41 research outputs found

    Frequencies of activated T cell populations increase in breast milk of HCMV-seropositive mothers during local HCMV reactivation

    Get PDF
    BackgroundHuman cytomegalovirus (HCMV) can reactivate in the mammary gland during lactation and is shed into breast milk of nearly every HCMV-IgG-seropositive mother of a preterm infant. Dynamics of breast milk leukocytes during lactation, as well as blood leukocytes and the comparison between both in the context of HCMV reactivation is not well understood.MethodsHere, we present the BlooMil study that aimed at comparing changes of immune cells in blood and breast milk from HCMV-seropositive- vs -seronegative mothers, collected at four time ranges up to two months post-partum. Viral load was monitored by qPCR and nested PCR. Multiparameter flow cytometry was used to identify leukocyte subsets.ResultsCD3+ T cell frequencies were found to increase rapidly in HCMV-seropositive mothers’ milk, while they remained unchanged in matched blood samples, and in both blood and breast milk of HCMV-seronegatives. The activation marker HLA-DR was more strongly expressed on CD4+ and CD8+ T cells in all breast milk samples than matched blood samples, but HCMV-seropositive mothers displayed a significant increase of HLA-DR+ CD4+ and HLA-DR+ CD8+ T cells during lactation. The CD4+/CD8+ T cell ratio was lower in breast milk of HCMV-seropositive mothers than in the blood. HCMV-specific CD8+ T cell frequencies (recognizing pp65 or IE1) were elevated in breast milk relative to blood, which might be due to clonal expansion of these cells during local HCMV reactivation. Breast milk contained very low frequencies of naïve T cells with no significant differences depending on serostatus.ConclusionTaken together, we conclude that the distribution of breast milk leukocyte populations is different from blood leukocytes and may contribute to the decrease of breast milk viral load in the late phase of HCMV reactivation in the mammary gland

    Age-associated alterations in γδ T-cells are present predominantly in individuals infected with Cytomegalovirus

    Get PDF
    BACKGROUND: Despite the common perception that latent Cytomegalovirus (CMV) infection is usually symptom-free, emerging epidemiological evidence suggests that it may in fact be associated with higher mortality over extended follow-up. Mechanisms responsible for this potentially important effect are unclear. CMV infection is known to have a large impact on the distribution of T cell phenotypes, especially the accumulation of late-stage differentiated CD8(+), as well as Vδ2(-) γδ T-cells, which are the main subset of γδ T-cells involved in anti-CMV immunity. Its impact on γδ T-cells in the aging context is less well-defined. RESULTS: Here, we investigated a group of healthy individuals aged between 21 and 89 years, in order to correlate the frequency and differentiation status of γδ T-cells with age. We found that these parameters were only marginally influenced by age, but were marked in people with a latent CMV infection. Thus, we observed a significant age-associated accumulation of late-differentiated T-cells within the Vδ2(-) population, but only in CMV-seropositive donors. There was also a strong trend towards reduced frequency of early-differentiated cells within the Vδ2(-) phenotype. Older people had significantly higher anti-CMV IgG titers, which in turn correlated significantly with a lower Vδ2(+)/Vδ2(-) ratio and a shift from early- to a late-differentiated Vδ2(-) T-cell phenotype. CONCLUSIONS: Our findings demonstrate a strong influence of CMV on γδ T-cells during human ageing, similar to that observed for αβ T-cells. Differences between donors of different ages are more marked in CMV-infected individuals. The biological implications of this potent age-associated CMV-mediated immune-modulation require clarification

    Peripheral blood T-cell signatures from high-resolution immune phenotyping of γδ and αβ T-cells in younger and older subjects in the Berlin Aging Study II

    Get PDF
    Background Aging and latent infection with Cytomegalovirus (CMV) are thought to be major factors driving the immune system towards immunosenescence, primarily characterized by reduced amounts of naïve T-cells and increased memory T-cells, potentially associated with higher morbidity and mortality. The composition of both major compartments, γδ as well as αβ T-cells, is altered by age and CMV, but detailed knowledge of changes to the γδ subset is currently limited. Results Here, we have surveyed a population of 73 younger (23–35 years) and 144 older (62–85 years) individuals drawn from the Berlin Aging Study II, investigating the distribution of detailed differentiation phenotypes of both γδ and αβ T-cells. Correlation of frequencies and absolute counts of the identified phenotypes with age and the presence of CMV revealed a lower abundance of Vδ2-positive and a higher amount of Vδ1-positive cells. We found higher frequencies of late-differentiated and lower frequencies of early-differentiated cells in the Vδ1+ and Vδ1-Vδ2-, but not in the Vδ2+ populations in elderly CMV-seropositive individuals confirming the association of these Vδ2-negative cells with CMV-immunosurveillance. We identified the highest Vδ1:Vδ2 ratios in the CMV-seropositive elderly. The observed increased CD4:CD8 ratios in the elderly were significantly lower in CMV-seropositive individuals, who also possessed a lower naïve and a larger late-differentiated compartment of CD8+ αβ T-cells, reflecting the consensus in the literature. Conclusions Our findings illustrate in detail the strong influence of CMV on the abundance and differentiation pattern of γδ T-cells as well as αβ T-cells in older and younger people. Mechanisms responsible for the phenotypic alterations in the γδ T-cell compartment, associated both with the presence of CMV and with age require further clarification

    Tumor-derived GDF-15 blocks LFA-1 dependent T cell recruitment and suppresses responses to anti-PD-1 treatment

    Get PDF
    Immune checkpoint blockade therapy is beneficial and even curative for some cancer patients. However, the majority don't respond to immune therapy. Across different tumor types, pre-existing T cell infiltrates predict response to checkpoint-based immunotherapy. Based on in vitro pharmacological studies, mouse models and analyses of human melanoma patients, we show that the cytokine GDF-15 impairs LFA-1/β2-integrin-mediated adhesion of T cells to activated endothelial cells, which is a pre-requisite of T cell extravasation. In melanoma patients, GDF-15 serum levels strongly correlate with failure of PD-1-based immune checkpoint blockade therapy. Neutralization of GDF-15 improves both T cell trafficking and therapy efficiency in murine tumor models. Thus GDF-15, beside its known role in cancer-related anorexia and cachexia, emerges as a regulator of T cell extravasation into the tumor microenvironment, which provides an even stronger rationale for therapeutic anti-GDF-15 antibody development
    corecore