12 research outputs found

    Axillary lymphadenopathy at the time of COVID-19 vaccination: ten recommendations from the European Society of Breast Imaging (EUSOBI).

    Get PDF
    Unilateral axillary lymphadenopathy is a frequent mild side effect of COVID-19 vaccination. European Society of Breast Imaging (EUSOBI) proposes ten recommendations to standardise its management and reduce unnecessary additional imaging and invasive procedures: (1) in patients with previous history of breast cancer, vaccination should be performed in the contralateral arm or in the thigh; (2) collect vaccination data for all patients referred to breast imaging services, including patients undergoing breast cancer staging and follow-up imaging examinations; (3) perform breast imaging examinations preferentially before vaccination or at least 12 weeks after the last vaccine dose; (4) in patients with newly diagnosed breast cancer, apply standard imaging protocols regardless of vaccination status; (5) in any case of symptomatic or imaging-detected axillary lymphadenopathy before vaccination or at least 12 weeks after, examine with appropriate imaging the contralateral axilla and both breasts to exclude malignancy; (6) in case of axillary lymphadenopathy contralateral to the vaccination side, perform standard work-up; (7) in patients without breast cancer history and no suspicious breast imaging findings, lymphadenopathy only ipsilateral to the vaccination side within 12 weeks after vaccination can be considered benign or probably-benign, depending on clinical context; (8) in patients without breast cancer history, post-vaccination lymphadenopathy coupled with suspicious breast finding requires standard work-up, including biopsy when appropriate; (9) in patients with breast cancer history, interpret and manage post-vaccination lymphadenopathy considering the timeframe from vaccination and overall nodal metastatic risk; (10) complex or unclear cases should be managed by the multidisciplinary team

    Image-guided breast biopsy and localisation: recommendations for information to women and referring physicians by the European Society of Breast Imaging

    Get PDF
    Abstract: We summarise here the information to be provided to women and referring physicians about percutaneous breast biopsy and lesion localisation under imaging guidance. After explaining why a preoperative diagnosis with a percutaneous biopsy is preferred to surgical biopsy, we illustrate the criteria used by radiologists for choosing the most appropriate combination of device type for sampling and imaging technique for guidance. Then, we describe the commonly used devices, from fine-needle sampling to tissue biopsy with larger needles, namely core needle biopsy and vacuum-assisted biopsy, and how mammography, digital breast tomosynthesis, ultrasound, or magnetic resonance imaging work for targeting the lesion for sampling or localisation. The differences among the techniques available for localisation (carbon marking, metallic wire, radiotracer injection, radioactive seed, and magnetic seed localisation) are illustrated. Type and rate of possible complications are described and the issue of concomitant antiplatelet or anticoagulant therapy is also addressed. The importance of pathological-radiological correlation is highlighted: when evaluating the results of any needle sampling, the radiologist must check the concordance between the cytology/pathology report of the sample and the radiological appearance of the biopsied lesion. We recommend that special attention is paid to a proper and tactful approach when communicating to the woman the need for tissue sampling as well as the possibility of cancer diagnosis, repeat tissue sampling, and or even surgery when tissue sampling shows a lesion with uncertain malignant potential (also referred to as “high-risk” or B3 lesions). Finally, seven frequently asked questions are answered

    Measurement of breast-tissue x-ray attenuation by spectral mammography: solid lesions

    No full text
    Knowledge of x-ray attenuation is essential for developing and evaluating x-ray imaging technologies. For instance, techniques to distinguish between cysts and solid tumours at mammography screening would be highly desirable to reduce recalls, but the development requires knowledge of the x-ray attenuation for cysts and tumours. We have previously measured the attenuation of cyst fluid using photon-counting spectral mammography. Data on x-ray attenuation for solid breast lesions are available in the literature, but cover a relatively wide range, likely caused by natural spread between samples, random measurement errors, and different experimental conditions. In this study, we have adapted the previously developed spectral method to measure the linear attenuation of solid breast lesions. A total of 56 malignant and 5 benign lesions were included in the study. The samples were placed in a holder that allowed for thickness measurement. Spectral (energy-resolved) images of the samples were acquired and the image signal was mapped to equivalent thicknesses of two known reference materials, which can be used to derive the x-ray attenuation as a function of energy. The spread in equivalent material thicknesses was relatively large between samples, which is likely to be caused mainly by natural variation and only to a minor extent by random measurement errors and sample inhomogeneity. No significant difference in attenuation was found between benign and malignant solid lesions, or between different types of malignant lesions. The separation between cyst-fluid and tumour attenuation was, however, significant, which suggests it may be possible to distinguish cystic from solid breast lesions, and the results lay the groundwork for a clinical trial. In addition, the study adds a relatively large sample set to the published data and may contribute to a reduction in the overall uncertainty in the literature.QC 20210108</p

    Does pre-operative breast MRI have an impact on surgical outcomes in high-grade DCIS?

    No full text
    OBJECTIVES: High-grade DCIS (HG DCIS) is associated with upgrade to invasive disease but few studies evaluate the role of MRI in this subset of DCIS. This study compared surgical outcomes of females with HG DCIS on biopsy who had pre-operative MRI with those that proceeded directly to surgery. METHODS: This single-centre retrospective, observational study identified patients with pure HG DCIS on pre-operative biopsy from the pathology database. Surgical outcomes, clinicopathological and radiological features were obtained for all patients. RESULTS: From August 2015 to February 2020, 217 patients had HG DCIS on biopsy. Pre-operative MRI was performed in 40 (MRI group) and not in 88 (No MRI group) patients. Initial mastectomy was performed in 25/40 (63%) women in the MRI group and 20/88 (23%) women in the no MRI group (p < 0.0001). No difference was observed in re-operation rate between the two groups, 15% in MRI group vs 22% in No MRI group (p = 0.4749). Mean tumour size on histology was larger in mastectomy cases in the MRI group (73.4 mm, range 6-140 mm), than the total MRI group, (58.3 mm, range 0-140 mm) or no MRI group (30.7 mm, range 0-130 mm) (p < 0.0001). CONCLUSIONS: Pre-operative MRI in HG DCIS is associated with higher mastectomy rates, possibly due to patient selection for MRI, as tumours on final histology were significantly larger. Fewer re-operations were observed in the MRI group although this was not significant. ADVANCES IN KNOWLEDGE: Breast MRI performed pre-operatively in HG DCIS is associated with higher mastectomy rates and fewer re-operation rates

    Beyond N Staging in Breast Cancer: Importance of MRI and Ultrasound-based Imaging.

    No full text
    The correct N-staging in breast cancer is crucial to tailor treatment and stratify the prognosis. N-staging is based on the number and the localization of suspicious regional nodes on physical examination and/or imaging. Since clinical examination of the axillary cavity is associated with a high false negative rate, imaging modalities play a central role. In the presence of a T1 or T2 tumor and 0-2 suspicious nodes, on imaging at the axillary level I or II, a patient should undergo sentinel lymph node biopsy (SLNB), whereas in the presence of three or more suspicious nodes at the axillary level I or II confirmed by biopsy, they should undergo axillary lymph node dissection (ALND) or neoadjuvant chemotherapy according to a multidisciplinary approach, as well as in the case of internal mammary, supraclavicular, or level III axillary involved lymph nodes. In this scenario, radiological assessment of lymph nodes at the time of diagnosis must be accurate. False positives may preclude a sentinel lymph node in an otherwise eligible woman; in contrast, false negatives may lead to an unnecessary SLNB and the need for a second surgical procedure. In this review, we aim to describe the anatomy of the axilla and breast regional lymph node, and their diagnostic features to discriminate between normal and pathological nodes at Ultrasound (US) and Magnetic Resonance Imaging (MRI). Moreover, the technical aspects, the advantage and limitations of MRI versus US, and the possible future perspectives are also analyzed, through the analysis of the recent literature

    Spatiotemporal Receptive Field Properties of a Looming-Sensitive Neuron in Solitarious and Gregarious Phases of the Desert Locust

    No full text
    Desert locusts (Schistocerca gregaria) can transform reversibly between the swarming gregarious phase and a solitarious phase, which avoids other locusts. This transformation entails dramatic changes in morphology, physiology, and behavior. We have used the lobula giant movement detector (LGMD) and its postsynaptic target, the descending contralateral movement detector (DCMD), which are visual interneurons that detect looming objects, to analyze how differences in the visual ecology of the two phases are served by altered neuronal function. Solitarious locusts had larger eyes and a greater degree of binocular overlap than those of gregarious locusts. The receptive field to looming stimuli had a large central region of nearly equal response spanning 120° × 60° in both phases. The DCMDs of gregarious locusts responded more strongly than solitarious locusts and had a small caudolateral focus of even further sensitivity. More peripherally, the response was reduced in both phases, particularly ventrally, with gregarious locusts showing greater proportional decrease. Gregarious locusts showed less habituation to repeated looming stimuli along the eye equator than did solitarious locusts. By contrast, in other parts of the receptive field the degree of habituation was similar in both phases. The receptive field organization to looming stimuli contrasts strongly with the receptive field organization of the same neurons to nonlooming local-motion stimuli, which show much more pronounced regional variation. The DCMDs of both gregarious and solitarious locusts are able to detect approaching objects from across a wide expanse of visual space, but phase-specific changes in the spatiotemporal receptive field are linked to lifestyle changes

    European Society of Breast Imaging (EUSOBI) guidelines on the management of axillary lymphadenopathy after COVID-19 vaccination : 2023 revision

    Get PDF
    Axillary lymphadenopathy is a common side effect of COVID-19 vaccination, leading to increased imaging-detected asymptomatic and symptomatic unilateral axillary lymphadenopathy. This has threatened to negatively impact the workflow of breast imaging services, leading to the release of ten recommendations by the European Society of Breast Imaging (EUSOBI) in August 2021. Considering the rapidly changing scenario and data scarcity, these initial recommendations kept a highly conservative approach. As of 2023, according to newly acquired evidence, EUSOBI proposes the following updates, in order to reduce unnecessary examinations and avoid delaying necessary examinations. First, recommendation n. 3 has been revised to state that breast examinations should not be delayed or rescheduled because of COVID-19 vaccination, as evidence from the first pandemic waves highlights how delayed or missed screening tests have a negative effect on breast cancer morbidity and mortality, and that there is a near-zero risk of subsequent malignant findings in asymptomatic patients who have unilateral lymphadenopathy and no suspicious breast findings. Second, recommendation n. 7 has been revised to simplify follow-up strategies: in patients without breast cancer history and no imaging findings suspicious for cancer, symptomatic and asymptomatic imaging-detected unilateral lymphadenopathy on the same side of recent COVID-19 vaccination (within 12 weeks) should be classified as a benign finding (BI-RADS 2) and no further work-up should be pursued. All other recommendations issued by EUSOBI in 2021 remain valid
    corecore