Abstract

We investigate in some detail a "variational mass" expansion approach, generalized from a similar construction developed in the Gross-Neveu model, to evaluate the basic order parameters of the dynamical breaking of the SU(2)L×SU(2)RSU(2)_L \times SU(2)_R and SU(3)L×SU(3)RSU(3)_L \times SU(3)_R chiral symmetries in QCD. The method starts with a reorganization of the ordinary perturbation theory with the addition of an arbitrary quark mass mm. The new perturbative series can be summed to all orders thanks to renormalization group properties, with specific boundary conditions, and advocated analytic continuation in mm properties. In the approximation where the explicit breakdown of the chiral symmetries due to small current quark masses is neglected, we derive ansatzes for the dynamical contribution to the "constituent" masses MqM_q of the u,d,su,d,s quarks; the pion decay constant FπF_\pi; and the quark condensate in terms of the basic QCD scale ΛMSˉ\Lambda_{\bar{MS}} . Those ansatzes are then optimized, in a sense to be specified, and also explicit symmetry breaking mass terms can be consistently introduced in the framework. The obtained values of FπF_\pi and MqM_q are roughly in agreement with what is expected from other non-perturbative methods. In contrast we obtain quite a small value of <qˉq>|< \bar q q >| within our approach. The possible interpretation of the latter results is briefly discussed.Comment: 40 pages, LaTex, 2 PS figures. Additions in section 2.2 to better explain the relation between the current mass and the dynamical mass ansatz. Minor misprints corrected. Version to appear in Phys. Rev.

    Similar works