17 research outputs found

    Single-cell transcriptomics of human cholesteatoma identifies an activin A-producing osteoclastogenic fibroblast subset inducing bone destruction

    Get PDF
    Cholesteatoma, which potentially results from tympanic membrane retraction, is characterized by intractable local bone erosion and subsequent hearing loss and brain abscess formation. However, the pathophysiological mechanisms underlying bone destruction remain elusive. Here, we performed a single-cell RNA sequencing analysis on human cholesteatoma samples and identify a pathogenic fibroblast subset characterized by abundant expression of inhibin βA. We demonstrate that activin A, a homodimer of inhibin βA, promotes osteoclast differentiation. Furthermore, the deletion of inhibin βA /activin A in these fibroblasts results in decreased osteoclast differentiation in a murine model of cholesteatoma. Moreover, follistatin, an antagonist of activin A, reduces osteoclastogenesis and resultant bone erosion in cholesteatoma. Collectively, these findings indicate that unique activin A-producing fibroblasts present in human cholesteatoma tissues are accountable for bone destruction via the induction of local osteoclastogenesis, suggesting a potential therapeutic target.Shimizu K., Kikuta J., Ohta Y., et al. Single-cell transcriptomics of human cholesteatoma identifies an activin A-producing osteoclastogenic fibroblast subset inducing bone destruction. Nature Communications 14, 4417 (2023); https://doi.org/10.1038/s41467-023-40094-3

    Discovery of the First Low-Luminosity Quasar at z > 7

    Full text link
    We report the discovery of a quasar at z = 7.07, which was selected from the deep multi-band imaging data collected by the Hyper Suprime-Cam (HSC) Subaru Strategic Program survey. This quasar, HSC J124353.93+010038.5, has an order of magnitude lower luminosity than do the other known quasars at z > 7. The rest-frame ultraviolet absolute magnitude is M1450 = -24.13 +/- 0.08 mag and the bolometric luminosity is Lbol = (1.4 +/- 0.1) x 10^{46} erg/s. Its spectrum in the optical to near-infrared shows strong emission lines, and shows evidence for a fast gas outflow, as the C IV line is blueshifted and there is indication of broad absorption lines. The Mg II-based black hole mass is Mbh = (3.3 +/- 2.0) x 10^8 Msun, thus indicating a moderate mass accretion rate with an Eddington ratio 0.34 +/- 0.20. It is the first z > 7 quasar with sub-Eddington accretion, besides being the third most distant quasar, known to date. The luminosity and black hole mass are comparable to, or even lower than, those measured for the majority of low-z quasars discovered by the Sloan Digital Sky Survey, and thus this quasar likely represents a z > 7 counterpart to quasars commonly observed in the low-z universe.Comment: Accepted for publication in ApJ Letter

    Subaru High-z Exploration of Low-luminosity Quasars (SHELLQs). X. Discovery of 35 Quasars and Luminous Galaxies at 5.7 ≤ z ≤ 7.0

    Get PDF
    The American Astronomical Society, find out more The Institute of Physics, find out more THE FOLLOWING ARTICLE ISOPEN ACCESS Subaru High-z Exploration of Low-luminosity Quasars (SHELLQs). X. Discovery of 35 Quasars and Luminous Galaxies at 5.7 ≤ z ≤ 7.0 Yoshiki Matsuoka1, Kazushi Iwasawa2, Masafusa Onoue3, Nobunari Kashikawa4,5,6, Michael A. Strauss7, Chien-Hsiu Lee8, Masatoshi Imanishi5,6, Tohru Nagao1, Masayuki Akiyama9, Naoko Asami10Show full author list Published 2019 October 3 © 2019. The American Astronomical Society. The Astrophysical Journal, Volume 883, Number 2 DownloadArticle PDF DownloadArticle ePub Figures Tables References Download PDFDownload ePub 674 Total downloads 99 total citations on Dimensions. Turn on MathJax Share this article Share this content via email Share on Facebook Share on Twitter Share on Google+ Share on Mendeley Article information Abstract We report the discovery of 28 quasars and 7 luminous galaxies at 5.7 ≤ z ≤ 7.0. This is the tenth in a series of papers from the Subaru High-z Exploration of Low-Luminosity Quasars (SHELLQs) project, which exploits the deep multiband imaging data produced by the Hyper Suprime-Cam (HSC) Subaru Strategic Program survey. The total number of spectroscopically identified objects in SHELLQs has now grown to 93 high-z quasars, 31 high-z luminous galaxies, 16 [O iii] emitters at z ~ 0.8, and 65 Galactic cool dwarfs (low-mass stars and brown dwarfs). These objects were found over 900 deg2, surveyed by HSC between 2014 March and 2018 January. The full quasar sample includes 18 objects with very strong and narrow Lyα emission, whose stacked spectrum is clearly different from that of other quasars or galaxies. While the stacked spectrum shows N v λ1240 emission and resembles that of lower-z narrow-line quasars, the small Lyα width may suggest a significant contribution from the host galaxies. Thus, these objects may be composites of quasars and star-forming galaxies

    Discovery of the First Low-luminosity Quasar at z > 7

    Get PDF
    We report the discovery of a quasar at z = 7.07, which was selected from the deep multi-band imaging data collected by the Hyper Suprime-Cam (HSC) Subaru Strategic Program survey. This quasar, HSC J124353.93+010038.5, has an order of magnitude lower luminosity than do the other known quasars at z > 7. The rest-frame ultraviolet absolute magnitude is M1450 = −24.13 ± 0.08 mag and the bolometric luminosity is Lbol=(1.4±0.1)×1046{L}_{\mathrm{bol}}\,=(1.4\pm 0.1)\,\times \,{10}^{46} erg s−1. Its spectrum in the optical to near-infrared shows strong emission lines, and shows evidence for a fast gas outflow, as the C iv line is blueshifted and there is indication of broad absorption lines. The Mg ii-based black hole mass is MBH=(3.3±2.0)×108M{M}_{\mathrm{BH}}=(3.3\pm 2.0)\times {10}^{8}{M}_{\odot }, thus indicating a moderate mass accretion rate with an Eddington ratio λEdd=0.34±0.20{\lambda }_{\mathrm{Edd}}=0.34\pm 0.20. It is the first z > 7 quasar with sub-Eddington accretion, besides being the third most distant quasar known to date. The luminosity and black hole mass are comparable to, or even lower than, those measured for the majority of low-z quasars discovered by the Sloan Digital Sky Survey, and thus this quasar likely represents a z > 7 counterpart to quasars commonly observed in the low-z universe

    Subaru High- z Exploration of Low-luminosity Quasars (SHELLQs). XVI. 69 New Quasars at 5.8 < z < 7.0

    Get PDF
    We present the spectroscopic discovery of 69 quasars at 5.8 0.1 in the HSC-SSP third public data release (PDR3). The sample reported here also includes three quasars with PQB 5.6. This demonstrates that the algorithm has very high efficiency, even though we are probing an unprecedentedly low luminosity population down to M 1450 ∼-21 mag.Y.M. was supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI grant No. JP17H04830, No. 21H04494, and the Mitsubishi Foundation grant No. 30140. K.I. acknowledges support by the Spanish MCIN under grant PID2019-105510GB-C33/AEI/10.13039/501100011033 and "Unit of excellence María de Maeztu 2020-2023" awarded to ICCUB (CEX2019-000918-M)

    Alteration of a recombinant protein N-glycan structure in silkworms by partial suppression of N-acetylglucosaminidase gene expression

    No full text
    This is a post-peer-review, pre-copyedit version of an article published in Biotechnology Letters. The final authenticated version is available online at: http://dx.doi.org/10.1007/s10529-017-2361-y.autho

    Comprehensive review of lower third molar management: A guide for improved informed consent

    Full text link
    Lower third molar removal is the most commonly performed dental surgical procedure. Nevertheless, it is difficult to ensure that all the informed consent forms given to patients are based on the best evidence as many newer publications could change the conclusions of previous research. Therefore, the goal of this review article is to cover existing meta‐analyses, randomized control trials, and related articles in order to collect data for improved and more current informed consent.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/166385/1/ca23693_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/166385/2/ca23693.pd
    corecore