17 research outputs found

    Pseudo-axions in Little Higgs models

    Full text link
    Little Higgs models have an enlarged global symmetry which makes the Higgs boson a pseudo-Goldstone boson. This symmetry typically contains spontaneously broken U(1) subgroups which provide light electroweak-singlet pseudoscalars. Unless such particles are absorbed as the longitudinal component of Z′Z' states, they appear as pseudoscalars in the physical spectrum at the electroweak scale. We outline their significant impact on Little Higgs phenomenology and analyze a few possible signatures at the LHC and other future colliders in detail. In particular, their presence significantly affects the physics of the new heavy quark states predicted in Little Higgs models, and inclusive production at LHC may yield impressive diphoton resonances.Comment: 28 pages, 9 figs., accepted to PRD; footnote added, typos correcte

    Simplified Models for LHC New Physics Searches

    Get PDF
    This document proposes a collection of simplified models relevant to the design of new-physics searches at the LHC and the characterization of their results. Both ATLAS and CMS have already presented some results in terms of simplified models, and we encourage them to continue and expand this effort, which supplements both signature-based results and benchmark model interpretations. A simplified model is defined by an effective Lagrangian describing the interactions of a small number of new particles. Simplified models can equally well be described by a small number of masses and cross-sections. These parameters are directly related to collider physics observables, making simplified models a particularly effective framework for evaluating searches and a useful starting point for characterizing positive signals of new physics. This document serves as an official summary of the results from the "Topologies for Early LHC Searches" workshop, held at SLAC in September of 2010, the purpose of which was to develop a set of representative models that can be used to cover all relevant phase space in experimental searches. Particular emphasis is placed on searches relevant for the first ~50-500 pb-1 of data and those motivated by supersymmetric models. This note largely summarizes material posted at http://lhcnewphysics.org/, which includes simplified model definitions, Monte Carlo material, and supporting contacts within the theory community. We also comment on future developments that may be useful as more data is gathered and analyzed by the experiments.Comment: 40 pages, 2 figures. This document is the official summary of results from "Topologies for Early LHC Searches" workshop (SLAC, September 2010). Supplementary material can be found at http://lhcnewphysics.or

    CP Studies and Non-Standard Higgs Physics

    Full text link
    There are many possibilities for new physics beyond the Standard Model that feature non-standard Higgs sectors. These may introduce new sources of CP violation, and there may be mixing between multiple Higgs bosons or other new scalar bosons. Alternatively, the Higgs may be a composite state, or there may even be no Higgs at all. These non-standard Higgs scenarios have important implications for collider physics as well as for cosmology, and understanding their phenomenology is essential for a full comprehension of electroweak symmetry breaking. This report discusses the most relevant theories which go beyond the Standard Model and its minimal, CP-conserving supersymmetric extension: two-Higgs-doublet models and minimal supersymmetric models with CP violation, supersymmetric models with an extra singlet, models with extra gauge groups or Higgs triplets, Little Higgs models, models in extra dimensions, and models with technicolour or other new strong dynamics. For each of these scenarios, this report presents an introduction to the phenomenology, followed by contributions on more detailed theoretical aspects and studies of possible experimental signatures at the LHC and other colliders.Comment: Report of the CPNSH workshop, May 2004 - Dec 2005, 542 pages. The complete report as well as its individual chapters are also available from http://kraml.home.cern.ch/kraml/cpnsh/report.htm

    Distinguishing Little-Higgs Product and Simple Group Models at the LHC and ILC.

    Get PDF
    We propose a means to discriminate between the two basic variants of Little Higgs models, the Product Group and Simple Group models, at the next generation of colliders. It relies on a special coupling of light pseudoscalar particles present in Little Higgs models, the pseudo-axions, to the Z and the Higgs boson, which is present only in Simple Group models. We discuss the collider phenomenology of the pseudo-axion in the presence of such a coupling at the LHC, where resonant production and decay of either the Higgs or the pseudo-axion induced by that coupling can be observed for much of parameter space. The full allowed range of parameters, including regions where the observability is limited at the LHC, is covered by a future ILC, where double scalar production would be a golden channel to look for.Comment: 17p, submitted to PR

    Supersymmetry simulations with off-shell effects for CERN LHC and ILC

    No full text
    At the LHC and at an ILC, serious studies of new physics benefit from a proper simulation of signals and backgrounds. Using supersymmetric sbottom pair production as an example, we show how multi-particle final states are necessary to properly describe off-shell effects induced by QCD, photon radiation, or by intermediate on-shell states. To ensure the correctness of our findings we compare in detail the implementation of the supersymmetric Lagrangian in MadGraph, Sherpa and Whizard. As a future reference we give the numerical results for several hundred cross sections for the production of supersymmetric particles, checked with all three codes

    Supersymmetry simulations with off-shell effects for LHC and ILC

    No full text
    At the LHC and at an ILC, serious studies of new physics benefit from a proper simulation of signals and backgrounds. Using supersymmetric sbottom pair production as an example, we show how multiparticle final states are necessary to properly describe off-shell effects induced by QCD, photon radiation, or by intermediate on-shell states. To ensure the correctness of our findings we compare in detail the implementation of the supersymmetric Lagrangian in madgraph, sherpa and whizard. As a future reference we give the numerical results for several hundred cross sections for the production of supersymmetric particles, checked with all three codes

    Supersymmetry Simulations with Off-Shell Effects for LHC and ILC

    No full text
    At the LHC and at an ILC, serious studies of new physics benefit from a proper simulation of signals and backgrounds. Using supersymmetric sbottom pair production as an example, we show how multi-particle final states are necessary to properly describe off-shell effects induced by QCD, photon radiation, or by intermediate on-shell states. To ensure the correctness of our findings we compare in detail the implementation of the supersymmetric Lagrangian in MadGraph, Sherpa and Whizard. As a future reference we give the numerical results for several hundred cross sections for the production of supersymmetric particles, checked with all three codes
    corecore