518 research outputs found

    Photoionization of tungsten ions: experiment and theory for W4+^{4+}

    Get PDF
    Experimental and theoretical results are reported for single-photon single ionization of the tungsten ion W4+^{4+}. Absolute cross sections have been measured employing the photon-ion merged-beams setup at the Advanced Light Source in Berkeley. Detailed photon-energy scans were performed at 200~meV bandwidth in the 40 -- 105~eV range. Theoretical results have been obtained from a Dirac-Coulomb R-matrix approach employing basis sets of 730 levels for the photoionization of W4+^{4+}. Calculations were carried out for the 4f145s25p65d2  3FJ4f^{14}5s^2 5p^6 5d^2 \; {^3}{\rm F}_{J}, JJ=2, ground level and the associated fine-structure levels with JJ=3 and 4 for the W4+^{4+} ions. In addition, cross sections have been calculated for the metastable levels 4f145s25p65d2  3P0,1,2,1D2,1G4,1S04f^{14}5s^2 5p^6 5d^2 \; {^3}{\rm P}_{0,1,2},{^1}{\rm D}_{2},{^1}{\rm G}_{4},{^1}{\rm S}_{0}. Very satisfying agreement of theory and experiment is found for the photoionization cross section of W4+^{4+} which is remarkable given the complexity of the electronic structure of tungsten ions in low charge states.Comment: 15 pages, 3 figures, to appear in the Journal of Physics B: Atomic, Molecular and Optical Physic

    Three Dimensional Mapping of Texture in Dental Enamel

    Get PDF
    We have used synchrotron x-ray diffraction to study the crystal orientation in human dental enamel as a function of position within intact tooth sections. Keeping tooth sections intact has allowed us to construct 2D and 3D spatial distribution maps of the magnitude and orientation of texture in dental enamel. We have found that the enamel crystallites are most highly aligned at the expected occlusal points for a maxillary first premolar, and that the texture direction varies spatially in a three dimensional curling arrangement. Our results provide a model for texture in enamel which can aid researchers in developing dental composite materials for fillings and crowns with optimal characteristics for longevity, and will guide clinicians to the best method for drilling into enamel, in order to minimize weakening of remaining tooth structure, during dental restoration procedure

    Fossil biomass preserved as graphitic carbon in a late paleoproterozoic banded iron formation metamorphosed at more than 550°C

    Get PDF
    Metamorphism is thought to destroy microfossils, partly through devolatilization and graphitization of biogenic organic matter. However, the extent to which there is a loss of molecular, elemental and isotope signatures from biomass during high-temperature metamorphism is not clearly established. We report on graphitic structures inside and coating apatite grains from the c. 1850 Ma Michigamme silicate banded iron formation from Michigan, metamorphosed above 550°C. Traces of N, S, O, H, Ca and Fe are preserved in this graphitic carbon and X-ray spectra show traces of aliphatic groups. Graphitic carbon has an expanded lattice around 3.6 Å, forms microscopic concentrically-layered and radiating polygonal flakes and has homogeneous δ13C values around −22‰, identical to bulk analyses. Graphitic carbon inside apatite is associated with nanometre-size ammoniated phyllosilicate. Precursors of these metamorphic minerals and graphitic carbon originated from ferruginous clayrich sediments with biomass. We conclude that graphite coatings and inclusions in apatite grains indicate fluid remobilization during amphibolite-facies metamorphism of precursor biomass. This new evidence fills in observational gaps of metamorphosed biomass into graphite and supports the existence of biosignatures in the highly metamorphosed iron formation from the Eoarchean Akilia Association, which dates from the beginning of the sedimentary rock record

    Single-photon single ionization of W+^{+} ions: experiment and theory

    Full text link
    Experimental and theoretical results are reported for photoionization of Ta-like (W+^{+}) tungsten ions. Absolute cross sections were measured in the energy range 16 to 245 eV employing the photon-ion merged-beam setup at the Advanced Light Source in Berkeley. Detailed photon-energy scans at 100 meV bandwidth were performed in the 16 to 108 eV range. In addition, the cross section was scanned at 50 meV resolution in regions where fine resonance structures could be observed. Theoretical results were obtained from a Dirac-Coulomb R-matrix approach. Photoionization cross section calculations were performed for singly ionized atomic tungsten ions in their 5s25p65d4(5D)6s  6DJ5s^2 5p^6 5d^4({^5}D)6s \; {^6}{\rm D}_{J}, JJ=1/2, ground level and the associated excited metastable levels with JJ=3/2, 5/2, 7/2 and 9/2. Since the ion beams used in the experiments must be expected to contain long-lived excited states also from excited configurations, additional cross-section calculations were performed for the second-lowest term, 5d^5 \; ^6{\rm S}_{J}, JJ=5/2, and for the 4^4F term, 5d^3 6s^2 \; ^4{\rm F}_{J}, with JJ = 3/2, 5/2, 7/2 and 9/2. Given the complexity of the electronic structure of W+^+ the calculations reproduce the main features of the experimental cross section quite well.Comment: 23 pages, 7 figures, 1 table: Accepted for publication in J. Phys. B: At. Mol. & Opt. Phy

    Photoionization of tungsten ions: Experiment and theory for W5+

    Get PDF
    Experimental and theoretical cross sections are reported for single-photon single ionization of W5+ ions. Absolute measurements were conducted employing the photon-ion merged-beams technique. Detailed photon-energy scans were performed at (67 ± 10) meV resolution in the 20-160 eV range. In contrast to photoionization of tungsten ions in lower charge states, the cross section is dominated by narrow, densely-spaced resonances. Theoretical results were obtained from a Dirac-Coulomb R-matrix approach employing a basis set of 457 levels providing cross sections for photoionization of W5+ ions in the ground level as well as the and metastable excited levels. Considering the complexity of the electronic structure of tungsten ions in low charge states, the agreement between theory and experiment is satisfactory
    corecore