169 research outputs found

    An affordable, quality-assured community-based system for high-resolution entomological surveillance of vector mosquitoes that reflects human malaria infection risk patterns.

    Get PDF
    ABSTRACT: BACKGROUND: More sensitive and scalable entomological surveillance tools are required to monitor low levels of transmission that are increasingly common across the tropics, particularly where vector control has been successful. A large-scale larviciding programme in urban Dar es Salaam, Tanzania is supported by a community-based (CB) system for trapping adult mosquito densities to monitor programme performance. Methodology An intensive and extensive CB system for routine, longitudinal, programmatic surveillance of malaria vectors and other mosquitoes using the Ifakara Tent Trap (ITT-C) was developed in Urban Dar es Salaam, Tanzania, and validated by comparison with quality assurance (QA) surveys using either ITT-C or human landing catches (HLC), as well as a cross-sectional survey of malaria parasite prevalence in the same housing compounds. RESULTS: Community-based ITT-C had much lower sensitivity per person-night of sampling than HLC (Relative Rate (RR) [95% Confidence Interval (CI)] = 0.079 [0.051, 0.121], P < 0.001 for Anopheles gambiae s.l. and 0.153 [0.137, 0.171], P < 0.001 for Culicines) but only moderately differed from QA surveys with the same trap (0.536 [0.406,0.617], P = 0.001 and 0.747 [0.677,0.824], P < 0.001, for An. gambiae or Culex respectively). Despite the poor sensitivity of the ITT per night of sampling, when CB-ITT was compared with QA-HLC, it proved at least comparably sensitive in absolute terms (171 versus 169 primary vectors caught) and cost-effective (153USversus187US versus 187US per An. gambiae caught) because it allowed more spatially extensive and temporally intensive sampling (4284 versus 335 trap nights distributed over 615 versus 240 locations with a mean number of samples per year of 143 versus 141). Despite the very low vectors densities (Annual estimate of about 170 An gambiae s.l bites per person per year), CB-ITT was the only entomological predictor of parasite infection risk (Odds Ratio [95% CI] = 4.43[3.027,7. 454] per An. gambiae or Anopheles funestus caught per night, P =0.0373). Discussion and conclusion CB trapping approaches could be improved with more sensitive traps, but already offer a practical, safe and affordable system for routine programmatic mosquito surveillance and clusters could be distributed across entire countries by adapting the sample submission and quality assurance procedures accordingly

    Natural Plant Sugar Sources of Anopheles Mosquitoes Strongly Impact Malaria Transmission Potential

    Get PDF
    An improved knowledge of mosquito life history could strengthen malaria vector control efforts that primarily focus on killing mosquitoes indoors using insecticide treated nets and indoor residual spraying. Natural sugar sources, usually floral nectars of plants, are a primary energy resource for adult mosquitoes but their role in regulating the dynamics of mosquito populations is unclear. To determine how the sugar availability impacts Anopheles sergentii populations, mark-release-recapture studies were conducted in two oases in Israel with either absence or presence of the local primary sugar source, flowering Acacia raddiana trees. Compared with population estimates from the sugar-rich oasis, An. sergentii in the sugar-poor oasis showed smaller population size (37,494 vs. 85,595), lower survival rates (0.72 vs. 0.93), and prolonged gonotrophic cycles (3.33 vs. 2.36 days). The estimated number of females older than the extrinsic incubation period of malaria (10 days) in the sugar rich site was 4 times greater than in the sugar poor site. Sugar feeding detected in mosquito guts in the sugar-rich site was significantly higher (73%) than in the sugar-poor site (48%). In contrast, plant tissue feeding (poor quality sugar source) in the sugar-rich habitat was much less (0.3%) than in the sugar-poor site (30%). More important, the estimated vectorial capacity, a standard measure of malaria transmission potential, was more than 250-fold higher in the sugar-rich oasis than that in the sugar-poor site. Our results convincingly show that the availability of sugar sources in the local environment is a major determinant regulating the dynamics of mosquito populations and their vector potential, suggesting that control interventions targeting sugar-feeding mosquitoes pose a promising tactic for combating transmission of malaria parasites and other pathogens

    Using the entomological inoculation rate to assess the impact of vector control on malaria parasite transmission and elimination

    Get PDF
    Prior studies have shown that annual entomological inoculation rates (EIRs) must be reduced to less than one to substantially reduce the prevalence of malaria infection. In this study, EIR values were used to quantify the impact of insecticide-treated bed nets (ITNs), indoor residual spraying (IRS), and source reduction (SR) on malaria transmission. The analysis of EIR was extended through determining whether available vector control tools can ultimately eradicate malaria. The analysis is based primarily on a review of all controlled studies that used ITN, IRS, and/or SR and reported their effects on the EIR. To compare EIRs between studies, the percent difference in EIR between the intervention and control groups was calculated. Eight vector control intervention studies that measured EIR were found: four ITN studies, one IRS study, one SR study, and two studies with separate ITN and IRS intervention groups. In both the Tanzania study and the Solomon Islands study, one community received ITNs and one received IRS. In the second year of the Tanzania study, EIR was 90% lower in the ITN community and 93% lower in the IRS community, relative to the community without intervention; the ITN and IRS effects were not significantly different. In contrast, in the Solomon Islands study, EIR was 94% lower in the ITN community and 56% lower in the IRS community. The one SR study, in Dar es Salaam, reported a lower EIR reduction (47%) than the ITN and IRS studies. All of these vector control interventions reduced EIR, but none reduced it to zero. These studies indicate that current vector control methods alone cannot ultimately eradicate malaria because no intervention sustained an annual EIR less than one. While researchers develop new tools, integrated vector management may make the greatest impact on malaria transmission. There are many gaps in the entomological malaria literature and recommendations for future research are provided

    Trends in Weekly Reported Net use by Children During and after Rainy Season in Central Tanzania.

    Get PDF
    The use of long-lasting insecticidal nets (LLINs) is one of the principal interventions to prevent malaria in young children, reducing episodes of malaria by 50% and child deaths by one fifth. Prioritizing young children for net use is important to achieve mortality reductions, particularly during transmission seasons. Households were followed up weekly from January through June 2009 to track net use among children under seven under as well as caretakers. Net use rates for children and caretakers in net-owning households were calculated by dividing the number of person-weeks of net use by the number of person-weeks of follow-up. Use was stratified by age of the child or caretaker status. Determinants of ownership and of use were assessed using multivariate models. Overall, 60.1% of the households reported owning a bed net at least once during the study period. Among net owners, use rates remained high during and after the rainy season. Rates of use per person-week decreased as the age of the child rose from 0 to six years old; at ages 0-23 months and 24-35 months use rates per person-week were 0.93 and 0.92 respectively during the study period, while for children ages 3 and 4 use rates per person-week were 0.86 and 0.80. For children ages 5-6 person-week ratios dropped to 0.55. This represents an incidence rate ratio of 1.67 for children ages 0-23 months compared to children aged 5-6. Caretakers had use rates similar to those of children age 0-35 months. Having fewer children under age seven in the household also appeared to positively impact net use rates for individual children. In this area of Tanzania, net use is very high among net-owning households, with no variability either at the beginning or end of the rainy season high transmission period. The youngest children are prioritized for sleeping under the net and caretakers also have high rates of use. Given the high use rates, increasing the number of nets available in the household is likely to boost use rates by older children

    Application of the lumped age-class technique to studying the dynamics of malaria-mosquito-human interactions

    Get PDF
    A series of models of malaria-mosquito-human interactions using the Lumped Age-Class technique of Gurney & Nisbet are developed. The models explicitly include sub-adult mosquito dynamics and assume that population regulation occurs at the larval stage. A challenge for modelling mosquito dynamics in continuous time is that the insect has discrete life-history stages (egg, larva, pupa & adult), the sub-adult stages of relatively fixed duration, which are subject to very different demographic rates. The Lumped Age-Class technique provides a natural way to treat this type of population structure. The resulting model, phrased as a system of delay-differential equations, is only slightly harder to analyse than traditional ordinary differential equations and much easier than the alternative partial differential equation approach. The Lumped Age-Class technique also allows the natural treatment of the relatively fixed time delay between the mosquito ingesting Plasmodium and it becoming infective. Three models are developed to illustrate the application of this approach: one including just the mosquito dynamics, the second including Plasmodium but no human dynamics, and the third including the interaction of the malaria pathogen and the human population (though only in a simple classical Ross-Macdonald manner). A range of epidemiological quantities used in studying malaria such as the vectorial capacity, the entomological inoculation rate and the basic reproductive number (R0) are derived, and examples given of the analysis and simulation of model dynamics. Assumptions and extensions are discussed. It is suggested that this modelling framework may be a natural and useful tool for exploring a variety of issues in malaria-vector epidemiology, especially in circumstances where a dynamic representation of mosquito recruitment is required

    Nonlinear mixed effects modeling of gametocyte carriage in patients with uncomplicated malaria

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gametocytes are the sexual form of the malaria parasite and the main agents of transmission. While there are several factors that influence host infectivity, the density of gametocytes appears to be the best single measure that is related to the human host's infectivity to mosquitoes. Despite the obviously important role that gametocytes play in the transmission of malaria and spread of anti-malarial resistance, it is common to estimate gametocyte carriage indirectly based on asexual parasite measurements. The objective of this research was to directly model observed gametocyte densities over time, during the primary infection.</p> <p>Methods</p> <p>Of 447 patients enrolled in sulphadoxine-pyrimethamine therapeutic efficacy studies in South Africa and Mozambique, a subset of 103 patients who had no gametocytes pre-treatment and who had at least three non-zero gametocyte densities over the 42-day follow up period were included in this analysis.</p> <p>Results</p> <p>A variety of different functions were examined. A modified version of the critical exponential function was selected for the final model given its robustness across different datasets and its flexibility in assuming a variety of different shapes. Age, site, initial asexual parasite density (logged to the base 10), and an empirical patient category were the co-variates that were found to improve the model.</p> <p>Conclusions</p> <p>A population nonlinear modeling approach seems promising and produced a flexible function whose estimates were stable across various different datasets. Surprisingly, dihydrofolate reductase and dihydropteroate synthetase mutation prevalence did not enter the model. This is probably related to a lack of power (quintuple mutations n = 12), and informative censoring; treatment failures were withdrawn from the study and given rescue treatment, usually prior to completion of follow up.</p

    The fitness of African malaria vectors in the presence and limitation of host behaviour

    Get PDF
    &lt;p&gt;Background Host responses are important sources of selection upon the host species range of ectoparasites and phytophagous insects. However little is known about the role of host responses in defining the host species range of malaria vectors. This study aimed to estimate the relative importance of host behaviour to the feeding success and fitness of African malaria vectors, and assess its ability to predict their known host species preferences in nature.&lt;/p&gt; &lt;p&gt;Methods Paired evaluations of the feeding success and fitness of African vectors Anopheles arabiensis and Anopheles gambiae s.s in the presence and limitation of host behaviour were conducted in a semi-field system (SFS) at Ifakara Health Institute, Tanzania. In one set of trials, mosquitoes were released within the SFS and allowed to forage overnight on a host that was free to exhibit natural behaviour in response to insect biting. In the other, mosquitoes were allowed to feed directly on from the skin surface of immobile hosts. The feeding success and subsequent fitness of vectors under these conditions were investigated on 6 host types (humans, calves, chickens, cows, dogs and goats) to assess whether physical movements of preferred host species (cattle for An. arabiensis, humans for An. gambiae s.s.) were less effective at preventing mosquito bites than those of common alternatives.&lt;/p&gt; &lt;p&gt;Results Anopheles arabiensis generally had greater feeding success when applied directly to host skin than when foraging on unrestricted hosts (in five of six host species). However, An. gambiae s.s obtained blood meals from free and restrained hosts with similar success from most host types (four out of six). Overall, the blood meal size, oviposition rate, fecundity and post-feeding survival of mosquito vectors were significantly higher after feeding on hosts free to exhibit behaviour, than those who were immobilized during feeding trials.&lt;/p&gt; &lt;p&gt;Conclusions Allowing hosts to move freely during exposure to mosquitoes was associated with moderate reductions in mosquito feeding success, but no detrimental impact to the subsequent fitness of mosquitoes that were able to feed upon them. This suggests that physical defensive behaviours exhibited by common host species including humans do not impose substantial fitness costs on African malaria vectors.&lt;/p&gt

    Monitoring mosquitoes in urban Dar es Salaam: Evaluation of resting boxes, window exit traps, CDC light traps, Ifakara tent traps and human landing catches

    Get PDF
    Ifakara tent traps (ITT) are currently the only sufficiently sensitive, safe, affordable and practical method for routine monitoring host-seeking mosquito densities in Dar es Salaam. However, it is not clear whether ITT catches represent indoors or outdoors biting densities. ITT do not yield samples of resting, fed mosquitoes for blood meal analysis. Outdoors mosquito sampling methods, namely human landing catch (HLC), ITT (Design B) and resting boxes (RB) were conducted in parallel with indoors sampling using HLC, Centers for Disease Control and Prevention miniature light traps (LT) and RB as well as window exit traps (WET) in urban Dar es Salaam, rotating them thirteen times through a 3 × 3 Latin Square experimental design replicated in four blocks of three houses. This study was conducted between 6th May and 2rd July 2008, during the main rainy season when mosquito biting densities reach their annual peak. The mean sensitivities of indoor RB, outdoor RB, WET, LT, ITT (Design B) and HLC placed outdoor relative to HLC placed indoor were 0.01, 0.005, 0.036, 0.052, 0.374, and 1.294 for Anopheles gambiae sensu lato (96% An. gambiae s.s and 4% An. arabiensis), respectively, and 0.017, 0.053, 0.125, 0.423, 0.372 and 1.140 for Culex spp, respectively. The ITT (Design B) catches correlated slightly better to indoor HLC (r(2) = 0.619, P < 0.001, r(2) = 0.231, P = 0.001) than outdoor HLC (r(2) = 0.423, P < 0.001, r(2) = 0.228, P = 0.001) for An. gambiae s.l. and Culex spp respectively but the taxonomic composition of mosquitoes caught by ITT does not match those of the indoor HLC (χ(2) = 607.408, degrees of freedom = 18, P < 0.001). The proportion of An. gambiae caught indoors was unaffected by the use of an LLIN in that house. The RB, WET and LT are poor methods for surveillance of malaria vector densities in urban Dar es Salaam compared to ITT and HLC but there is still uncertainty over whether the ITT best reflects indoor or outdoor biting densities. The particular LLIN evaluated here failed to significantly reduce house entry by An. gambiae s.l. suggesting a negligible repellence effect

    Discrepancies between survey and administrative data on the use of mental health services in the general population: findings from a study conducted in Québec

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Population surveys and health services registers are the main source of data for the management of public health. Yet, the validity of survey data on the use of mental health services has been questioned repeatedly due to the sensitive nature of mental illness and to the risk of recall bias. The main objectives of this study were to compare data on the use of mental health services from a large scale population survey and a national health services register and to identify the factors associated with the discrepancies observed between these two sources of data.</p> <p>Methods</p> <p>This study was based on the individual linkage of data from the cycle 1.2 of the Canadian Community Health Survey (CCHS-1.2) and from the health services register of the Régie de l'assurance maladie du Québec (RAMQ). The RAMQ is the governmental agency managing the Quebec national health insurance program. The analyses mostly focused on the 637 Quebecer respondents who were recorded as users of mental health services in the RAMQ and who were self-reported users or non users of these services in the CCHS-1.2.</p> <p>Results</p> <p>Roughly 75%, of those recorded as users of mental health services users in the RAMQ's register did not report using mental health services in the CCHS-1.2. The odds of disagreement between survey and administrative data were higher in seniors, individuals with a lower level of education, legal or de facto spouses and mothers of young children. They were lower in individuals with a psychiatric disorder and in frequent and more recent users of mental health services according to the RAMQ's register.</p> <p>Conclusions</p> <p>These findings support the hypotheses that social desirability and recall bias are likely to affect the self-reported use of mental health services in a population survey. They stress the need to refine the investigation of mental health services in population surveys and to combine survey and administrative data, whenever possible, to obtain an optimal estimation of the population need for mental health care.</p
    corecore