149 research outputs found

    SCIENCE BY DOING STAGE 4 (2016 TO 2018)

    Full text link

    Primary Connections: Linking science with literacy Stage 6 research evaluation final report

    Full text link
    This report presents findings from the External Independent Evaluation and Research for Primary Connections Stage 6 (2014–2018) conducted by a research team from the University of Technology Sydney (UTS)

    An Extragalactic HI Cloud with No Optical Counterpart?

    Get PDF
    We report the discovery, from the HI Parkes All-Sky Survey (HIPASS), of an isolated cloud of neutral hydrogen which we believe to be extragalactic. The HI mass of the cloud (HIPASS J1712-64) is very low, 1.7 x 10^7 Msun, using an estimated distance of ~3.2 Mpc. Most significantly, we have found no optical companion to this object to very faint limits (mu(B)~ 27 mag arcsec^-2). HIPASS J1712-64 appears to be a binary system similar to, but much less massive than, HI 1225+01 (the Virgo HI Cloud) and has a size of at least 15 kpc. The mean velocity dispersion, measured with the Australia Telescope Compact Array (ATCA), is only 4 km/s for the main component and because of the weak or non-existent star-formation, possibly reflects the thermal linewidth (T<2000 K) rather than bulk motion or turbulence. The peak column density for HIPASS J1712-64, from the combined Parkes and ATCA data, is only 3.5 x 10^19 cm^-2, which is estimated to be a factor of two below the critical threshold for star formation. Apart from its significantly higher velocity, the properties of HIPASS J1712-64 are similar to the recently recognised class of Compact High Velocity Clouds. We therefore consider the evidence for a Local Group or Galactic origin, although a more plausible alternative is that HIPASS J1712-64 was ejected from the interacting Magellanic Cloud/Galaxy system at perigalacticon ~ 2 x 10^8 yr ago.Comment: 23 pages, 7 figures, AJ accepte

    New Galaxies Discovered in the First Blind HI Survey of the Centaurus A Group

    Get PDF
    We have commenced a 21-cm survey of the entire southern sky (\delta < 0 degrees, -1200 km/s < v < 12700 km/s) which is ''blind'', i.e. unbiased by previous optical information. In the present paper we report on the results of a pilot project which is based on data from this all-sky survey. The project was carried out on an area of 600 square degrees centred on the nearby Centaurus A (Cen A) group of galaxies at a mean velocity of v ~ 500 km/s. This was recently the subject of a separate and thorough optical survey. We found 10 new group members to add to the 21 galaxies already known in the Cen A group: five of these are previously uncatalogued galaxies, while five were previously catalogued but not known to be associated with the group. We found optical counterparts for all the HI detections, most of them intrinsically very faint low surface brightness dwarfs. The new group members add approximately 6% to the HI mass of the group and 4% to its light. The HI mass function, derived from all the known group galaxies in the interval 10^7 \Msun of HI to 10^9 \Msun of HI, has a faint-end slope of 1.30 +/- 0.15, allowing us to rule out a slope of 1.7 at 95% confidence. Even if the number in the lowest mass bin is increased by 50%, the slope only increases to 1.45 +/- 0.15.Comment: 19 pages Latex, 6 figures (Fig. 2 in four parts, Fig.5 in two parts). To appear in The Astrophysical Journal (Vol. 524, October 1999

    Intergalactic HII Regions Discovered in SINGG

    Get PDF
    A number of very small isolated HII regions have been discovered at projected distances up to 30 kpc from their nearest galaxy. These HII regions appear as tiny emission line objects in narrow band images obtained by the NOAO Survey for Ionization in Neutral Gas Galaxies (SINGG). We present spectroscopic confirmation of four isolated HII regions in two systems, both systems have tidal HI features. The results are consistent with stars forming in interactive debris due to cloud-cloud collisions. The H-alpha luminosities of the isolated HII regions are equivalent to the ionizing flux of only a few O stars each. They are most likely ionized by stars formed in situ, and represent atypical star formation in the low density environment of the outer parts of galaxies. A small but finite intergalactic star formation rate will enrich and ionize the surrounding medium. In one system, NGC 1533, we calculate a star formation rate of 1.5e-3 msun/yr, resulting in a metal enrichment of ~1e-3 solar for the continuous formation of stars. Such systems may have been more common in the past and a similar enrichment level is measured for the `metallicity floor' in damped Lyman-alpha absorption systems.Comment: accepted for publication in the Astronomical Journal, 19 pages, including 5 figures, some low resolution. Paper with high resolution images can be downloaded from http://astro.ph.unimelb.edu.au/~eryan/publications/eldots.ps.g

    HIPASS High-Velocity Clouds: Properties of the Compact and Extended Populations

    Get PDF
    A catalog of Southern anomalous-velocity HI clouds at Decl. < +2 deg is presented, based on data from the HI Parkes All-Sky Survey (HIPASS). The improved sensitivity (5sigma: T_B = 0.04 K) and resolution (15.5') of the HIPASS data results in a substantial increase in the number of individual clouds (1956, as well as 41 galaxies) compared to previous surveys. Most high-velocity emission features, HVCs, have a filamentary morphology and are loosely organized into large complexes extending over tens of degrees. In addition, 179 compact and isolated anomalous-velocity objects, CHVCs, are identified based on their size and degree of isolation. 25% of the CHVCs originally classified by Braun & Burton (1999) are reclassified. Both the entire population of high-velocity emission features and the CHVCs alone have typical HI masses of ~ 4.5 D(kpc)^2 solar masses and have similar slopes for their column density and flux distributions. On the other hand, the CHVCs appear to be clustered and the population can be broken up into three spatially distinct groups, while the entire population of clouds is more uniformly distributed with a significant percentage aligned with the Magellanic Stream. The median velocities are V_GSR = -38 km/s for the CHVCs and -30 km/s for all of the anomalous-velocity clouds. Based on the catalog sizes, high-velocity features cover 19% of the southern sky and CHVCs cover 1%. (abridged)Comment: 32 pages, 26 figures in gif format, 2 ascii tables, to appear in the Jan 2002 issue of The Astronomical Journal, high resolution version available at http://origins.Colorado.EDU/~mputman/pubs.htm

    The disruption of nearby galaxies by the Milky Way

    Full text link
    Interactions between galaxies are common and are an important factor in determining their physical properties such as position along the Hubble sequence and star-formation rate. There are many possible galaxy interaction mechanisms, including merging, ram-pressure stripping, gas compression, gravitational interaction and cluster tides. The relative importance of these mechanisms is often not clear, as their strength depends on poorly known parameters such as the density, extent and nature of the massive dark halos that surround galaxies. A nearby example of a galaxy interaction where the mechanism is controversial is that between our own Galaxy and two of its neighbours -- the Large and Small Magellanic Clouds. Here we present the first results of a new HI survey which provides a spectacular view of this interaction. In addition to the previously known Magellanic Stream, which trails 100 degrees behind the Clouds, the new data reveal a counter-stream which lies in the opposite direction and leads the motion of the Clouds. This result supports the gravitational model in which leading and trailing streams are tidally torn from the body of the Magellanic Clouds.Comment: 17 pages with 5 figures in gif format, scheduled for publication in the August 20th, 1998 issue of Natur

    The Survey for Ionization in Neutral Gas Galaxies: I. Description and Initial Results

    Get PDF
    We introduce the Survey for Ionization in Neutral Gas Galaxies (SINGG), a census of star formation in HI-selected galaxies. The survey consists of H-alpha and R-band imaging of a sample of 468 galaxies selected from the HI Parkes All Sky Survey (HIPASS). The sample spans three decades in HI mass and is free of many of the biases that affect other star forming galaxy samples. We present the criteria for sample selection, list the entire sample, discuss our observational techniques, and describe the data reduction and calibration methods. This paper focuses on 93 SINGG targets whose observations have been fully reduced and analyzed to date. The majority of these show a single Emission Line Galaxy (ELG). We see multiple ELGs in 13 fields, with up to four ELGs in a single field. All of the targets in this sample are detected in H-alpha indicating that dormant (non-star forming) galaxies with M(HI) > ~3e7 M_sun are very rare. A database of the measured global properties of the ELGs is presented. The ELG sample spans four orders of magnitude in luminosity (H-alpha and R-band), and H-alpha surface brightness, nearly three orders of magnitude in R surface brightness and nearly two orders of magnitude in H-alpha equivalent width (EW). The surface brightness distribution of our sample is broader than that of the Sloan Digital Sky Survey spectroscopic sample, the (EW) distribution is broader than prism-selected samples, and the morphologies found include all common types of star forming galaxies (e.g. irregular, spiral, blue compact dwarf, starbursts, merging and colliding systems, and even residual star formation in S0 and Sa spirals). (abridged)Comment: 28 pages, ApJS, in press. Full resolution version with all panels of Fig. 8 available at http://sungg.pha.jhu.edu/publications.html . On line data available at http://sungg.pha.jhu.edu/PubData/ . Author list corrected. Wrong value for f_ap used in eq. 7 now corrected; typos corrected, non-used references replaced, others update

    Is NGC 3108 transforming itself from an early to late type galaxy -- an astronomical hermaphrodite?

    Full text link
    A common feature of hierarchical galaxy formation models is the process of "inverse" morphological transformation: a bulge dominated galaxy accretes a gas disk, dramatically reducing the system's bulge-to-disk mass ratio. During their formation, present day galaxies may execute many such cycles across the Hubble diagram. A good candidate for such a "hermaphrodite" galaxy is NGC 3108: a dust-lane early-type galaxy which has a large amount of HI gas distributed in a large scale disk. We present narrow band H_alpha and R-band imaging, and compare the results with the HI distribution. The emission is in two components: a nuclear bar and an extended disk component which coincides with the HI distribution. This suggests that a stellar disk is currently being formed out of the HI gas. The spatial distributions of the H_alpha and HI emission and the HII regions are consistent with a barred spiral structure, extending some 20 kpc in radius. We measure an extinction- corrected SFR of 0.42 Msun/yr. The luminosity function of the HII regions is similar to other spiral galaxies, with a power law index of -2.1, suggesting that the star formation mechanism is similar to other spiral galaxies. We measured the current disk mass and find that it is too massive to have been formed by the current SFR over the last few Gyr. It is likely that the SFR in NGC 3108 was higher in the past. With the current SFR, the disk in NGC 3108 will grow to be ~6.2x10^9 Msun in stellar mass within the next 5.5 Gyr. While this is substantial, the disk will be insignificant compared with the large bulge mass: the final stellar mass disk-to-bulge ratio will be ~0.02. NGC 3108 will fail to transform into anything resembling a spiral without a boost in the SFR and additional supply of gas.Comment: 9 pages, 3 figures, accepted for publication in MNRA

    Vulnerability and resilience of living marine resources to the Deepwater Horizon oil spill : an overview

    Get PDF
    Funding for the project was primarily provided by the Gulf of Mexico Research Initiative through several of its research centers.The 2010 Deepwater Horizon (DWH) oil well blowout in the Gulf of Mexico (GoM) was the largest and perhaps most consequential accidental marine oil spill in global history. This paper provides an overview of a Research Topic consisting of four additional papers that: (1) assemble time series data for ecosystem components in regions impacted by the spill, and (2) interpret temporal changes related to the vulnerability of species and ecosystems to DWH and the ensuing resilience to perturbation. Time series abundance data for many taxa pre-date DWH, often by decades, thus allowing an assessment of population- and community-level impacts. We divided the north central GoM into four interconnected “eco-types”: the coastal/nearshore, continental shelf, open-ocean pelagic and deep benthic. Key taxa in each eco-type were evaluated for their vulnerability to the circumstances of the DWH spill based on population overlap with oil, susceptibility to oil contamination, and other factors, as well their imputed resilience to population-level impacts, based on life history metrics, ecology and post-spill trajectories. Each taxon was scored as low, medium, or high for 13 vulnerability attributes and 11 resilience attributes to produce overall vulnerability and resilience scores, which themselves were also categorical (i.e., low, medium, or high). The resulting taxon-specific V-R scores provide important guidance on key species to consider and monitor in the event of future spills similar to DWH. Similar analyses may also guide resource allocation to collect baseline data on highly vulnerable taxa or those with low resilience potential in other ecosystems. For some species, even a decade of observation has been insufficient to document recovery given chronic, long-term exposure to DWH oil remaining in all eco-types and because of impacts to the reproductive output of long-lived species. Due to the ongoing threats of deep-water blowouts, continued surveillance of populations affected by DWH is warranted to document long-term recovery or change in system state. The level of population monitoring in the open-ocean and deep benthic eco-types has historically been low and is inconsistent with the continued migration of the oil industry to the ultra-deep (≄1,500 m) where the majority of leasing, exploration, and production now occurs.Publisher PDFPeer reviewe
    • 

    corecore