2 research outputs found

    Mineralization of dental tissues and caries lesions detailed with Raman microspectroscopic imaging

    No full text
    Abstract Dental caries is the most common oral disease that causes demineralization of the enamel and later of the dentin. Depth-wise assessment of the demineralization process could be used to help in treatment planning. In this study, we aimed to provide baseline information for the development of a Raman probe by characterizing the mineral composition of the dental tissues from large composition maps (6 × 3 mm² with 15 μm step size) using Raman microspectroscopy. Ten human wisdom teeth with different stages of dental caries lesions were examined. All of the teeth were cut in half at representative locations of the caries lesions and then imaged with a Raman imaging microscope. The pre-processed spectral maps were combined into a single data matrix, and the spectra of the enamel, dentin, and caries were identified by K-means cluster analysis. Our results showed that unsupervised identification of dental caries is possible with the K-means clustering. The compositional analysis revealed that the carious lesions are less mineralized than the healthy enamel, and when the lesions extend into the dentin, they are even less mineralized. Furthermore, there were more carbonate imperfections in the mineral crystal lattice of the caries tissues than in healthy tissues. Interestingly, we observed gradients in the sound enamel showing higher mineralization and greater mineral crystal perfection towards the tooth surface. To conclude, our results provide a baseline for the methodological development aimed at clinical diagnostics for the early detection of active caries lesions

    A MHz-repetition-rate hard X-ray free-electron laser driven by a superconducting linear accelerator

    No full text
    International audienceThe European XFEL is a hard X-ray free-electron laser (FEL) based on a high-electron-energy superconducting linear accelerator. The superconducting technology allows for the acceleration of many electron bunches within one radio-frequency pulse of the accelerating voltage and, in turn, for the generation of a large number of hard X-ray pulses. We report on the performance of the European XFEL accelerator with up to 5,000 electron bunches per second and demonstrating a full energy of 17.5 GeV. Feedback mechanisms enable stabilization of the electron beam delivery at the FEL undulator in space and time. The measured FEL gain curve at 9.3 keV is in good agreement with predictions for saturated FEL radiation. Hard X-ray lasing was achieved between 7 keV and 14 keV with pulse energies of up to 2.0 mJ. Using the high repetition rate, an FEL beam with 6 W average power was created
    corecore