32 research outputs found

    DeNOx performance of Ag/Al2O3 catalyst by n-dodecane: Effect of calcination temperature

    No full text
    The effect of the calcination temperature of Ag/Al2O3 catalyst on NO removal activity by n-dodecane as a diesel simulant has been examined with respect to the Ag loading and C-1/NO feed ratio under a feed gas condition containing both excess H2O and oxygen. The higher the catalyst calcination temperature and Ag loading, the higher deNOx activity that has been achieved in the reaction temperature range lower than 300 degrees C. 56% of the NO conversion to N-2 has been attained over Ag(2)-800 catalyst at 300 degrees C when the C-1/NO feed ratio to the reactor is 6. The amount of the metallic Ag formed on the catalyst surface responsible for the high deNOx performance in the temperature region lower than 300 degrees C increases upon the increase of the catalyst calcination temperature from 550 to 800 degrees C and of the Ag loading from 1 to 3 wt.%, as determined by UV-vis and XPS. The -NCO species formed on the catalyst surface with acetate, formate and carbonate compounds produced from the partial oxidation of n-dodecane is a critical reaction intermediate for the present reaction system, as identified by in situ IR study. The formation of the -NCO species on the catalyst surface becomes apparent, particularly at 300 degrees C as the catalyst calcination temperature increases. (c) 2010 Elsevier B.V. All rights reserved.X113333sciescopu

    Effect of dietary β

    No full text

    Effect of volatile organic chemicals in chrysanthemum indicum linné on blood pressure and electroencephalogram

    Full text link
    This study identified the volatile organic compounds in the essential oils that are extracted from Chrysanthemum indicum Linné (C. indicum Linné) and investigated the effects of the inhalation of these compounds. We detected a total of 41 volatile organic compounds, including 32 hydrocarbons, four acids, three alcohols, two ketones, and one aldehyde. In a sniffing test, seven types of volatile organic compounds were identified. Furthermore, the volatile organic compounds in C. indicum Linné that were identified were found to be derived from 1,8-cineole and camphor. After inhalation of the essential oils, the subjects\u27 systolic blood pressure and heart rate decreased. This indicates that inhalation of the essential oils extracted from C. indicum Linné provides mental and physical relaxation. We examined the changes in electroencephalogram findings that are observed after C. indicum Linné essential oil inhalation. An increase in theta and alpha waves, which usually appear during relaxation, as well as a decrease in beta and gamma waves, which appear during brain activity such as excessive attention, were noted. These results indicate that C. indicum Linné essential oil inhalation helps to reduce blood pressure and may provide mental and physical relaxatio
    corecore