17 research outputs found

    The Myth of Clean Sport and its Unintended Consequences

    Get PDF
    Anti-doping has long been premised on the myth of clean sport, a consistent vision that has survived changes in the social and cultural environment. This article starts with a discussion of the meaning of clean sport focusing on the gap between this idealisation and practice. It then traces the historical emergence of this myth, briefly explaining its cultural foundations, and its influence on in-competition drug testing development in the 1960s. It will be argued that clean sport only made sense when the focus was on in-competition use of stimulants. The emergence of drugs such as steroids, used out of competitions, created a conflict between the reality of doping practices and the mythical past and future idealisation of sport as clean. Nonetheless anti-doping leaders maintained their public position that testing systems could defeat doping practices. Due to the continuity of ethical ideas, the construction of health fears, and public scandals, the World Anti-Doping Agency pressed on with, and was empowered by, the absolutist clean sport vision leading to the conceptually flawed, contradictory, draconian and problematic policy environment we face today

    The Drug Problem: A Solution at Hand

    No full text

    Post-War Challenges: Helsinki 1952–Montreal 1976

    No full text

    Better with age: Developmental changes in oscillatory activity during verbal working memory encoding and maintenance

    No full text
    Numerous investigations have characterized the oscillatory dynamics serving working memory in adults, but few have probed its relationship with chronological age in developing youth. We recorded magnetoencephalography during a modified Sternberg verbal working memory task in 82 youth participants aged 6–14 years old. Significant oscillatory responses were identified and imaged using a beamforming approach and the resulting whole-brain maps were probed for developmental effects during the encoding and maintenance phases. Our results indicated robust oscillatory responses in the theta (4–7 Hz) and alpha (8–14 Hz) range, with older participants exhibiting stronger alpha oscillations in left-hemispheric language regions. Older participants also had greater occipital theta power during encoding. Interestingly, there were sex-by-age interaction effects in cerebellar cortices during encoding and in the right superior temporal region during maintenance. These results extend the existing literature on working memory development by showing strong associations between age and oscillatory dynamics across a distributed network. To our knowledge, these findings are the first to link chronological age to alpha and theta oscillatory responses serving working memory encoding and maintenance, both across and between male and female youth; they reveal robust developmental effects in crucial brain regions serving higher order functions

    Developmentally sensitive multispectral cortical connectivity profiles serving visual selective attention

    No full text
    Throughout childhood and adolescence, the brain undergoes significant structural and functional changes that contribute to the maturation of multiple cognitive domains, including selective attention. Selective attention is crucial for healthy executive functioning and while key brain regions serving selective attention have been identified, their age-related changes in neural oscillatory dynamics and connectivity remain largely unknown. We examined the developmental sensitivity of selective attention circuitry in 91 typically developing youth aged 6 – 13 years old. Participants completed a number-based Simon task while undergoing magnetoencephalography (MEG) and the resulting data were preprocessed and transformed into the time-frequency domain. Significant oscillatory brain responses were imaged using a beamforming approach, and task-related peak voxels in the occipital, parietal, and cerebellar cortices were used as seeds for subsequent whole-brain connectivity analyses in the alpha and gamma range. Our key findings revealed developmentally sensitive connectivity profiles in multiple regions crucial for selective attention, including the temporoparietal junction (alpha) and prefrontal cortex (gamma). Overall, these findings suggest that brain regions serving selective attention are highly sensitive to developmental changes during the pubertal transition period

    Adolescents show differential dysfunctions related to Alcohol and Cannabis Use Disorder severity in emotion and executive attention neuro-circuitries

    No full text
    Alcohol and cannabis are two substances that are commonly abused by adolescents in the United States and which, when abused, are associated with negative medical and psychiatric outcomes across the lifespan. These negative psychiatric outcomes may reflect the detrimental impact of substance abuse on neural systems mediating emotion processing and executive attention. However, work indicative of this has mostly been conducted either in animal models or adults with Alcohol and/or Cannabis Use Disorder (AUD/CUD). Little work has been conducted in adolescent patients. In this study, we used the Affective Stroop task to examine the relationship in 82 adolescents between AUD and/or CUD symptom severity and the functional integrity of neural systems mediating emotional processing and executive attention. We found that AUD symptom severity was positively related to amygdala responsiveness to emotional stimuli and negatively related to responsiveness within regions implicated in executive attention and response control (i.e., dorsolateral prefrontal cortex, anterior cingulate cortex, precuneus) as a function of task performance. In contrast, CUD symptom severity was unrelated to amygdala responsiveness but positively related to responsiveness within regions including precuneus, posterior cingulate cortex, and inferior parietal lobule as a function of task performance. These data suggest differential impacts of alcohol and cannabis abuse on the adolescent brain. Keywords: Adolescent, Alcohol Use Disorder, Amygdala, Cannabis Use Disorder, fMRI, Prefrontal corte

    Developmental alterations in the neural oscillatory dynamics underlying attentional reorienting

    No full text
    The neural and cognitive processes underlying the flexible allocation of attention undergo a protracted developmental course with changes occurring throughout adolescence. Despite documented age-related improvements in attentional reorienting throughout childhood and adolescence, the neural correlates underlying such changes in reorienting remain unclear. Herein, we used magnetoencephalography (MEG) to examine neural dynamics during a Posner attention-reorienting task in 80 healthy youth (6–14 years old). The MEG data were examined in the time-frequency domain and significant oscillatory responses were imaged in anatomical space. During the reorienting of attention, youth recruited a distributed network of regions in the fronto-parietal network, along with higher-order visual regions within the theta (3–7 Hz) and alpha-beta (10–24 Hz) spectral windows. Beyond the expected developmental improvements in behavioral performance, we found stronger theta oscillatory activity as a function of age across a network of prefrontal brain regions irrespective of condition, as well as more limited age- and validity-related effects for alpha-beta responses. Distinct brain-behavior associations between theta oscillations and attention-related symptomology were also uncovered across a network of brain regions. Taken together, these data are the first to demonstrate developmental effects in the spectrally-specific neural oscillations serving the flexible allocation of attention
    corecore