let us add and subtract a (bare) mass
term, m0

∑nf
i=1qiqi, to be treated as an interaction term, to the massless QCD Lagrangian.

This is most conveniently done by introducing a new perturbation parameter x, according
to

LQCD → LfreeQCD(g0 = 0,m0 = 0)−m0

nf∑
i=1

qiqi + LintQCD(g2
0 → xg2

0) + x m0

nf∑
i=1

qiqi (2.3)

where LintQCD designates the usual QCD interaction terms, i.e those proportional to g0 or
g2
0 in (2.1). This is formally equivalent to substitute everywhere in Lagrangian (2.1)

m0 → m0 (1− x); g2
0 → g2

0 x, (2.4)

and therefore in any perturbative (bare) quantity as well, calculated in terms of m0 and
g0

6. Since the massless Lagrangian is recovered for x → 1, m0 is to be considered as an
arbitrary mass parameter after substitution (2.4). One expects to optimize physical quan-
tities with respect to m0 at different, possibly arbitrary orders of the expansion parameter
x, eventually approaching a stable limit, i.e flattest with respect to m0, at sufficiently high
order in x.
One immediately encounters however a number of obstacles: first, and quite essentially,
before accessing to any physical quantity of interest for such an optimization, the theory
has to be renormalized, and there is an unevitable mismatch between the expansion in

5We do not consider in particular the effects due to the breakdown of the axial U(1) symmetry
associated with instanton phenomena [36].

6It is implicitly understood that the same coupling constant reparametrization, (2.4), also affects e.g.
the Fadeev-Popov terms necessary at the loop-level calculations, which we will not display explicitly.
Note therefore that the substitution (2.4) does not spoil the gauge-invariance.

4



x, as introduced above, and the ordinary perturbative expansion as dictated by the nec-
essary counterterms, which at first spoils the whole picture. Moreover, for any physical
quantity of interest in QCD one only knows at present the first few terms of the ordinary
perturbative expansion in g2, and the computational effort required to perform perturba-
tive calculation in x is a priori similar. Finally, even if arbitrary higher order perturbation
terms were available, it is easy to convince oneself that, at any finite order in the x expan-
sion, one always recovers a trivial result in the limit m→ 0 (equivalently x → 1), which
is the limit we are ultimately interested in to identify a mass gap (and more generally to
identify spontaneous chiral symmetry breakdown, since an explicit Lagrangian mass term
breaks the axial vector Ward-Takahashi identities explicitly [12]).

All these problems can be circumvented at once, by advocating a certain resummation
ansatz [8], exploiting the RG properties of the theory plus analytic continuation prop-
erties in the arbitrary mass parameter m, which defines a candidate mass gap M(m) 7.
With respect to ordinary perturbation theory this RG invariant ansatz is exact for the
leading and next-to-leading dependence in m only, but the crucial point is that it resums
as well the (reorganized) perturbation series in x. Moreover, taking the limit x→ 1 in this
resummed expression no longer gives a zero mass gap. The construction can be systemati-
cally improved order by order (at least in principle, whereas in practice we obviously limit
ourselves to the presently known highest perturbative orders for the relevant quantities).
This is nevertheless hoped to be a sufficiently good starting point for further numerical
optimization studies with respect to the (arbitrary) parameter m 8. For simplicity, we
shall first illustrate the method by restricting ourselves in the next section to the first
order of RG dependence. Generalization to higher orders will be discussed in the next
sections.

2.2 First order renormalization group mass ansatz

To be meaningful our formalism should be applied to RG invariant and gauge-invariant
quantities, in the QCD context. Therefore a reasonable starting point is to consider
the pole quark mass, which is gauge-invariant [37] to arbitrary perturbative orders [38],
and infrared finite [37]. Using dimensional regularisation (with space-time dimension
D = 4 − ε), the one-loop expression for the quark mass, using the on-shell condition
6q = m0, is easily obtained as

m0 [1 + 3CFg
2
0

Γ(ε/2)

(4π)2−ε/2
(m0)

−ε(1 +
2

3
ε+O(ε2)) +O(g4

0)] , (2.5)

where CF ≡ (N2
c − 1)/(2Nc) for SU(Nc) color (i.e. CF = 4/3 for QCD), and Γ(x) the

Euler Gamma-function. For ε→ 0, expression (2.5) leads to the (renormalized) pole mass

7We will introduce several different definitions of a quark mass. To avoid confusion, we designate by
m the Lagrangian “current” mass (or any mass trivially related to the latter) , while M (with possibly
different indices) is used for dynamical mass candidates at different stages.

8Such a situation is somewhat similar to many other variational approaches, where one often starts
with a trial estimate, which one expects to be reasonably close to the exact result, before performing a
variational calculation.
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expression

MP
1 ' m̄ (1 + 2

ᾱS

π
[
2

3
− ln(

m̄

µ̄
)] +O(α2

S) ), (2.6)

as expressed in terms of the MS mass m̄ ≡ m(µ̄) (µ̄ ≡ µ
√

4πe−γE/2, γE ' 0.577216..,
where µ is the arbitrary scale introduced by dimensional regularisation), and coupling
ᾱS ≡ g2(µ̄)/(4π). In (2.6) we used the MS mass counterterm Zm, defined as m0 ≡ Zmm̄

and given from (2.5) as: Zm(ḡ2) = 1− ḡ2/(2π2ε) +O(g4).
Our construction starts by first observing that RG properties gives us more information

on higher orders than what appears in (2.5), (2.6): one-loop calculations actually provide
the leading 1/ε dependence of Zm and of the counterterm for the coupling Zg to all orders,
as is well known:

Zm ≡ m0/m = (1 +
2b0
ε
ḡ2)
−
γ0
2b0 , Zg ≡ (g2

0/g
2)µ−ε = (1 +

2b0
ε
ḡ2)−1 , (2.7)

where γ0 and b0 are the first order RG coefficient for the anomalous mass dimension and
beta function respectively (see Appendix A for the normalization used).

Now expression (2.5) using (2.7) suggests the following form of a bare resummed mass
expression (restricted at the moment to the first RG order):

M1 =
m0

[1− b0Γ(ε/2)(4π)ε/2g2
0(M1)−ε]

γ0
2b0

, (2.8)

in close analogy with the mass-gap formula of the GN model [8]. Eq. (2.8) is obviously RG
invariant since expressed only in terms of m0 and g0. Introducing renormalized quantities
m̄, ḡ2 from (2.7), (2.8) is in addition finite to all orders, as easily checked, thanks to the
recursivity in M1, and reads explicitly

M1 =
m̄

[1 + 2b0ḡ2 ln(M1

µ̄
)]

γ0
2b0

. (2.9)

Eq. (2.9) resums the leading log (LL) dependence in m̄ of the usual pole mass but, ev-
idently, does not give its correct next-to-leading dependence in m̄ (nor even any of the
“purely perturbative” (non-logarithmic) finite corrections, such as the 2/3 factor appear-
ing already at first order in (2.5)–(2.6) ). Actually, the renormalized form (2.9) can
alternatively be rigorously derived as a particular boundary condition imposed on the
usual RG running mass. Indeed, consider the general solution for the RG evolution of the
running mass,

m(µ
′
) = m(µ) exp{−

∫ g(µ
′
)

g(µ)
dg
γm(g)

β(g)
} (2.10)

in terms of the effective coupling g(µ), whose RG evolution is given as µdg(µ)/dµ ≡ β(g).
Solving (2.10) with the following “fixed point” boundary condition:

M ≡ m(M), (2.11)

one easily obtains (to first RG order)

M1 =
m(µ)

[1 + 2b0g2(µ) ln(M1

µ
)]

γ0
2b0

, (2.12)
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which is nothing but eq. (2.9) for µ = µ̄. In particular, the recursive form of (2.12) with
respect to M1 can only be obtained thanks to the specific boundary condition in (2.11).
Note that, although (2.9) can thus be obtained solely from the condition (2.11) imposed
on the “current” mass m(µ), it has the usual properties of a pole mass 9. This coincidence
between the pole mass M and the current mass m(M), evaluated at the scale µ ≡ M ,
is of course only an artefact of our crude approximation, neglecting at the moment the
non-logarithmic perturbative corrections. Although the first order expression (2.9) having
those properties could be guessed directly, the advantage of the latter derivation is that it
gives a sound basis and precise link with the renormalization group behaviour. Indeed, as
will be derived in the next section, one can still obtain an exact solution of (2.10) with the
boundary condition (2.11) at the next order explicitly, which is by construction entirely
consistent with the next-to-leading RG dependence, to all orders. We shall also include
later on the non-logarithmic perturbative corrections, necessary to make contact with the
genuine pole mass and to define a more realistic “mass gap” ansatz.

Now, the most important property of the simple-minded expression (2.9), which is
also shared by the more realistic ansatzs to be later derived, is that it is non-zero in the
chiral limit, m̄→ 0. To see it explicitly, first rewrite identically (2.9) as

M1(ln(M1/ΛMS))
γ0
2b0 = m̂ (2.13)

where for convenience we simply introduced the RG invariant scale ΛMS = µe
− 1

2b0g
2 (at

first RG order), and the scale-invariant mass m̂ ≡ m̄(2b0ḡ
2)
−
γ0
2b0 . For fixed ḡ2, the chiral

limit is m̂→ 0 in (2.13). Now, (2.13) may be seen as a function m̂(M1), and requiring its
inverse M1(m̂) to be defined on the whole physical domain 0 < m̂ <∞, and to match the
ordinary perturbative asymptotic behavior for m̂ → ∞, implies M1(m̂ → 0) → ΛMS

10.
This property of (2.9) is in contrast with the “one-loop improved” expression of the mass
(obtained by replacingM1 → m̄ in the denominator of (2.9)), which would only give M1 →
0 for m̄ → 0. In other words, while (2.8)–(2.9) are perturbatively compatible with the
usual (one-loop) RG behaviour of the current mass, a specific choice of boundary condition
for the RG running has selected a non-trivial “vacuum”, by changing the behaviour of
the whole perturbative series in the chiral limit m̄→ 0. Alternatively, one may derive the
result M1 = ΛMS in the chiral limit as follows. From (2.13), defining

F = ln[
M1

ΛMS

] ≡ ln[
m̂

ΛMS

]−
γ0

2b0
lnF , (2.14)

on the physical branch, 0 < m̂ <∞, the latter relation can be inverted as

eFF
γ0
2b0 =

m̂

ΛMS

. (2.15)

9In particular, M1 in (2.12) is scale invariant, in contrast with m(µ): i.e. an arbitrary change in µ
in the current mass m(µ) is compensated, to all orders, by the lnµ dependence in the denominator of
(2.12). (2.12) is also clearly gauge-invariant, as the pole mass should be.

10There is a priori another possible solution of (2.13) in the chiral limit: M1 → 0 when m̂ → 0.
However, it is easily seen that M1(m̂) has branch points at M1 = ΛMS and M1 = e−γ0/2b0ΛMS . The

branch giving the trivial solution is only defined for 0 ≤ |m̂| ≤ (γ0/2b0)
γ0/2b0e−γ0/2b0ΛMS < ΛMS , and

is therefore not compatible with the asymptotic perturbative behavior of (2.9) for m̄→∞.
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Now it is a simple algebraic exercise to see that (2.15) gives F (m̂) as an expansion in
powers of (m̂/ΛMS)

(2b0/γ0), for small m̂:

F (m̂→ 0) ' (
m̂

ΛMS

)
2b0
γ0 [1−

2b0
γ0

(
m̂

ΛMS

)
2b0
γ0 + · · · ], (2.16)

which together with (2.13), i.e. M1 = m̂ F−(γ0/2b0), immediately gives M1 → ΛMS for
m̂ → 0. While the latter derivation may be unecessarily sophisticated at first order, it
has the advantage of being the one easily generalizable to higher order, where we shall
also find a non-zero mass in the chiral limit, M = const .ΛMS, but with a no longer trivial
proportionnality constant. More importantly, it is also the most convenient procedure to
analyse the chiral limit once having established an expression analoguous to (2.9), but
obtained directly from the variational perturbative (bare) expansion (as defined by the
substitution (2.4)), which we address next. Our aim is to obtain a variational “mass gap”
where the non-trivial chiral limit property of (2.9) is preserved, while at the same time
providing us with a systematically improvable ansatz, in accordance with the “variation-
ally improved perturbation” principle.

Let us thus proceed with the x parameter expansion, performing in (2.8) the substi-
tution (2.4). Unfortunately, as announced in the last section, it is easily checked that the
resulting expression is no longer finite: after the introduction of the usual counterterms
in (2.7), some of the divergent terms in the denominator of eq. (2.8) no longer cancel,
except for x → 1, in which case one only obtains the trivial result M1 → 0. This is
not much suprising since the precise all-order cancellations of divergences in eq. (2.8),
resulting from the above RG properties, have no a priori reasons to be compatible with
the peculiar modification of the basic Lagrangian mass and coupling as implied by the
substitution (2.4). The way out is to resum the x-generated series, denoted by M1(x), in
a different manner [8]: by analytical continuation in x one can find an adequate integra-
tion contour, resumming exactly the series M1(x) in the x → 1 limit. This is explained
in full details in Appendix B. The net result gives an ansatz (still at the first RG order
approximation):

M1 =
1

2iπ

∮
dv

v
ev

v m0

f0(v)
γ0
2b0

, (2.17)

where v ≡ q(1−x) has been introduced as an appropriate change of variable to analyse the
x→ 1, q →∞ limit of the qth-order expansion of M1(x), the contour is counterclockwise
around the negative real axis, and we have defined

f0(v) ≡ 1− b0 g
2
0 Γ[

ε

2
] (m0v)

−ε (f0)
ε
γ0
2b0 (2.18)

whose expression is directly dictated from the denominator of eq. (2.8) (see Appendix B
for details). The crucial point is that (2.17) is now finite to all orders, while giving a
non-zero result. More precisely, after renormalization eq. (2.17) becomes

M1 =
1

2iπ

∮
dvev

m̄

f(v)
γ0
2b0

(2.19)
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where the renormalized function f(v), related to f0(v) above as 11

f0(1) = Zgf(1), (2.20)

satisfies the (finite) recursion formula

f = 1 + 2b0ḡ
2 ln(

m̄ v

µ̄
f
−
γ0
2b0 ) . (2.21)

Introducing a last convenient change of variable,

F ≡
f

2b0ḡ2
=

(v = 1)

1

2b0g2(M1)
, (2.22)

eq. (2.19) takes the form:

M1 =
ΛMS

2iπ

∮
dyey/m

′′ 1

F
γ0
2b0

, (2.23)

where
m
′′
≡ (m̄/ΛMS) (2b0ḡ

2)−γ0/2b0 ; y ≡ m
′′
v (2.24)

are just the conveniently rescaled, dimensionless (scale-invariant) “mass” parameter and
integration variable, respectively. After those different manipulations, it is easy to see
that one can use (2.14) to express F in (2.23) as an expansion for small y, using (2.16)
with the substitution (m̂/ΛMS)→ y:

F (y → 0) ' y
2b0
γ0 (1−

2b0
γ0

y
2b0
γ0 +O(y

4b0
γ0 ) ). (2.25)

This is nothing but a manifestation of the dimensional transmutation mechanism in the
m→ 0 limit of QCD, although in a rather unconventional form: the function F , defined
in (2.22) as a function of the running coupling becomes, for m → 0, a function of the
(rescaled) mass only, y ≡ m′′v. The original expression depending on {ḡ2, m̄} now depends
on {ΛMS,m

′′
} (where m′′ is arbitrary), and we are ultimately interested in the chiral limit

m
′′
→ 0. From (2.25) it is clear that (2.23) has a simple pole at y → 0, with residue

giving the announced non-trivial solution, M1 = ΛMS.
The previous construction therefore shows that summing the x series for the varia-

tional (bare) expansion and renormalizing, obtaining the contour integral in (2.19), is
equivalent to performing the following steps:
-i) take the renormalized RG solution of (2.10), M(m̄), with the condition (2.11);
-ii) performing in M(m̄) the substitution m̄→ m̄v, and integrating the resulting expres-
sion around the cut negative real axis, with a specific weight

∮
(dv/v)ev as in eq. (2.19) 12.

Having this well-defined integral transform we can work directly with renormalized quan-
tities and define formally an ansatz at a given order as an appropriate generalization of the

11The simple relation in (2.20), involving the counterterm Zg only, is an accident of the first RG order
approximation. At higher orders the relation is much more involved [8].

12Actually at the next order, solving (2.10) and taking the integral afterwards is not strictly equivalent
to the derivation starting from the bare expressions. However one can still show [8] that the two derivations
are simply related by a particular renormalization scheme change.
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integral in (2.19), provided however that one does not encounter extra singularities in v.
For simplicity let us postpone the question of the possible existence of extra singularities
until section 2.4, where this potential problem is addressed in details.

It is now straightforward to introduce the necessary non-logarithmic perturbative cor-
rections to the (purely RG) above results: this is consistently done as

MP
1 (m

′′
) =

ΛMS

2iπ

∮
dyey/m

′′ 1

F
γ0
2b0

(1 + (
2

3
)
γ0

2b0F
+O(

1

F 2
) ) (2.26)

without changing anything in the contour integral properties, except that (2.26) no longer
has a simple pole behavior at y → 0. Eq. (2.26) is nothing but a specific integral over the
pole mass: namely taking the integrant for v = 1 and expanding for small ḡ2 by using
relations (2.21) and (2.22), one explicitly recovers the usual pole mass expression with
first order non-logarithmic perturbative correction.
One may now optimize (2.26) with respect to m

′′
, by performing (numerically) the y

integral. In fact, numerical integration is not mandatory: since what we are interested
in is the behavior for m

′′
→ 0, it is equivalent to look at the properties of eq. (2.26) for

y → 0. An expansion of (2.26) near the origin is provided from Hankel’s formula,

1

2iπ

∮
dyey/m

′′

yα =
(m

′′
)1+α

Γ[−α]
, (2.27)

where the different powers α resulting from the expansion at arbitrary order near the
origin have the form α = −1 + p2b0

γ0
, with p = −1, 0, · · · integer 13.

We stress that m
′′

(equivalently, m̄) is meant to be an arbitrary but implicitly small
parameter: even if we ultimately seek for optimal values m

′′

opt as best approximations to

the limit m
′′
→ 0, at intermediate steps m

′′
6= 0 (i.e m̄ 6= 0) implies that the axial vector

current Ward-Takahashi identities are explicitly broken. Eventually a small, physically
acceptable explicit breaking (like the PCAC hypothesis [9]) may be considered, where m

′′

opt

(m̄opt) could be tentatively interpreted as the actual physical quark masses. But that is
largely in contradiction with the basic principle adopted here, according to which m′′

itself has no physical meaning, whereas only the optimal value of MP
1 (m′′) in (2.26) has.

Indeed, in the (ideal) situation where the optima would be really flat, m′′ would obviously
not be well determined. It is therefore much more preferable to find a mean, eventually
an approximate one, to reach the exact limit m

′′
→ 0. The chiral Ward identities are then

recovered and we can define the mass gap strictly in the chiral symmetric limit. We shall
see in section 4 how to implement consistently an explicit symmetry breaking, physical
mass term, independent of the arbitrary variational mass parameter m′′.

13Note that (2.26) with (2.27) has some similarities with a Laplace-Borel transform: indeed the analytic
continuation in m is almost equivalent (for m → 0) to a continuation in the coupling g. The precise
connection, and the link with the renormalon singularities [39] associated with the usual Borel transform
will be discussed in more details elsewhere [40]. We shall however come back in the next sections on the
structure of singularities of the integral (2.26) encountered in our framework.
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2.3 Second order dynamical mass ansatz

At the next RG order, the previous qualitative picture remains essentially unchanged,
except that the derivation is somewhat more involved. The solution of (2.10) with (2.11),
using the two-loop RG coefficients [41, 42] given in Appendix A, is

M2 = m̄ f
−
γ0
2b0

[1 + b1
b0
ḡ2f−1

1 + b1
b0
ḡ2

]− γ1
2b1

+
γ0
2b0 (2.28)

where f ≡ ḡ2/g2(M2) satisfies

f = 1 + 2b0ḡ
2 ln

M2

µ̄
+
b1
b0
ḡ2 ln

[1 + b1
b0
ḡ2f−1

1 + b1
b0
ḡ2

f
]

; (2.29)

(note in (2.28)–(2.29) the recursivity in both f and M2), and the non-logarithmic pertur-
bative corrections are easily included as 14

MP
2 ≡M2

(
1 +

2

3
γ0
ḡ2

f
+

K

(4π2)2

ḡ4

f 2
+O(g6)

)
(2.30)

where the complicated two-loop coefficient K was calculated exactly in ref. [43] and is
given explicitly in Appendix C. Eq. (2.30) defines the pole mass including two-loop
non-logarithmic corrections, and can be easily shown in addition to resum the leading
and next-to-leading logarithmic dependence in m̄ to all orders (see Appendix A). The
contour integral generalization of (2.26) is obtained, as explained before, after making the
substitution m̄→ m̄v in (2.28)–(2.30), as

MP
2 (m

′′
, a)

ΛMS

=
2−Ca

2iπ

∮
dy

ey/m
′′

F (y)A[C + F (y)]B
(1 +

M1(a)

F (y)
+
M2(a)

F (y)2
), (2.31)

where ΛMS is now the RG invariant basic scale at two-loop order, in MS [44] 15:

ΛMS ≡ µe
− 1

2b0ḡ
2 (b0ḡ

2)
−
b1
2b2

0 (1 +
b1

b0
ḡ2)

b1
2b2

0 , (2.32)

and the dimensionless (scale-invariant) arbitrary mass parameter reads

m′′ ≡ (
m̄

ΛMS

) 2C [2b0ḡ
2]−γ0/(2b0)

[
1 +

b1
b0
ḡ2

]B
. (2.33)

In (2.31) F now satisfies the recursive relation

F (y) ≡ ln[y]−A ln[F (y)]− (B − C) ln[C + F (y)], (2.34)

where A, B, C are expressed in term of RG coefficients as

A =
γ1

2b1
, B =

γ0

2b0
−

γ1

2b1
, C =

b1
2b20

, (2.35)

14In (2.29) the recursivity operates on M2, which by definition only depends on the RG evolution,
therefore to be distinguished from the (pole) mass expression MP

2 in (2.30).
15With our prescritions one should keep in mind that ΛMS depends on nf , as usual [45].
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explicitly given in Appendix A.

In (2.31) we have also introduced an extra parameter a, taking into account changes
in the arbitrary renormalization scale, according to µ̄→ a µ̄. Indeed, even at the first RG
order there are infinitely many ways of introducing the non-logarithmic perturbative cor-
rections to (2.23): for instance, we might have introduced the O(1/F ) terms via another
definition of F : F

′
= F (1 + O(1/F )) in place of (2.14), up to second order terms. This

non-uniqueness is basically what is parameterized by a, and accordingly the perturbative
coefficientsMi in (2.31) have a logarithmic dependence in a, simply dictated order by or-
der from the requirement that (2.31) only differs from the original MS scheme expression
by higher order terms:

M1(a) =
γ0

2b0
(
2

3
− ln a), (2.36)

M2(a) =
1

(2b0)2
(

K

(4π2)2
+ γ0(

γ0

2
+ b0) ln2 a− (

4

3
γ0b0 −

γ2
0

3
+ γ1) ln a) . (2.37)

Since we shall however continue expression (2.31) to the (non-perturbative) region of
m′′ → 0, in the manner described in the next sections, the a-dependence will eventually
exhibits non-trivial extrema, and it is thus sensible to optimize the result with respect to
a 16, since the unknown exact result would not depend on the arbitrary renormalization
scale µ. Note that a 6= 1 corresponds to a change of renormalisation scale only, while keep-
ing the renormalization scheme fixed, i.e. ḡ2 = g2(µ̄) (equivalently ΛMS) and m̄ = m(µ̄)
fixed (to MS). Actually the situation is slightly more complicated, since at second per-
turbative order there are other possible changes of renormalization prescriptions than a
simple change of scale, which do affect expression (2.31) and should therefore be taken
into account in principle. This turns out to be an important aspect of our analysis and
will be addressed in details in the next section.

For small y, F (y) from (2.34) has the expansion:

F (y → 0) ' A(u−
B

C
u2 +O(u3)); u ≡ A−1C

B−C
A y

1
A , (2.38)

again implying that (2.31) would give a simple pole at y → 0 for vanishing perturbative
correction terms,M1 =M2 = 0, with residue (2C)−C . Note that all the results of section
2.2 are consistently recovered by taking b1 = γ1 = 0 and neglecting the non-logarithmic
perturbative corrections of O(g4) in the different expressions above, (2.28)–(2.37).

It is still possible to generalize to the next RG order the previous derivation, since in
QCD the three-loop coefficients b2, γ2 are known [46], although the construction becomes
quite cumbersome. In fact such a generalization is not worth doing, since one can in fact
choose a renormalization scheme in which b2 and γ2 are set to zero, as well as all higher
order coefficients. This is examined in more details in the next section.

16This procedure indeed gave very good results [8] in the GN model, where in particular for low values
of N the optimal values aopt are quite different from 1.
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2.4 Renormalization scheme changes and generalized ansatz

As it turns out, the simple picture emerging from the last section is unfortunately ques-
tionable as one realizes that, strictly speaking, formula (2.31) has extra singularities in
the y plane, in addition to the cut on the negative real y axis, implicit in its derivation
and in (2.27). After all, this specific contour was suggested by the known properties of the
GN model, and it is not surprising if the analytic continuation in m properties are more
complicated in QCD. To begin, as is clear from (2.31) there is an extra branch point at
F = −C = −b1/(2b20), which was not present in the first order ansatz (2.26), and simply
corresponds to the first non-trivial fixed point of β(g) located at ḡ2 = −b0/b1. Fortunately
it is harmless in the present QCD case, since b1 > 0 implies that it is located along the
already cutted F < 0 real axis 17.
Less trivially, the zeros of dy/dF also give from (2.34) extra branch cuts in the y plane,
starting at the (complex conjugate) points

ycut(γ1) = eF (γ1)FA(γ1)[C + F (γ1)]
(B−C) ; (2.39)

where

F (γ1) =
1

2
(−

γ0

2b0
)[1± (1− 4

γ1

γ2
0

)1/2] . (2.40)

However, as can be seen the actual position of those branch points do depend on the
scheme via the second coefficient of the anomalous mass dimension, γ1 (the precise RS
dependence of the latter is given in eqs. (A.6), (A.8) of Appendix A). In the original MS-
scheme, F (γMS

1 ) gives extra cuts starting at Re[ycut] ' 0.34 (0.24), Im[ycut] ' ± 0.74
(±0.76) for nf = 2 (nf = 3) respectively. Note that when looking at the limit of interest,
y ' 0, using the expansion in (2.38), one never sees those extra cuts: at any finite order
the series expansion only has the cut on the negative real axis according to eqs. (2.27) and
(2.38). These singularities may after all be an artifact of our extrapolation to very small
m′′ of a “perturbative” (although resummed) relation, eq. (2.34). Anyhow, the point is
that using the expansion near the origin is invalidated if there are extra singularities lying
in the way with Re[ycut] > 0, since it would lead to an ambiguity of O(exp(Re[ycut]/m

′′))
for m′′ → 0, in the determination of the integral (2.31) 18.

The way out is thus clear: if there exists values of γ1 which move those extra cuts
away (or which are such that they start at Re[ycut] = 0), the expansion around the origin
in y is legitimate. Defining

γ
′

1 ≡ γ1 + ∆γ1 , (2.41)

17In the GN model case the similar cut was more troublesome, since bGN1 < 0, and we used a specific
Padé approximant construction [8] avoiding the cut. In a different context, this non-trivial fixed point
has also been studied recently [47] in connections with renormalon properties.

18This is quite similar to the renormalon ambiguities [39]. Although the usual renormalons are not
explicitly seen here due to the appearance of a mass gap (i.e., within the mass gap ansatz (2.31), by
construction there is no integration over the Landau pole region), the way in which the singularities in
y appear, namely in a resummed expression relating a “reference” scale Mdyn ' ΛMS to an infrared
scale m′′ ' 0, may be viewed as reminiscent from the renormalons. An essential difference is that in
the present case those singularities occur in the analytic continuation of the mass parameter rather than
the coupling, and that it is possible to move those singularities away by appropriate RS change, as is
discussed below.
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one easily finds that Re[ycut] ' 0 for ∆γ1 ' 0.00267 (0.00437) for nf = 3 (nf = 2) respec-
tively 19. Therefore we can adjust a correct γ

′

1 by performing (perturbative) RS changes.
As explicit from eqs. (A.6), (A.8) of Appendix A, this can be done either by a first order
change in g → g

′
or m→ m

′
(or both). One thus considers the most general RS change

(but restricted to the second perturbative order, which is sufficient for our purpose) and
optimize with respect to this new arbitrariness. (As a side remark, we mention that one
would also have Re[ycut] < 0 with γ1 ≡ γMS

1 , for nf ≥ 5). Note that the removing of
the unwanted singularities is only possible at the two-loop RG order ansatz, eq. (2.31),
due to the first occurence of RS arbitrariness at two-loop order via γ1, in MS schemes.
More precisely, for the first order ansatz, eq. (2.26), an extra singularity occurs now with
Re[ycut] = Re[exp[−γ0/2b0] (−γ0/2b0)

γ0/2b0 ] > 0, which accordingly cannot be removed
by a RS change.

We obtain after simple algebra the generalized dynamical mass ansatz in the new
(primed) scheme, in terms of the arbitrary RS change parameters A1, A2, B1, B2 defined
in Appendix A):

MP
2 (a,m

′′′
)

Λ
′

MS

=
2−Ca

2iπ

∮
dy

ey/m
′′′

(F ′(y))A
′
[C + F ′(y)]B

′ (1 +
M
′

1(a)

F ′(y)
+
M
′

2(a)

F ′2(y)
), (2.42)

with

M
′

1(a,B1) = M1(a)−
B1

2b0
;

M
′

2(a,A1, B1, B2) = M2(a)− (A1 +B1)
M
′

1(a)

2b0
−

(B2 − γ0B1)

4b20
(2.43)

and

Λ
′

MS
= exp[

A1

2b0
] ΛMS (2.44)

(where relation (2.44) is exact to all orders [48]) and F
′
and m

′′′
have specific expansions

in terms of the original MS quantities F and m
′′

that we will not need explicitly here.
We also impose a further RS choice,

b
′

2 ≡ 0 ; γ
′

2 ≡ 0 , (2.45)

which, according to relations (A.7)–(A.8) in Appendix A, fixes A2 and B2 uniquely in
terms of B1 and ∆γ1

20 and guarantees that the definition of ΛMS in (2.32) is unaffected,
apart obviously from (2.44). In what follows we express all results in terms of the original
ΛMS scale.

2.5 Padé approximants and numerical results

It is worth emphasizing at this point that our purpose is not to find a particular RS
choice, which would “best fit” the expected order-of-magnitude result for the (dynamical)

19Actually Re[ycut] is a (semi)-periodic function of ∆γ1. We only consider solutions of Re[ycut(∆γ1)] '
0 nearest to the original MS value (∆γ1 ≡ 0) for nf = 2, 3.

20Although e.g. A2 does not appear explicitly in (2.42), we nevertheless need a prescrition to fix it,
since it appears at the second order general RS change.

14



constituent mass (or similarly for Fπ and m〈q̄q〉 considered in the next sections). Indeed,
it is very likely that with so much RS freedom at disposal, one could make eq. (2.42)
fit almost whatever values one wishes. In contrast, what we are seeking is the flattest
region in the arbitrary RS parameter space, in the “Principle of Minimal Sensitivity”
(PMS) 21 sense. One soon realizes however that our extension of the PMS defines a
rather complicated optimization problem: one has in principle to find the flattest possible
extrema of (2.42), in the three independent parameter space {m

′′
, a, B1}, where in addition

∆γ1 is constrained to give good analyticity behavior of (2.42).
Fortunately, one can study this problem within some approximations, which we be-

lieve are legitimate. As above explained the ansatz in (2.31) (or (2.42)) is already optimal
with respect to m

′′
at m′′ = 0, by construction, for vanishing pertubative non-logarithmic

correctionsMi = 0, and in this case the optimal result is the simple pole residue. Due to
the non-logarithmic, purely perturbative corrections (which are at present only known to
second order for the mass), this simple picture is lost, but accordingly one may assume
that the resulting expansion for small m′′ is “as close as possible” to an optimum (as
would be the case if the sequence of approximations obtained by considering increasing
orders of the x expansion could be proved to converge, like in one-dimensional mod-
els [30]). Accordingly, we will define the m′′ → 0 limit of (2.42) by a relatively crude
but standard approximation of those perturbative corrections, rather than performing a
numerical optimization with respect to m′′. Indeed, as discussed at the end of section
2.2, it is in addition physically motivated to reach m′′ → 0, since the axial vector current
Ward-Takahashi identities are recovered and a non-zero result signals the spontaneous
chiral symmetry breakdown.

The approximation we are looking for is certainly not unique: given the ansatz (2.42),
one may construct different approximant forms leading to a finite limit for m′′ → 0.
We shall demonstrate the feasibility of our program in the simplest realization: since the
resulting expression will anyhow be optimized with respect to the RS dependence (entering
any such approximants via the RS dependence of Mi), we assume that it largely takes
into account this non-uniqueness due to higher order uncertainties, in the standard PMS
sense. The latter assumption is also supported by the results in the GN model [8], where
several different approximants were tried and compared with the known exact results.

Padé approximants are generally known to greatly improve perturbative results [49]
and in most cases have the effect of smoothing the RS dependence. We shall consider the
following Padé approximant for the purely perturbative part of the integrant in (2.42):

Padé (F ) ≡
F + λ(a,B1)

F + ρ(a,B1)
→

F → 0

λ(a)

ρ(a)
, (2.46)

which by construction restitutes a simple pole for F → 0 in (2.42). Matching its pertur-
bative expansion for F →∞ to the one in (2.42) one obtains

MPadé
2 (a,∆γ1, B1) =

m′′ → 0
ΛMS (2C)−C a exp{

A1

2b0
}

[
1−
M2

1(a,∆γ1, B1)

M2(a,∆γ1, B1)

]
. (2.47)

21For an extended discussion of the PMS motivations, we refer to the original Stevenson’s paper,
ref. [16].

15



When defining (2.46)–(2.47) one should be careful not to introduce new poles in the F > 0
(y > 0) plane. This simply implies that there are some constraints on the possible values
of (a,B1) which, if we are lucky, do not invalidate their optimal values obtained from
minimization.

We have performed a rather systematic study of the possible extrema of the Padé
approximant formula (2.47) for arbitrary a, B1, with ∆γ1 fixed such that the extra cuts
start at Re[y] ' 0. We did find an optimal region with respect to a, in the sense that it
minimizes the second derivative at the maximum 22. The region of the parameter space
in the vicinity of that extremum is illustrated in Fig. 1, as function of a for different
values of B1. The plateau region has been determined more accurately using a numerical
steepest descent method, requiring a minimal curvature. (For instance for nf = 2 it
corresponds to aopt ' 1.42, B1,opt ' 0.12). Our results are also summarized in Table 1
(see section 5). The optimal values of the parameters a, B1, ∆γ1 are consistent with the
further requirement that (2.46) has no poles at F > 0, as it should. Explicitly we obtain

MPadé
2 (opt) ' 2.97 ΛMS(2) (2.85 ΛMS(3) ) , (2.48)

for nf = 2 (nf = 3) respectively.
We shall see in the next section that we can relate the pion decay constant Fπ to ΛMS(2)
or ΛMS(3), from which one may eliminate ΛMS to obtain an evaluation of MPadé

2 in the
chiral limit. Anticipating on these determination of ΛMS, eq. (2.48) with Fπ ' 92 GeV
gives (still in the pure chiral limit)

MPadé
2 (opt) ' 500 (447)MeV (2.49)

for nf = 2 (nf = 3).
Finally, for a useful comparison, we also give the value of (2.47) in the MS scheme (which
may be thus considered as optimized with respect to m′′ but in a fixed RS):

MPadé
2 (MS) ' 0.99 ΛMS(2) (1.00 ΛMS(3) ) . (2.50)

Note however that according to the previous discussion, the result in (2.50) are a priori
plagued by an ambiguity associated to the bad-placed extra singularities in the origi-
nal MS scheme. This may however give a qualitative idea of the effects of the above
optimization with respect to the RS choice.

3 Generalization to Composite operators: Fπ/ΛMS

3.1 RG-invariant ansatz for a composite operator

We shall now derive an ansatz similar to eqs. (2.31), (2.42) for the pion decay constant
Fπ. The main idea is to do perturbation theory around the same RG evolution solution

22Note that the second derivative at the extrema points is a good quantitative estimate of the flatness
criteria even in a multi-dimensional parameter space: the intrinsic curvature at an extremum of the
hypersurface as defined from e.g. the approximant (2.47), is proportional to the product of its second
derivatives with respect to the different parameters.
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with the non-trivial fixed point, as specified by the function F in (2.34), with perturbative
corrections specific to Fπ obviously. One should first identify Fπ from a relation where
the previous construction can be best generalized. A formal definition which suits all
our purposes is the well-known low-energy expansion of the axial vector–axial vector two
point correlation function [1, 50]

i
∫
d4qeiq.x < 0|T Aiµ(x)A

k
ν(0)|0 >' δikgµνF

2
π +O(pµpν) . (3.1)

In (3.1) T is the time-ordered product and Aiµ the axial quark current, Aiµ ≡ (q̄γµγ5λ
iq)/2,

where the λi’s are Gell-Mann SU(3) matrices or Pauli matrices for nf = 3, nf = 2
respectively. The non-vanishing of expression (3.1) implies CSB: in other words Fπ is
to be considered as an order parameter [51, 52, 53]. Since Fπ is expressed in terms of
a gauge-invariant and RG invariant composite operator in (3.1), one can apply a rather
straightforward generalization of our ansatz exploiting in particular the RG resummation
properties. The perturbative expression of (3.1) for m 6= 0 is known to the three-loop
order [54, 55], and is given explicitly in MS scheme in Appendix C.
With a little bit of insight, a generalization of (2.28)–(2.30) to a composite operator On

of naive mass dimension n (depending only on g and m), can be written as

On '
2b0 m

n

F nA−1[C + F ]nB
δ (1 +

α

F
+

β

F 2
+ · · ·) , (3.2)

in terms of F as defined by eq. (2.34) (for y/m
′′
≡ v = 1), and where δ, α, β are fixed by

matching the perturbative expansion in a way to be specified next. In practice, we shall
only consider (3.2) for the relevant cases of n = 2 and n = 4, corresponding to F 2

π and
m〈q̄q〉 respectively.
Formula (3.2) as it stands is not yet our final ansatz and necessitates some comments.
Apart from the trivial powers of n dictated by dimensional analysis, a rather obvious
difference with the mass formula is that the composite operator being not a Lagrangian
term, its perturbative expression starts at the one-loop, but zeroth order in g2. To acco-
modate this fact with the correct RG properties, the expansion of (3.2) starts with a 1/g2,
due to the extra 2b0F factor. The 1/g2 first order term anyhow cancels after a necessary
subtraction which we discuss now 23.

A more essential difference with the mass expression is that (3.1) is not finite even
after mass and coupling constant renormalization. One can define a new, finite quantity
after an adequate subtraction. In the present case, since our construction starts from
perturbative expressions, this turns out to be nothing but the usual way of renormalizing
a composite operator. Accordingly the prescrition is (perturbatively) well-defined [56]
and unambiguous for a given RS choice. What is lost, however, is a part of the predictive
power: unlike the mass case, a consistent treatment of the subtracted terms (i.e. respect-
ing RG invariance) implies that the unambiguous determination of the 1/F n perturbative
terms in the final ansatz necessitates information on the (n + 1) order of perturbation
theory.

23Note that the form and properties of (3.2) can alternatively be rigorously derived by following a
construction starting from bare quantities, similar to the one explained in [8] for the vacuum energy of
the GN model.
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In the two cases here considered, F 2
π and m̄〈q̄q〉 in the next section, this renormalization

actually reduces to a simple subtraction of the operator [mn 1] 24. This implies, from RG
invariance, residual finite subtraction terms, affecting the perturbative correction terms
α and β in (3.2). Accordingly (3.2) is modifed to

On '
2b0m̄

n

F nA−1[C + F ]nB
δ (1 +

α
′

F
+
β
′

F 2
+ · · ·)−

m̄n

ḡ2
H(ḡ2) , (3.3)

where it is easily shown, using RG properties, that the finite subtraction function H(ḡ2) ≡∑∞
i=0Hiḡ

2i is determined perturbatively order by order (in the MS scheme) from

[n γm(ḡ) +
2

ḡ
β(ḡ)− β(ḡ)

∂

∂ḡ
] H(ḡ2) =

ḡ

2

∂ c1(ḡ
2)

∂ḡ
. (3.4)

In (3.4) c1(ḡ
2) is given by the residue of the 1/ε term in the perturbative series expansion

for the relevant quantities, as given in (C.3) and (C.10) respectively for F 2
π andm〈q̄q〉. The

consistency of our formalism is checked by noting that the expansion of (3.3) in powers of
ḡ2 do reproduce correctly the LL and NLL dependence in m̄ of the perturbative expansion
of the composite operator to all orders, as well as the perturbative non-logarithmic terms
explicitly displayed in eqs. (C.3) and (C.10).

3.2 Generalized scheme ansatz for Fπ

From the results of the last section one can now write an ansatz for Fπ, also taking into
account the most general RS dependence to second order in a straightforward manner.
After some algebra:

F 2
π

Λ2
MS

= exp[
2A1

2b0
] 2b0 2−2C a2

2iπ

∮
dy

y
y2ey/m

′′′ 1

F ′ 2A
′−1[C + F ′] 2B′

×

δπ

(
1 +

α
′

π(a)

F ′
+
β
′

π(a)

F ′2
+ · · ·

)
(3.5)

where

δπ =
Nc

2π2

1

γ0 − b0
, (3.6)

α
′

π(a,∆γ1) =
1

2b0

[
5

6
(γ0 − b0)− 2π2(γ

′

1 − b1)− 2(γ0 − b0) ln a

]
; (3.7)

β
′

π(a,∆γ1, B1) = 1
(2b0)2

[
f (2)
π (∆γ1) + 2γ0(γ0 − b0) ln2 a+ (γ0−b0)

6π2 ln a
]

−2B1

2b0
απ(a,∆γ1) + B1

(2b0)2
(11

3
(γ0 − b0)− 4π2(γ1 − b1)) , (3.8)

where f (2)
π is a complicated expression given explicitly in Appendix C.

An important point is that the subtraction function H(ḡ2) in (3.3) gives no extra contribu-
tions to the y integral [8]: after introducing the contour integration as described in section

24In the general case [57], the renormalization of dim= 4 (gauge-invariant) operators involves a mixing
matrix for the operators m〈q̄q〉, m4 1, and GµνGµν . However, the entry for m〈q̄q〉 only involves m4 1
and m〈q̄q〉 itself [56]. As for F 2

π , the only gauge-invariant operator of dim =2 is m21.
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2 and Appendix B, the purely perturbative subtraction gives an analytic function of y.
Obviously however, the actual values of the perturbative coefficients in (3.7), (3.8) are
affected by the subtraction. As previously mentioned, the unambiguous determination of
f (2)
π in (3.8) involves, in a given (minimal) RS, the knowledge of the three-loop coefficient

of 1/ε, obtained from the perturbative expression eq.(C.3) of Appendix C. Note also that
the dependence upon ∆γ1 in (3.7) is only through γMS

1 → γ
′

1, and the dependence on B1

only appears in the second order term, β
′

π, in contrast with the mass case. As well there
is no dependence upon B2 or A2 at this (second) order. All these properties are of course
consequences of the perturbative F 2

π expression starting at one-loop but zeroth g2 order.

The discussion of the previous section on the analyticity domain of (3.5) with respect to
∆γ1 is identical, since the branch cuts are determined by the very same relation defining
F , eq. (2.34). One can thus proceed to a numerical optimization with respect to the
RS dependence, along the same line as in section 2.5. The only difference is the Padé
approximant form to be used: from eq. (3.5), for m

′′′
→ 0 the simple pole behavior is now

given by the second perturbative term, with coefficient α
′

π, while the first perturbative
term, 1, gives vanishing contribution for m

′′′
→ 0. A Padé approximant taking into

account these properties, and using the full information as contained in α
′

π, β
′

π is

(1 +
α
′

π(a)

F ′
+
β
′

π(a)

(F ′)2
+ · · ·) '

1 + λ/(F
′
)2

1 + ρ/F ′
≡ P2,1(F

′
) , (3.9)

which gives the result

F 2
π,Padé(· · ·) =

m′′ → 0
ΛMS (2C)−2C a2 exp{

2A1

2b0
} 2b0 δπ

[
α
′

π(a, · · ·)−
β
′

π(a, · · ·)

α′π(a, · · ·)

]
(3.10)

where the dots denote the RS dependence. The region around the optimum of (3.10)
with respect to the RS parameters is illustrated in Fig. 2. In that case again we found
a non-trivial flattest extrema minimizing the curvature (plateau), corresponding e.g. for
the nf = 2 case to aopt ' 4.21, B1,opt ' −0.017. The optimum values are

F Padé
π (opt) ' 0.55 ΛMS(2) (0.59 ΛMS(3) ) , (3.11)

for nf = 2 (3) respectively. This is also summarized in Table 1, section 5. From (3.11),
with Fπ ' 92 MeV (and neglecting any explicit symmetry breaking effects due to the
non-zero u, d, s masses), one thus obtains ΛMS(2) ' 167 MeV and ΛMS(3) ' 156 MeV.
Note that these relatively low values are more in agreement with earlier estimates of
ΛMS [35, 58] than with the recent experimental measurements of αS(MZ) at LEP [59],
the latter giving a larger ΛMS(3) if evolving from the MZ scale down to very low Q2 with
naive perturbation theory. This does not in principle exclude our results, due to the still
large uncertainties on ΛMS(2) and ΛMS(3) at very low energies. Moreover, as pointed out
in ref. [60], it could always be that new physics contribution, e.g. supersymmetry, affects
the running of αS between the MZ scale and low energy.
Finally, like in the mass case, we also give for comparison the (a priori ambiguous) corre-
sponding value of (3.10) in the original MS scheme:

F Padé
π (MS) ' 0.40 ΛMS(2) (0.64 ΛMS(3) ) . (3.12)
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4 〈q̄q〉

4.1 Renormalization group invariant m〈q̄q〉 ansatz

The (bare) quark-antiquark condensate is most conveniently defined as

〈q̄q〉 ≡ −
i

nf
lim
x→ 0

TrS(x) (4.1)

where S(x) = i < 0|T q̄(0)q(x)|0 > is the quark propagator 25. While the above definition
(4.1) is gauge-invariant, as is well known 〈q̄q〉 is not separately RG invariant, but m〈q̄q〉
is [56], which is thus the appropriate quantity to consider when applying the formalism
developed in section 3.1. Once subtracting the divergences remaining after mass and cou-
pling renormalization, by following a construction similar to what was done for Fπ, we
obtain a finite ansatz for m̄〈q̄q〉. An awkward situation is that 〈q̄q〉 cannot be directly
accessed, and has to be extracted from tiny explicit symmetry breaking effects due to
m 6= 0. This is of course a well-known problem, not specific to our construction. We
shall discuss below in section 4.2 a possible way of extracting a 〈q̄q〉(µ) value from our
construction.
The perturbative expansion up to two-loop order for m̄〈q̄q〉 for m̄ 6= 0, calculated first
in [62] and independently by us, is given explicitly in Appendix C. Note that the three-
loop order is not known, which is rather unfortunate since, according to the derivation
in section 3.1, it implies that one only knows unambiguously the first coefficient of 1/F
in the m〈q̄q〉 ansatz. To nevertheless give a more accurate estimate, following the usage
in such a case, we take into account in our calculations the known RG dependence at
O(1/F 2) 26. Again, one assumes that the optimization with respect to the RS parameters
a, ∆γ1 etc (whose exact dependence at O(1/F 2) is also known) partly takes into account
this ignorance on higher order terms.

The resulting expression, including the full RS dependence, reads

m̄〈q̄q〉

Λ4
MS

= exp[
4A1

2b0
] 2b0

2−4Ca4

2iπ

∮
dy

y
y4ey/m

′′′ 1

F ′ 4A
′−1[C + F ′] 4B

′ ×

δ〈q̄q〉

1 +
α
′

〈q̄q〉(a)

F ′
+
β
′

〈q̄q〉(a)

F ′2
+ · · ·

 (4.2)

with

δ〈q̄q〉 =
Nc

4π2

1

2γ0 − b0
, (4.3)

α
′

〈q̄q〉(a,∆γ1) =
1

2b0

[
4

3
(2γ0 − b0)− π

2(2γ
′

1 − b1)− 2(b0 − 2γ0) ln a
]

(4.4)

25An equivalent definition is from the derivative with respect to m0 of the vacuum energy. Note that
in the m → 0 limit, there is an arbitrary phase in the definition (4.1): the sign of 〈q̄q〉 is thus fixed a
posteriori, by requiring that for real m > 0, 〈q̄q〉 ≤ 0, to be consistent e.g. with the Gell-Mann Oakes
Renner [61] familiar relation. In what follows we shall designate by 〈q̄q〉 only the magnitude of the quark
condensate.

26This allows at least some comparison with the true first order estimates, defined as the expressions
obtained in the limit b1 = γ1 = 0.
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and

β
′

〈q̄q〉(a,∆γ1, B1) = 1
(2b0)2

[
f

(2)
〈q̄q〉(∆γ1) + 4γ0(2γ0 − b0) ln2 a− 10 (2γ0−b0)

6π2 ln a
]

− 4B1

2b0
α〈q̄q〉(a,∆γ1) + B1

(2b0)2
[10

3
(2γ0 − b0)− 4π2(2γ1 − b1)] , (4.5)

where f
(2)
〈q̄q〉 is given in Appendix C.

4.2 Explicit chiral symmetry-breaking corrections

Clearly what we are really interested in is the value of the condensate in the exact chiral
limit, m̄→ 0. Closely related to the latter problem, it is desirable to obtain a connection
between our construction and the familiar Gell-Mann–Oakes Renner (GOR) relation [61],
e.g. in the SU(2) case,

−(mu +md)〈ūu〉 ' F 2
πm

2
π +O(m2

u,d), (4.6)

where 〈ūu〉 = 〈d̄d〉 for exact SU(2) isospin symmetry, Fπ ' 92 MeV and mπ are the pion
decay constant and mass respectively.
By definition in (4.6)mu,d are the current masses, which break the chiral SU(2)L×SU(2)R
symmetry explicitly. In contrast, as amply discussed, in (4.2) m

′′′
is an arbitrary param-

eter, destined to reach the chiral limit m
′′′
→ 0. Accordingly, m̄ → 0 for m

′′′
→ 0, so

that one presumably expects only to recover the result m̄〈q̄q〉 → 0 for m
′′′
→ 0. This

is actually the case: although (4.2) may potentially give a non-trivial result in the chi-
ral limit, typically the simple pole residue (' 2b0(2C)−C δ〈q̄q〉 α〈q̄q〉(a), upon neglecting
higher-order corrections), once we require extrema of this expression with respect to RS
changes (using for the m′′′ → 0 limit a Padé approximant similar to the one for Fπ), we do
not find non-zero extrema. Therefore, such a result is not conclusive regarding the actual
value of 〈q̄q〉(µ̄), although it may be considered a consistency cross-check of our formalism.

Now, one possible way of extracting 〈q̄q〉(µ) from the ansatz (4.2) is the following. Let
us introduce a small explicit chiral symmetry breaking mass term,

−m0,expq̄iqi , (4.7)

to the basic Lagrangian (2.3). After renormalization, and carefully following the different
steps as indicated in section 2 and Appendix A, one can show that it amounts simply to
the following substitution into the integrand of the different previous ansatzs:

y → y +m
′′

exp , (4.8)

except in the factor (dy/y) ey/m
′′
, which remains unaffected, and where m′′exp is related to

m̄exp in exactly the same way as m′′ is related to m̄, see eq. (2.33). Substituting (4.8) into
(4.2), one can now expand the right-hand side of (4.2), firstly for small (y + m′′exp), and
take in the resulting expression the true chiral limit, y → 0. By finally subtracting m̄〈q̄q〉
on both sides it gives an expression which depends on m′′exp only, in the limit m′′ → 0.
More precisely one obtains after simple algebra

m̄exp〈q̄q〉 ≡ lim
m′′ → 0

{ (m̄+ m̄exp)〈q̄q〉 − m̄〈q̄q〉}

= Λ4
MS

(2C)−4Cδ〈q̄q〉 2b0 C
C−B
A exp[

4A1

2b0
] (m′′exp)

1/A +O(m
′′

exp)
2/A , (4.9)
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in terms of the quantities already defined after eq.(4.2), including the RS dependence 27.

Using the relation between m′′exp and m̄exp in (2.33), one can now cancel m̄exp on both
sides of (4.9) and extract a value of 〈q̄q〉. Note that the dependence upon m̄exp ≡ mexp(µ̄)
does not completely cancel out, since A(∆γ1) 6= 1 in a general RS. Indeed in (4.9) there
is an additional implicit dependence on the scheme, through the relation between m′′exp
and m̄exp in (2.33): this is expected, otherwise since m′′ ∝ m̄/ΛMS one would obtain
〈q̄q〉 ∝ pure number × Λ3

MS
, which we know cannot be the case, due to the inherent

µ-dependence of 〈q̄q〉. Consequently, in contrast with the dynamical mass and Fπ, it
would not make much sense to invoke the PMS with respect to the scale dependence a.
Therefore, we shall fix (4.9) to its MS scheme value (i.e. a = 1, ∆γ1 = B1 = 0), which
indeed makes comparison with other works easier, since the quark condensate is generally
given in the MS scheme (and typically at µ̄ = 1 GeV) [35, 63]. Although we do not
try thus to numerically optimize expression (4.9), one should remember that the ansatz
(4.2) is assumed to be already optimal with respect to the variational mass parameter,
m′′. Indeed, the only remaining contribution from (4.2) in (4.9) at first order in m′′exp
is the simple pole, but with residu given by the RS independent zeroth order terms, as
a consequence of the F−1 factor in (4.2). Accordingly, potentially non-trivial extrema,
which may have appeared from the RS dependence at the next orders (as was the case for
Mq and Fπ) are washed out. Taking into account the next order m′′exp terms in (4.9) one
may eventually obtain non-trivial extrema, but those small corrections are not expected
to drastically change the results given below.

A more serious trouble when fixing the RS to MS is that the MS scheme value
∆γ1 = 0 is such that the extra singularities occur at Re[y] > 0, therefore rendering the
expansion around the origin y ' 0 a priori completely ambiguous, as explained in section
2. However, in eq. (4.9), y and m′′exp are by definition independent parameters, so it
turns out that the extra singularities, as given by the zeros of dy/dF , are independent of
m′′exp (equivalently, because the extra singularities are due to the Jacobian of the F → y

transformation, and the dy ey/m
′′

term remains unaffected by mexp). We thus assume that
the corresponding ambiguities cancel out in the difference in expression (4.9). Although
we were not able to prove this statement rigorously, at least it is easily checked that the
m̄〈q̄q〉 part in (4.9), which contains the singularities, do cancel in the first order expansion
in m′′exp. Within this assumption, we thus obtain the MS result:

〈q̄q〉1/3
MS

ΛMS

(µ̄) ' 0.647 [
m̂(µ̄)

ΛMS(2)
]0.073 ; 0.614 [

m̂(µ̄)

ΛMS(3)
]0.018, (4.10)

where the µ dependence is only due to the remaining dependence on m̂(µ̄) ≡ 1/2(m̄u+m̄d)
or m̂(µ̄) ≡ 1/3(m̄u + m̄d + m̄s), for nf = 2 or nf = 3 respectively. Accordingly to extract
a 〈q̄q〉(µ) value, we obviously have to use as input the explicit quark (current) masses

27The (1/A) 6= 1 power of m
′′

exp ∝ m̄/ΛMS in the second line of (4.9) may seem awkward
at first. It is consistent however with the known perturbative behaviour of 〈q̄q〉(µ): from (4.9),
〈q̄q〉(µ) ' m2b0/γ0−1 ln(µ/ΛMS) for µ � ΛMS , so that since m ' [ln(µ/ΛMS)]−γ0/2b0 one recovers

〈q̄q〉(µ) ' [ln(µ/ΛMS)]γ0/2b0 asymptotically, i.e. the condensate runs as inversely as the mass, as it
should.
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m̂(µ̄). Since the only available values of the light quark masses are extracted from a
QCD sum rule determination of 〈s̄s〉 [63], and using the m̂u,d/m̂s mass ratio [64] (and
moreover assuming the validity of the GOR relation), it is to be considered more as a
consistency check than a truly independent prediction. Note however that (4.10) is only
weakly sensitive to the explicit breaking masses m̂, due to the small power coefficients
involved.
Taking the latest results for the running masses at 1 GeV, as collected in ref. [64] 28,

m̂(2) ≡
1

2
(m̄u + m̄d) ' 7.2± 2.3MeV (4.11)

and

m̂(3) ≡
1

3
(m̄u + m̄d + m̄s) ' 63.1± 9.1MeV , (4.12)

for nf = 2, 3 respectively, this gives

〈q̄q〉1/3
MS

(1GeV ) ' (0.500− 0.525) ΛMS(2) ; (0.602− 0.606) ΛMS(3) . (4.13)

Alternatively, observing that in fact in (4.10) the power of m̂/ΛMS only depends on the
RS parameter ∆γ1, via the quantity A defined in (2.35), there may be a way of extracting
〈q̄q〉(µ) in the exact chiral limit, m̄→ 0, by simply choosing a RS such that A = 1 exactly.
This occurs for ∆γ1 = 31/(288π4) and ∆γ1 = 5/(192π4) for nf = 2 and 3 respectively,
and gives

〈q̄q〉1/3m̂→0(1GeV ) ' 0.52 ΛMS(2) , 0.58 ΛMS(3) . (4.14)

Note that the results (4.13) and (4.14) are fairly consistent, given the errors on the quark
mass m̂ estimates and the presumed intrinsic error of our method. The not so good
agreement for nf = 3 may be attributed to the fact that we have neglected the mass
of the strange quark in our (chiral symmetric) estimate of Fπ/ΛMS and 〈q̄q〉1/3/ΛMS

(which is probably not a very good approximation, as indicated e.g. from the fact that
FK/Fπ ' 1.23, experimentally.)
We thus obtain, within our approach, rather small 〈q̄q〉 values. To make our results consis-
tent with the sum rules calculations [35], we would need typically ΛMS ' 400 MeV, which
contradicts the results in section 3 for Fπ/ΛMS. (The former value of ΛMS is however
more consistent with the experimental results [59] from LEP, αS(MZ) = 0.117± 0.005).

There are several ways in which our results may be interpreted. First, it is not excluded
that our way of performing the small expansion in mexp in (4.9), although mathematically
well-defined, may simply not be the physically sensible way of proceeding. Our framework
amply relies on the continuation to very small values of the arbitrary mass parameter m′′,
thus it is may perhaps be only capable of determining the zero order of a chiral symmetry
breaking expansion in a small mass. This is rather unfortunate for the quark condensate,
which always appears as suppressed by an explicit mass in any physical relation. Besides,
we anyhow consider the results in (4.10), (4.14) on a less firm basis than the ones for Mq

and Fπ in (2.48) and (3.11), due to the lack of PMS optimization (and due to the possible
remaining ambiguities of (4.2) in the MS scheme as well 29).

28In (4.11), (4.12) the values with errors added linearly were simply obtained from the errors quoted
in [64].

29As previously we can also choose the RS where Re[ycut] = 0 in (4.2) and (4.9), which gives results
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5 Summary and discussion

Let us first summarize our main results.

• We have shown that the variational expansion in arbitrary mass m̄, as developped
in the context of the GN model [8], can be formally extended to the QCD case. In par-
ticular we have seen how to reconcile the variational expansion with renormalization, and
obtained a non-trivial, finite result in the chiral limit for the mass gap, by resumming the
variational series expansion in x with an appropriate contour integral.

• Next, we have exhibited the link between the finite variational ansatz and the RG
solutions in renormalized form, with the identification of specific fixed point boundary
conditions. This allows to generalize the construction in a most straightforward way to
the next RG orders and to more complicated quantities as well, such as the relevant order
parameters of CSB, 〈q̄q〉 and Fπ.

• We have studied in some details how the arbitrary RS dependence influences our
different ansatzs and, in particular, how the extra singularities appearing in the QCD case
can be moved away by appropriate RS change at the second perturbative order. The re-
sulting expressions in a generalized RS have been numerically optimized, within a certain
approximation, due to the complexity of the complete optimization problem. The optimal
values obtained for Mq/ΛMS and Fπ/ΛMS, summarized in table 1, are quite encouraging.
Actually one should mention that the (unoptimized) corresponding values in the original
MS scheme, as given in eqs. (2.50), (3.12), would equally well be in reasonable agreement
with other estimates in the literature: given the large present uncertainties on the values
of ΛMS(2),ΛMS(3) it is difficult to assert which results are closest to the largely unknow
experimental values. However, the MS values are a priori ambiguous due to the extra
singularities, as discussed in section 2.4; moreover according to the PMS principle adopted
here, we consider on general grounds the optimized results as being on a firmer basis.

• Finally, we have also introduced explicit chiral symmetry breaking mass terms in
our framework, which plays an especially important role in extracting an estimate of 〈q̄q〉.
It should also be relevant to a more accurate evaluation of Fπ/ΛMS and Mq/ΛMS in the
SU(3) case, where the explicit symmetry breaking due to the strange quark mass is pre-
sumably not negligible. We plan to study those explicit mass effects in a more quantitative
way in a future work.

In table 1, we also give the results that are obtained when restricting the different
ansatz to the first order, i.e. taking the limit b1 = 0, γ1 = 0 and neglecting the 1/F 2

terms in the different expressions for MP
2 , Fπ and m〈q̄q〉 respectively. (In that case, the

only arbitrariness is the renormalization scale, and the results were obtained from opti-
mization with respect to a). As well the “zero order” results, i.e. obtained by taking only
the pure RG dependence are shown. Strictly speaking, those one-loop (and zero-loop)

in rough consistency with those in (4.13), (4.14). However, due to the lack of RS invariance of 〈q̄q〉, it is
then more difficult to compare with the quoted results from other methods [35].
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Optimized zero order 1st order 2d order
quantity (pure RG) (optimized) (optimized)

nf = 2, nf = 3 nf = 2, nf = 3 nf = 2, nf = 3

MPadé

Λ
MS

1.0, 1.0 1.948, 1.948 2.97, 2.85

aopt = e2/3, e2/3 aopt ' 1.42, 2.84
Bopt

1 ' .12, .06

FPadéπ

Λ
MS

0.355, 0.355 0.359, 0.360 0.55, 0.59

aopt = e−1/12, e−1/12 aopt ' 4.2, 4.77
Bopt

1 ' −.017, − .026

(m̄〈q̄q〉Padé)1/4

Λ
MS

0.564, 0.564 0.669, 0.670 ' 0 ' 0

aopt = e5/12, e5/12

〈q̄q〉1/3

Λ
MS

(MS, m̃) 0.65 ( m̃
Λ
MS

)0.07, 0.61 ( m̃
Λ
MS

)0.02 - -

〈q̄q〉1/3

Λ
MS

(m̃→ 0) 0.52, 0.58 - -

Table 1: Optimized results at different orders of the perturbative (non-RG) corrections
for nf = 2 and nf = 3 as function of the basic QCD scale ΛMS. The corresponding values
of the RS parameters at optima are indicated, when relevant. For M/ΛMS and Fπ/ΛMS

the zero order corresponds to neglecting completely the non-logarithmic corrections, and
taking the simple pole resulting from (first order) RG dependence. For 〈q̄q〉1/3/ΛMS the
“zero” order corresponds in fact to the (unoptimized) formula (4.9).

results are again a priori ambiguous, being affected by the presence of extra singularities
which cannot be moved away. We nevertheless found useful to give them for completeness,
as they were obtained from naively ignoring the ambiguities and taking the simple pole
residues in the relevant ansatzs.

Now another problem is how to estimate the error of the method. As may be expected,
the rigorous theorems in ref. [30] cannot be applied to the present QCD framework. Ad-
mittedly, our final numerical results thus require a fair amount of mere “trust”, which is
the usual problem with the PMS, even indeed when applied to perturbative expressions.
Note however that all our results are rigorously derived, as far as the pure RG behaviour
is concerned: it is only the purely perturbative non-RG corrections, Mi 6= 0 in (2.42),
which are treated according to the PMS. In other words we assume that it is legitimate to
treat the remaining perturbative correction with a variant of the PMS. In the GN model
case [8], the value of the curvature with respect to a at the extremum gave a rather good
qualitative idea of the error, but there is a priori no more definite relationship between
the curvature at extrema points and the intrinsic error. The knowledge of the exact GN
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results allowed a comparison of different Padé approximant forms. As a partial qualitative
cross-check, we have tried a similar comparison in the present case, and indeed found non-
trivial optima (when those existed) of the same order of magnitude than (2.48), (3.11)
with alternative Padé constructions similar to those explained in ref. [8] 30. We do not
find sensible to make a systematic study in the QCD case since, as above discussed, it
would not give much more quantitative idea on the intrinsic error of the method itself.

Concerning the relatively low 〈q̄q〉 values, letting apart the possibility that our method
simply fails to extract an accurate estimate in the chiral limit, for the reasons discussed
above, let us consider taking our 〈q̄q〉 results at face value and discuss their consequences.
In fact, the possibility of a marginally small (or even zero) quark condensate was recently
raised in ref. [51, 52]. Clearly, 〈q̄q〉 6= 0 is a sufficient but not necessary condition for
spontaneous CSB. For instance, as mentioned in section 3, Fπ is an equally well-defined
order parameter. In ref. [51] the authors moreover emphasize that there are at present no
clear experimental evidence for a realization of CSB through a large quark condensate.
As stressed there, the familiar GOR relation is only the first order in m̄exp expansion,
assuming the dominance of the 〈q̄q〉 condensate, precisely. On the other hand, one may
argue that there are some evidences, in particular from the spectral sum rules [35] or
more recently from lattice simulations [5], of a low-energy QCD picture with a larger
〈q̄q〉. On the theoretical side, giving up the dominance of the quark condensate gives a
rather complicated framework to describe low-energy QCD: although a generalization of
chiral perturbation theory is perfectly possible [51], it looses a good part of its predictive
power. Nevertheless it is certainly not unreasonable to conclude that a small quark con-
densate is at present not excluded from the data.
Another possibility would be simply that the dominant contribution to quark condensa-
tion has a very different origin than the mechanism leading to Fπ 6= 0 and dynamical
quark masses Mq � mq. As mentioned in the introduction other non-perturbative effects
associated with instantons, which are totally ignored here, are likely to play some role in
the CSB dynamics. For instance, it was argued long ago [13] in some simplified picture of
the QCD vacuum, that the instanton/anti-instanton interaction can give rise to effective
(non-local) four-quark interactions of the NJL type [2].
In any event, the present construction may be considered a definite estimate of the con-
tributions to order parameters that are associated to the non-instantonic vacuum.
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Figure Captions.

Figure 1: dynamical quark mass Mq/ΛMS contribution from expression (2.47) with nf = 2
versus the scale parameter a, for different values of B1 near the optimal (plateau) re-
gion. The exact plateau corresponds to B1 = 0.12. ∆γ1 is fixed to 0.00437, such that
Re[ycut] ' 0.

Figure 2: dynamical Fπ/ΛMS contribution from expression (3.10) with nf = 2 versus the
scale parameter a, for different values of B1 near the optimal (plateau) region. The exact
plateau corresponds to B1 = −0.0173. ∆γ1 is fixed to 0.00437, such that Re[ycut] ' 0.
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A Renormalization group material

We set here some definitions and normalization conventions for the renormalization group
results used at different stages of our construction.

The homogeneous RG operator (i.e giving zero when applied to a RG-invariant quan-
tity) is taken as

µ
d

dµ
≡ µ

∂

∂µ
+ β(g)

∂

∂g
− γm(g) m

∂

∂m
, (A.1)

where the RG coefficients are given by

β(g) ≡ µ
dg

dµ
= −b0 g

3 − b1 g
5 − b2 g

7 − ... (A.2)

γm(g) ≡ −
µ

m

dm

dµ
= γ0 g

2 + γ1 g
4 + γ2 g

6 + ... (A.3)

in terms of the coupling constant g, in a minimal subtraction scheme. In QCD (αS ≡
g2/(4π)) the coefficients bi and γi are known up to the three-loop order[46] and read
explicitly[41, 42, 46] in the MS-scheme:

b0 =
1

16π2
(11−

2

3
nf ) ,

b1 =
1

(16π2)2
(102−

38

3
nf) ,

b2 =
1

(16π2)3
(
2857

2
−

5033

18
nf +

325

54
n2
f ) (A.4)

γ0 =
1

2π2
,

γ1 =
1

(16π2)2
(
404

3
−

40

9
nf ) ,

γ2 =
1

(16π2)3
(
7494

3
+ (

320

3
ζ(3)−

4432

27
)nf −

280

81
n2
f ) (A.5)

where nf is the number of active quark flavors.
As is well-known 31 only the first two bi’s and γ0 are RS independent. For a gen-

eral perturbative change of scheme (restricted to second order which is sufficient for our
purpose),

g2 → g
′2 = g2 (1 +A1g

2 +A2g
4 + · · ·) ,

m→ m
′
= m (1 +B1g

2 +B2g
4 + · · ·) , (A.6)

the modification of the beta and gamma coefficients in the new (primed) scheme reads:

b
′

0 = b0 ,

b
′

1 = b1 ,

b
′

2 = b2 − A1b1 + (A2 − A
2
1)b0 ; (A.7)

31For a review on RG properties, see the excellent textbook by J. C. Collins [56].
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and

γ
′

0 = γ0 ,

γ
′

1 = γ1 + 2b0B1 − γ0A1 ≡ γ1 + ∆γ1 ,

γ
′

2 = γ2 + 2b1B1 + 2b0(2B2 −B
2
1)− 2A1γ

′

1 − γ0A2 . (A.8)

Accordingly one can set b
′

2 = 0 and γ
′

2 = 0 by choosing appropriately A2 and B2 in (A.7),
(A.8), for arbitrary B1 and A1. These expressions are used in section 2, 3 and 4 to con-
struct generalized RS dependent ansatzs, at the second perturbative order.

Next we define the leading log (LL), next-to-leading log (NLL) etc, formal series for
the quantities we are interested in. Let us start with the mass: from purely dimensional
considerations, we write for the RG invariant physical (pole) mass,

MP = m̄
∞∑
p=0

ap(
m̄

µ̄
) ḡ2p (A.9)

where

ap(
m̄

µ̄
) ≡

p∑
r=0

ap,r[ln(
m̄

µ̄
)]p−r , (A.10)

µ̄ is the MS scale and m̄ ≡ m(µ̄) the Lagrangian mass. The ap,0, (p ≥ 1) coefficients of
[ln( m̄

µ̄
)]p define the LL terms, the ap,1 (p ≥ 2) coefficients of [ln( m̄

µ̄
)]p−1 define the NLL

terms, etc. Accordingly the app coefficients are the non-logarithmic perturbative terms,
at order p. Considering now the equation obtained by applying (A.1) on (A.9), as giving
the µ-dependence of MP for fixed ḡ2, one obtains formal series for the LL, NLL, etc [56]:
–the LL serie:

−p ap,0 = (γ0 + 2b0(p− 1))ap−1,0 (p ≥ 1; a0,0 ≡ 1) (A.11)

–the NLL serie:

(1− p) ap,1 = (γ0 + 2b0(p− 1))ap−1,1 + (γ1 + 2b1(p− 2))ap−2,0 + γ0(p− 1)ap−1,0,

(p ≥ 2) (A.12)

and so on.
The universal (RS independent) LL series can be easily resummed as

MLL
1 = m(1 + 2b0g

2L)
−
γ0
2b0 . (A.13)

(where L ≡ ln( m̄
µ̄
)). In contrast the NLL, NNLL etc series are RS dependent, and not

straightforward to resum explicitly. We have seen in section 2.3 how to find a resummation
expression for the NLL series which can be checked to correctly reproduce the terms
formally defined in (A.12) to all orders.

For of a composite operator On of naive mass dimension n and depending only on
m and g, as considered in section 3 and 4 for F 2

π and m̄ < q̄q > respectively 32, it is
straightforward to generalize the above expressions in (A.11)–(A.12). One thus obtains
similar LL and NLL series, that we do not display explicitly. It is easily checked that the
perturbative expansion of the different ansatzs do reproduce the correct formal series.

32We only consider however composite operators which can be defined as two point functions.
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B A contour integral resumming the x dependence

We review here the formalism originally introduced in [7, 8] to obtain non-trivial result
for the resummation of the perturbative series in x, in the limit x → 1. It leads to the
dynamical mass ansatz in (2.26), (2.31) and its generalization for the composite operators
in section 3, 4.

Consider the one-loop RG invariant (bare) expression for the mass M1 as given in
eq. (2.8):

M1 =
m0

[1− b0Γ(ε/2)(4π)ε/2g2
0(M1)−ε]

γ0
2b0

. (B.1)

Performing the substitution

m0 → m0(1− x); g2
0 → g2

0x, (B.2)

provides a new quantity M1(x). To pick up the xq order term in M1(x) ≡
∑∞
q=0 aqx

q

(having in mind that we are actually interested in the limit x→ 1), a convenient trick is
by contour integration:

M
(q)
1 →

(x→ 1)

q∑
k=0

ak =
1

2iπ

∮
dx(

1

x
+ · · ·+

1

xq+1
) M1(x). (B.3)

Now performing the sum in (B.3) exhibits a (1− x)−1 factor, cancelling the (1− x) from
(B.2). This results in the expression 33:

M
(q)
1 →

(x→ 1)

1

2iπ

∮
dxx−(q+1) m0[f0(x)]

−
γ0
2b0 , (B.4)

where the contour is counterclockwise around the origin, and for convenience we defined
the (recursive) function

f0(x) ≡ 1− b0 x g
2
0Γ[

ε

2
]m−ε0 (1− x)−ε (f0)

ε
γ0
2b0 , (B.5)

dictated from eq. (B.1). f0(x) has evidently a power series expansion in x, but, less
obviously, also admits an expansion in (1− x), as noted by inverting its defining relation
(B.5). This implies in particular that x = 1 is an (isolated) pole of M1.
Provided that no extra singularities lie in the way, one may distort the integration contour
in (B.4) to go around the cut lying along the real positive axis and starting at x = 1.
Actually, one can go a step further and reach the q → ∞ limit: after distorsion of the
contour, only the vicinity of x = 1 survives for q →∞, that one can analyse by changing
variable to

1− x ≡
v

q
, (B.6)

and rescaling m0 by introducing m0 = m
′

0q, keeping m
′

0 fixed as q goes to infinity. One
finds in place of (B.4)

M1 =
(q →∞)

1

2iπ

∮
dv

v
ev

v m
′

0

f0(v)
γ0
2b0

(B.7)

33In (B.4) there appeared in fact a factor of 1− x−(q+1), from which only the last term contributes to
the integral due to the analyticity of f0(x) defined in (B.5).
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where now f0(v) ≡ 1−b0 g2
0Γ[ ε

2
](m0v)

−ε(f0)
ε
γ0
2b0 . Once performing the renormalization via

m0 = m̄Zm, g2
0 = µ̄εZgg

2, M1 in (B.7) is now finite to all orders:

M1 =
1

2iπ

∮
dvev

m̄

f
γ0
2b0

(B.8)

where the renormalized function

f = 1 + 2b0ḡ
2 ln[(

m̄v

µ̄
) f−(γ0/2b0) ]. (B.9)

We have thus shown how to recover finite quantities with a non-trivial x expansion.
Eq. (B.8) however only includes the one-loop RG dependence. To make the connection
with the pole mass one should include the necessary non-logarithmic perturbative cor-
rections, already present e.g. at the one loop order in (2.6). This can be done without
affecting the contour integration properties, except that the resulting expression of M1

has a more complicated structure around v ' 0, which can be however systematically
expanded around the origin in the way discussed in section 2.2. Generalization of the
previous construction to the next RG order is possible [8] although here we shall use in
section 2.3 a more convenient construction directly in terms of renormalized quantities.

C Perturbative results

In this section we collect for completeness the known perturbative expansions for the
three quantities of interest, M(m̄), F 2

π (m̄) and m̄〈q̄q〉(m̄) respectively, in the MS scheme.
These determine, among other things, the non-logarithmic perturbative corrections in our
different ansatz, as well as serve as a cross-check of the LL and NLL expansion properties.

C.1 Quark mass

The two-loop pole quark mass was calculated in ref.[43], with exact dependence on the
(current) quark masses running in the loops. It includes LL and NLL terms plus the
non-logarithmic perturbative corrections. As we consider only the case with nf equal
mass quarks, the results of [43] take a simpler, entirely analytical form:

MQ

m̄
= 1 + γ0(

2

3
− L)g2 + [γ0 (

γ0

2
+ b0)L

2 + (
γ2

0

3
−

4

3
γ0b0 − γ1)L+

K

(4π2)2
]g4 (C.1)

in terms of the (renormalized) current quark mass m̄, with L ≡ ln(m̄/µ̄), and

K =
π2

9
ln 2+

7

18
π2−

ζ(3)

6
+

3673

288
− (

π2

18
+

71

144
)nf +

(π2 − 3)

8
(nf −1)−

2

3
γ2

0(4π
2)2 (C.2)

for nf (equal mass) quarks (ζ(x) is the Riemann zeta-function). We refer to [43] for the
details of this calculation.
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C.2 Fπ

As discussed in section 3, the perturbative contributions to the pion decay constant Fπ
may be obtained from the axial-vector–axial-vector two-point correlator evaluated at p2 =
0, where p is the external momentum. But that is formally the very same quantity which
appears as the (neutral) part of the ρ-parameter (at p2 = 0) in electroweak theory [65],
up to some trivial overall factors. The two-loop pure QCD corrections with exact quark
mass dependence were first computed in [54], and recently the three-loop corrections in
[55]. The only caution is to convert some of these results, given in the on-shell scheme, to
the MS-scheme34. More trivially, those expressions were calculated for a top mass mt, so
that in the present context we replace mt → m̄, where m̄ designates the current (equal)
mass of the light quarks. One thus has, for D = 4− ε

F 2
π,0(pert) = −Nc

m̄2

2π2

{
−

1

ε
+ L +

g2

16π2

[
8

ε2
−

10

3ε
− 8L2 −

4

3
L−

1

6

]

+ (
g2

16π2
)2

[
−

304
3
− 32

9
nf

ε3
+

132− 40
9
nf

ε2
+
−910/3 + 24ζ(3) + 16nf

9ε

+ f 30
π L

3 + f 31
π L

2 + f 32
π L+ f 33

π

]}
(C.3)

where L ≡ ln(m̄/µ̄) and

f 30
π =

304

3
−

32

9
nf (C.4)

f 31
π = −

136

3
+

32

9
nf (C.5)

f 32
π = −8ζ(3)−

149

9
−

10

9
nf (C.6)

f 33
π =

16

9
(
51

16
− 36ζ(3) + 27ζ(4)− 6B4) + 4(3 +

28

3
ζ(3)−

27

2
ζ(4) + 3B4)

+
4

3
nf(−

1

12
+

8

3
ζ(3))−

4

3
(2 + 12ζ(3)) (C.7)

with

B4 = 16Li4(
1

2
) +

2

3
ln4 2−

2

3
π2 ln2 2−

13

180
π4 = −1.7628.. (C.8)

As explicit, (C.3) still contains divergences even after mass and coupling renormalization,
and should be renormalized by and additional subtraction, according to the discussion in
section 3. Using eq. (3.4) one then obtains after some algebra the perturbative coefficients
of 1/F and 1/F 2 respectively, απ and βπ given in (3.7)–(3.8), where the two-loop term
f (2)
π is given as

f (2)
π (MS) =

1

1152π4(b0 + γ0)

{
[455− 24nf + 24π2(γ0 + b0)](γ0 − b0)

+ 1152π4(b2 − γ2) + 960π4(b0 − γ0)γ1 + 2304π6γ1(γ1 − b1) + 36(b0 − γ0)ζ(3)
}

(C.9)

34Results in MS-scheme are also summarized in [55]. Expression in eq. (C.3) have been made consistent
with our definition of ε, which differs from the one in [54, 55] by a factor of 2.
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C.3 〈q̄q〉

We have computed independently the perturbative expression of the quark-antiquark
condensate < qq >, with a non-zero mass, to two-loop order. Our results fully agree with
the expressions first calculated by the authors of ref. [62]. With D ≡ 4 − ε, one obtains
in the MS-scheme

m0 < qq >0
pert= Nc

m̄4

2π2
[
1

ε
− L+

1

2
+
g2

π2
(−

1

ε2
+

1

6ε
+ L2 −

5

6
L+

5

12
)] (C.10)

where the index 0 stands for unrenormalized quantities. Like in the F 2
π case, the expression

in (C.10) has to be further renormalized by a subtraction, which leads to the perturbative

coefficients of 1/F and 1/F 2 as given in (4.4), (4.5), where the two-loop f
(2)
<qq> term 35 is

given as

f
(2)
<qq>(MS) =

1

6π2(b0 + 2γ0)

[
−5b20 + 6π2(b2 − 2γ2) + 20γ2

0

+ 4π2b0γ1 − 12π4b1γ1 − 4γ1 + 24π4γ2
1

]
(C.11)

35We stress again that f
(2)
<qq> is not the complete two-loop perturbative term: the latter would need

the knowledge of the 3-loop order 1/ε coefficient, which we arbitrarily put to zero here.
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Figure 1: dynamical quark mass Mq/ΛMS contribution from expression (2.47) with nf = 2
versus the scale parameter a, for different values of B1 near the optimal (plateau) region.
The exact plateau corresponds to B1 = 0.12. ∆γ1 is fixed to 0.00437, so that Re[ycut] ' 0.
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Figure 2: dynamical Fπ/ΛMS contribution from expression (3.10) with nf = 2 versus the
scale parameter a, for different values of B1 near the optimal (plateau) region. The exact
plateau corresponds to B1 = −0.0173. ∆γ1 is fixed to 0.00437, so that Re[ycut] ' 0.
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