12 research outputs found

    Quantitative simultaneous (99m)Tc-ECD/123I-FP-CIT SPECT in Parkinson's disease and multiple system atrophy.

    No full text
    PURPOSE: The purpose of this study was to investigate the feasibility and utility of dual-isotope SPECT for differential diagnosis of idiopathic Parkinson's disease (IPD) and multiple system atrophy (MSA). METHODS: Simultaneous (99m)Tc-ECD/123I-FP-CIT studies were performed in nine normal controls, five IPD patients, and five MSA patients. Projections were corrected for scatter, cross-talk, and high-energy penetration, and iteratively reconstructed while correcting for patient-specific attenuation and variable collimator response. Perfusion and dopamine transporter (DAT) function were assessed using voxel-based statistical parametric mapping (SPM2) and volume of interest quantitation. DAT binding potential (BP) and asymmetry index (AI) were estimated in the putamen and caudate nucleus. RESULTS: Striatal BP was lower in IPD (55%) and MSA (23%) compared to normal controls (p<0.01) , and in IPD compared to MSA (p<0.05). AI was greater for IPD than for MSA and controls in both the caudate nucleus and the putamen (p<0.05). There was significantly decreased perfusion in the left and right nucleus lentiformis in MSA compared to IPD and controls (p<0.05). CONCLUSION: Dual-isotope studies are both feasible in and promising for the diagnosis of parkinsonian syndromes

    Ultrasound-based sensors for respiratory motion assessment in multimodality PET imaging

    Get PDF
    Breathing motion can displace internal organs by up to several cm; as such, it is a primary factor limiting image quality in medical imaging. Motion can also complicate matters when trying to fuse images from different modalities, acquired at different locations and/or on different days. Currently available devices for monitoring breathing motion often do so indirectly, by detecting changes in the outline of the torso rather than the internal motion itself, and these devices are often fixed to floors, ceilings or walls, and thus cannot accompany patients from one location to another. We have developed small ultrasound-based sensors, referred to as 'organ configuration motion' (OCM) sensors, that attach to the skin and provide rich motion-sensitive information. In the present work we tested the ability of OCM sensors to enable respiratory gating during in vivo PET imaging. A motion phantom involving an FDG solution was assembled, and two cancer patients scheduled for a clinical PET/CT exam were recruited for this study. OCM signals were used to help reconstruct phantom and in vivo data into time series of motion-resolved images. As expected, the motion-resolved images captured the underlying motion. In Patient #1, a single large lesion proved to be mostly stationary through the breathing cycle. However, in Patient #2, several small lesions were mobile during breathing, and our proposed new approach captured their breathing-related displacements. In summary, a relatively inexpensive hardware solution was developed here for respiration monitoring. Because the proposed sensors attach to the skin, as opposed to walls or ceilings, they can accompany patients from one procedure to the next, potentially allowing data gathered in different places and at different times to be combined and compared in ways that account for breathing motion
    corecore