1,451 research outputs found

    Ultracold Neutral Plasmas

    Full text link
    Ultracold neutral plasmas are formed by photoionizing laser-cooled atoms near the ionization threshold. Through the application of atomic physics techniques and diagnostics, these experiments stretch the boundaries of traditional neutral plasma physics. The electron temperature in these plasmas ranges from 1-1000 K and the ion temperature is around 1 K. The density can approach 101110^{11} cm3^{-3}. Fundamental interest stems from the possibility of creating strongly-coupled plasmas, but recombination, collective modes, and thermalization in these systems have also been studied. Optical absorption images of a strontium plasma, using the Sr+^+ 2S_1/2>2P_1/2{^2S\_{1/2}} -> {^2P\_{1/2}} transition at 422 nm, depict the density profile of the plasma, and probe kinetics on a 50 ns time-scale. The Doppler-broadened ion absorption spectrum measures the ion velocity distribution, which gives an accurate measure of the ion dynamics in the first microsecond after photoionization.Comment: 12th International Congress on Plasma Physics, 25-29 October 2004, Nice (France

    Antenna pattern shaping, sensing, and steering study Final report

    Get PDF
    Design of steerable satellite antenna with beam pattern sensing syste

    Electron Temperature Evolution in Expanding Ultracold Neutral Plasmas

    Get PDF
    We have used the free expansion of ultracold neutral plasmas as a time-resolved probe of electron temperature. A combination of experimental measurements of the ion expansion velocity and numerical simulations characterize the crossover from an elastic-collision regime at low initial Gamma_e, which is dominated by adiabatic cooling of the electrons, to the regime of high Gamma_e in which inelastic processes drastically heat the electrons. We identify the time scales and relative contributions of various processes, and experimentally show the importance of radiative decay and disorder-induced electron heating for the first time in ultracold neutral plasmas

    Experimental Realization of an Exact Solution to the Vlasov Equations for an Expanding Plasma

    Get PDF
    We study the expansion of ultracold neutral plasmas in the regime in which inelastic collisions are negligible. The plasma expands due to the thermal pressure of the electrons, and for an initial spherically symmetric Gaussian density profle, the expansion is self-similar. Measurements of the plasma size and ion kinetic energy using fluorescence imaging and spectroscopy show that the expansion follows an analytic solution of the Vlasov equations for an adiabatically expanding plasma.Comment: 4 pages, 4 figure

    Rydberg impurity in a Fermi gas: Quantum statistics and rotational blockade

    Get PDF

    Evolution of Ultracold, Neutral Plasmas

    Get PDF
    We present the first large-scale simulations of an ultracold, neutral plasma, produced by photoionization of laser-cooled xenon atoms, from creation to initial expansion, using classical molecular dynamics methods with open boundary conditions. We reproduce many of the experimental findings such as the trapping efficiency of electrons with increased ion number, a minimum electron temperature achieved on approach to the photoionization threshold, and recombination into Rydberg states of anomalously-low principal quantum number. In addition, many of these effects establish themselves very early in the plasma evolution (\sim ns) before present experimental observations begin.Comment: 4 pages, 3 figures, submitted to PR

    Creation of Rydberg Polarons in a Bose Gas

    Get PDF
    We report spectroscopic observation of Rydberg polarons in an atomic Bose gas. Polarons are created by excitation of Rydberg atoms as impurities in a strontium Bose-Einstein condensate. They are distinguished from previously studied polarons by macroscopic occupation of bound molecular states that arise from scattering of the weakly bound Rydberg electron from ground-state atoms. The absence of a pp-wave resonance in the low-energy electron-atom scattering in Sr introduces a universal behavior in the Rydberg spectral lineshape and in scaling of the spectral width (narrowing) with the Rydberg principal quantum number, nn. Spectral features are described with a functional determinant approach (FDA) that solves an extended Fr\"{o}hlich Hamiltonian for a mobile impurity in a Bose gas. Excited states of polyatomic Rydberg molecules (trimers, tetrameters, and pentamers) are experimentally resolved and accurately reproduced with FDA.Comment: 5 pages, 3 figure

    Theory of excitation of Rydberg polarons in an atomic quantum gas

    Get PDF
    We present a quantum many-body description of the excitation spectrum of Rydberg polarons in a Bose gas. The many-body Hamiltonian is solved with functional determinant theory, and we extend this technique to describe Rydberg polarons of finite mass. Mean-field and classical descriptions of the spectrum are derived as approximations of the many-body theory. The various approaches are applied to experimental observations of polarons created by excitation of Rydberg atoms in a strontium Bose-Einstein condensate.Comment: 14 pages, 9 figures. arXiv admin note: substantial text overlap with arXiv:1706.0371

    Runaway evaporation for optically dressed atoms

    Get PDF
    Forced evaporative cooling in a far-off-resonance optical dipole trap is proved to be an efficient method to produce fermionic- or bosonic-degenerated gases. However in most of the experiences, the reduction of the potential height occurs with a diminution of the collision elastic rate. Taking advantage of a long-living excited state, like in two-electron atoms, I propose a new scheme, based on an optical knife, where the forced evaporation can be driven independently of the trap confinement. In this context, the runaway regime might be achieved leading to a substantial improvement of the cooling efficiency. The comparison with the different methods for forced evaporation is discussed in the presence or not of three-body recombination losses

    Radiative charge transfer lifetime of the excited state of (NaCa)+^+

    Get PDF
    New experiments were proposed recently to investigate the regime of cold atomic and molecular ion-atom collision processes in a special hybrid neutral-atom--ion trap under high vacuum conditions. The collisional cooling of laser pre-cooled Ca+^+ ions by ultracold Na atoms is being studied. Modeling this process requires knowledge of the radiative lifetime of the excited singlet A1Σ+^1\Sigma^+ state of the (NaCa)+^+ molecular system. We calculate the rate coefficient for radiative charge transfer using a semiclassical approach. The dipole radial matrix elements between the ground and the excited states, and the potential curves were calculated using Complete Active Space Self-Consistent field and M\"oller-Plesset second order perturbation theory (CASSCF/MP2) with an extended Gaussian basis, 6-311+G(3df). The semiclassical charge transfer rate coefficient was averaged over a thermal Maxwellian distribution. In addition we also present elastic collision cross sections and the spin-exchange cross section. The rate coefficient for charge transfer was found to be 2.3×10162.3\times 10^{-16} cm3^3/sec, while those for the elastic and spin-exchange cross sections were found to be several orders of magnitude higher (1.1×1081.1\times 10^{-8} cm3^3/sec and 2.3×1092.3\times 10^{-9} cm3^3/sec, respectively). This confirms our assumption that the milli-Kelvin regime of collisional cooling of calcium ions by sodium atoms is favorable with the respect to low loss of calcium ions due to the charge transfer.Comment: 4 pages, 5 figures; v.2 - conceptual change
    corecore