411 research outputs found

    Host-directed therapy to combat mycobacterial infections*

    Get PDF
    Upon infection, mycobacteria, such as Mycobacterium tuberculosis (Mtb) and nontuberculous mycobacteria (NTM), are recognized by host innate immune cells, triggering a series of intracellular processes that promote mycobacterial killing. Mycobacteria, however, have developed multiple counter-strategies to persist and survive inside host cells. By manipulating host effector mechanisms, including phagosome maturation, vacuolar escape, autophagy, antigen presentation, and metabolic pathways, pathogenic mycobacteria are able to establish long-lasting infection. Counteracting these mycobacteria-induced host modifying mechanisms can be accomplished by host-directed therapeutic (HDT) strategies. HDTs offer several major advantages compared to conventional antibiotics: (a) HDTs can be effective against both drug-resistant and drug-susceptible bacteria, as well as potentially dormant mycobacteria; (b) HDTs are less likely to induce bacterial drug resistance; and (c) HDTs could synergize with, or shorten antibiotic treatment by targeting different pathways. In this review, we will explore host-pathogen interactions that have been identified for Mtb for which potential HDTs impacting both innate and adaptive immunity are available, and outline those worthy of future research. We will also discuss possibilities to target NTM infection by HDT, although current knowledge regarding host-pathogen interactions for NTM is limited compared to Mtb. Finally, we speculate that combinatorial HDT strategies can potentially synergize to achieve optimal mycobacterial host immune control.Immunogenetics and cellular immunology of bacterial infectious disease

    A Remotely Powered Implantable Biomedical System With Location Detector

    Full text link

    A One-Piece Lunar Regolith Bag Garage Prototype

    Get PDF
    Shelter structures on the moon, even in early phases of exploration, should incorporate lunar materials as much as possible. This Technical Memorandum details the design and construction of a prototype for a one-piece regolith bag unpressurized garage concept and a materials testing program to investigate six candidate fabrics to learn how they might perform in the lunar environment. The conceptualization was that a lightweight fabric form be launched from Earth and landed on the lunar surface to be robotically filled with raw lunar regolith. Regolith bag fabric candidates included: Vectran(TM), Nextel(TM), Gore PTFE Fabric(TM), Zylon(TM), Twaron(TM), and Nomex(TM). Tensile (including post radiation exposure), fold, abrasion, and hypervelocity impact testing were performed under ambient conditions, and also performed under cold and elevated temperatures. In some cases, Johnson Space Center lunar simulant (JSC-1) was used in conjunction with testing. A series of preliminary structures was constructed during final prototype design based on the principles of the classic masonry arch. The prototype was constructed of Kevlar(TM) and filled with vermiculite. The structure is free-standing, but has not yet been load tested. Future plans would be to construct higher fidelity prototypes and to conduct appropriate tests of the structure

    Nucleotide homeostasis and purinergic nociceptive signaling in rat meninges in migraine-like conditions

    Get PDF
    © 2016, Springer Science+Business Media Dordrecht.Extracellular ATP is suspected to contribute to migraine pain but regulatory mechanisms controlling pro-nociceptive purinergic mechanisms in the meninges remain unknown. We studied the peculiarities of metabolic and signaling pathways of ATP and its downstream metabolites in rat meninges and in cultured trigeminal cells exposed to the migraine mediator calcitonin gene-related peptide (CGRP). Under resting conditions, meningeal ATP and ADP remained at low nanomolar levels, whereas extracellular AMP and adenosine concentrations were one-two orders higher. CGRP increased ATP and ADP levels in meninges and trigeminal cultures and reduced adenosine concentration in trigeminal cells. Degradation rates for exogenous nucleotides remained similar in control and CGRP-treated meninges, indicating that CGRP triggers nucleotide release without affecting nucleotide-inactivating pathways. Lead nitrate-based enzyme histochemistry of whole mount meninges revealed the presence of high ATPase, ADPase, and AMPase activities, primarily localized in the medial meningeal artery. ATP and ADP induced large intracellular Ca2+ transients both in neurons and in glial cells whereas AMP and adenosine were ineffective. In trigeminal glia, ATP partially operated via P2X7 receptors. ATP, but not other nucleotides, activated nociceptive spikes in meningeal trigeminal nerve fibers providing a rationale for high degradation rate of pro-nociceptive ATP. Pro-nociceptive effect of ATP in meningeal nerves was reproduced by α,β-meATP operating via P2X3 receptors. Collectively, extracellular ATP, which level is controlled by CGRP, can persistently activate trigeminal nerves in meninges which considered as the origin site of migraine headache. These data are consistent with the purinergic hypothesis of migraine pain and suggest new targets against trigeminal pain

    Prevalence of mismatch repair deficiency and Lynch syndrome in a cohort of unselected small bowel adenocarcinomas

    Get PDF
    Aims Previous estimates of the prevalence of mismatch repair (MMR) deficiency and Lynch syndrome in small bowel cancer have varied widely. The aim of this study was to establish the prevalence of MMR deficiency and Lynch syndrome in a large group of small bowel adenocarcinomas. Methods To this end, a total of 400 small bowel adenocarcinomas (332 resections, 68 biopsies) were collected through the Dutch nationwide registry of histopathology and cytopathology (Pathologisch-Anatomisch Landelijk Geautomatiseerd Archief (PALGA)). No preselection criteria, such as family history, were applied, thus avoiding (ascertainment) bias. MMR deficiency status was determined by immunohistochemical staining of MMR proteins, supplemented by MLH1 promoter hypermethylation analysis and next generation sequencing of the MMR genes. Results MMR deficiency was observed in 22.3% of resected and 4.4% of biopsied small bowel carcinomas. Prevalence of Lynch syndrome was 6.2% in resections and 0.0% in biopsy samples. Patients with Lynch syndrome-associated small bowel cancer were significantly younger at the time of diagnosis than patients with MMR-proficient and sporadic MMR-deficient cancers (mean age of 54.6 years vs 66.6 years and 68.8 years, respectively, p<0.000). Conclusions The prevalence of MMR deficiency and Lynch syndrome in resected small bowel adenocarcinomas is at least comparable to prevalence in colorectal cancers, a finding relevant both for treatment (immunotherapy) and family management. We recommend that all small bowel adenocarcinomas should be screened for MMR deficiency.Cellular mechanisms in basic and clinical gastroenterology and hepatolog

    Mismatch repair deficiency and MUTYH variants in small intestine-neuroendocrine tumors

    Get PDF
    & nbsp;Small intestine-neuroendocrine tumors (SI-NETs) are one of the most common tumors of the small bowel. Despite an increasing incidence, the exact mechanisms driving underlying pathology remain to be determined. Interestingly, recent studies linked the development of (SI-)NETs to both Lynch syndrome (LS) and MUTYH variants. If confirmed, these associations would have important consequences for treatment. In this study we therefore investigated the prevalence of mismatch repair (MMR) deficiency and MUTYH variants in 64 primary resected SI-NETs. Immunohistochemistry was used to assess the expression of the MMR genes, and competitive allele-specific PCR (KASPar) targeting two hotspot MUTYH variants [p.(Tyr179Cys), p.(Gly396Asp)] was performed to determine their prevalence in SI-NETs. Strikingly, all 64 SI-NETs stained positive for MSH6 and PMS2, indicating & nbsp;MMR proficiency. In addition, no MUTYH hotspot variant was found in any of the 64 SI-NETs. As such, these results do not support an association between SI-NET development and LS or MUTYH variants. In order to gain insight into SI-NET pathogenesis and optimally manage patients, future research should therefore focus on other candidate genes. (C) 2022 Published by Elsevier IncMTG2 - Moleculaire genetica van gastrointestinale tumorenMolecular tumour pathology - and tumour genetic

    Wallerian-Like Degeneration of Central Neurons After Synchronized and Geometrically Registered Mass Axotomy in a Three-Compartmental Microfluidic Chip

    Get PDF
    Degeneration of central axons may occur following injury or due to various diseases and it involves complex molecular mechanisms that need to be elucidated. Existing in vitro axotomy models are difficult to perform, and they provide limited information on the localization of events along the axon. We present here a novel experimental model system, based on microfluidic isolation, which consists of three distinct compartments, interconnected by parallel microchannels allowing axon outgrowth. Neurons cultured in one compartment successfully elongated their axons to cross a short central compartment and invade the outermost compartment. This design provides an interesting model system for studying axonal degeneration and death mechanisms, with a previously impossible spatial and temporal control on specific molecular pathways. We provide a proof-of-concept of the system by reporting its application to a well-characterized experimental paradigm, axotomy-induced Wallerian degeneration in primary central neurons. Using this model, we applied localized central axotomy by a brief, isolated flux of detergent. We report that mouse embryonic cortical neurons exhibit rapid Wallerian-like distal degeneration but no somatic death following central axotomy. Distal axons show progressive degeneration leading to axonal beading and cytoskeletal fragmentation within a few hours after axotomy. Degeneration is asynchronous, reminiscent of in vivo Wallerian degeneration. Axonal cytoskeletal fragmentation is significantly delayed with nicotinamide adenine dinucleotide pretreatment, but it does not change when distal calpain or caspase activity is inhibited. These findings, consistent with previous experiments in vivo, confirm the power and biological relevance of this microfluidic architecture
    corecore