135 research outputs found

    Magnetic and spectral properties of multi-sublattice oxides SrY2O4:Er3+ and SrEr2O4

    Get PDF
    SrEr2O4 is a geometrically frustrated magnet which demonstrates rather unusual properties at low temperatures including a coexistence of long- and short-range magnetic order, characterized by two different propagation vectors. In the present work, the effects of crystal fields (CF) in this compound containing four magnetically inequivalent erbium sublattices are investigated experimentally and theoretically. We combine the measurements of the CF levels of the Er3+ ions made on a powder sample of SrEr2O4 using neutron spectroscopy with site-selective optical and electron paramagnetic resonance measurements performed on single crystal samples of the lightly Er-doped nonmagnetic analogue, SrY2O4. Two sets of CF parameters corresponding to the Er3+ ions at the crystallographically inequivalent lattice sites are derived which fit all the available experimental data well, including the magnetization and dc susceptibility data for both lightly doped and concentrated samples.Comment: 14 pages, 9 figure

    Oxidatively modified carbon as efficient material for removing radionuclides from water

    Get PDF
    © 2017 Elsevier LtdThere is a constant need to develop advantageous materials for removing radioactive waste from aqueous systems. Here we propose a new carbon-based material prepared by oxidative treatment of various natural carbon sources. The as-prepared oxidatively modified carbon (OMC) has an oxygen-rich surface, and retains its particulate granular texture. It has relatively low cost and can be used in traditional filtration columns. The sorption ability of OMC toward several metal cations is demonstrated. It is especially efficient toward Cs+ cations, the species that are among the most difficult to remove from the waters at the Fukushima nuclear plant

    Magnetic and vibrational properties of the covalent chain antiferromagnet RbFeS2

    Get PDF
    Ternary rubidium-iron sulfide, RbFeS2, belongs to a family of quasi-one-dimensional compounds with the general chemical composition AFeCh2 (where A – K, Rb, Cs, Tl; Ch – S, Se). Understanding the magnetic properties of these compounds is a challenge. The controversy concerning the spin-state of the iron ion needs to be resolved to build the proper model of magnetism. Single crystals of RbFeS2 were grown and characterized by powder x-ray diffraction. QD MPMS-5 SQUID magnetometry was used to measure the magnetic susceptibility, and specific heat was measured utilizing QD PPMS-9 setup. Above the transition to three-dimensional antiferromagnetic order at the Néel temperature of TN = 188 K, the susceptibility exhibits unusual quasi-linear increase up to the highest measured temperature of 500 K. The specific heat was measured in the temperature range 1.8 – 300 K. Ab initio phonon dispersion and density-of-states calculations were performed by means of density functional theory (DFT), and the calculated lattice specific heat was subtracted from the measured one giving the magnetic contribution to the specific heat. Our results suggest that the features of the magnetic specific heat are general for the whole family of the covalent chain ternary iron chalcogenides of the AFeCh2 structure and indicate an intermediate S = 3/2 spin state of the iron ion

    Structure and Metastability of MF<inf>2</inf> (M = Ca, Sr, Ba) Fine Powders Mechanochemically Doped with Er<sup>3+</sup> Ions

    Get PDF
    © 2015, Springer-Verlag Wien. In the paper thermal treatment investigations of the MF2 (M = Ca, Sr, Ba) fine powders mechanochemically doped with Er3+ ions using electron paramagnetic resonance and X-ray diffraction are presented. It is shown that the prepared samples are found in the nonequilibrium metastable state characterized by the high concentration of the cationic vacancies and prevalence of the cubic symmetry-doped Er3+ ion centers. Vacancies formed when the deformation exceeds the elastic limit serve both as the means for a nonlocal charge compensation and a route for mechanically activated diffusion. Annealing brings the powders to the ground state with the most of the vacancies healed and the trigonal symmetry of the impurity Er3+ centers in SrF2 and BaF2 due to the local compensation by the interstitial fluorine ion

    Microwave-Assisted Hydrothermal Synthesis and Annealing of DyF 3

    Get PDF
    The series of DyF3 nanosized samples was synthesized by the colloidal chemistry method. The microwave-assisted hydrothermal treatment was used for the first time for the modification of DyF3 nanoparticles. Transmission electron microscopy images show that the DyF3 nanoparticles have average particle size of about 16–18 nm and the size distribution becomes narrower during the microwave irradiation. The X-ray diffraction analysis shows the narrowing of the diffraction peaks versus microwave treatment time. The experimental data demonstrates restructuring of the nanoparticles and their crystal structure becomes closer to the ideal DyF3 regular structure during the microwave irradiation of colloidal solution. The defect-annealing model of the microwave-assisted hydrothermal modification process is suggested

    Magnetic properties of (La<inf>0.7</inf>Sr<inf>0.3</inf>MnO<inf>3</inf>)<inf>x</inf>(CaCu<inf>3</inf>Ti<inf>4</inf>O<inf>12</inf>)<inf>1−x</inf>nanostructured composites

    Get PDF
    © 2017 Elsevier B.V. (La 0.7 Sr 0.3 MnO 3 ) x (CaCu 3 Ti 4 O 12 ) 1−x (0.01 ≤ x ≤ 0.3) nanostructured composites with La 0.7 Sr 0.3 MnO 3 (LSMO) microinclusions in CaCu 3 Ti 4 O 12 (CCTO) matrix were synthesized using a solid state method. The structural and microstructural details were studied by X-ray diffraction (XRD), X-ray fluorescence (XFA), scaning electron microscope (SEM) and transmission electron microscope (TEM) techniques. The magnetic properties were studied by electron spin resonance (ESR) and magnetometry methods. In the concentration range 0.01  <  x  <  0.1 physical properties of composites differ from the properties of the individual components CCTO or LSMO. The Curie temperature of the ferromagnetic phase for all concentrations is T C  = 315 K, that is less at 50 K than in pure LSMO. The Weiss constant of the paramagnetic phase has the strong concentration dependance. The observed mutual influence on the magnetic properties of both components can be tentatively attributed to the interface exchange interactions between them, hinting a possible magnetic proximity effect

    γ-Iron Phase Stabilized at Room Temperature by Thermally Processed Graphene Oxide

    Get PDF
    © 2018 American Chemical Society. Stabilizing nanoparticles on surfaces, such as graphene, is a growing field of research. Thereby, iron particle stabilization on carbon materials is attractive and finds applications in charge-storage devices, catalysis, and others. In this work, we describe the discovery of iron nanoparticles with the face-centered cubic structure that was postulated not to exist at ambient conditions. In bulk, the γ-iron phase is formed only above 917 °C, and transforms back to the thermodynamically favored α-phase upon cooling. Here, with X-ray diffraction and Mössbauer spectroscopy we unambiguously demonstrate the unexpected room-temperature stability of the γ-phase of iron in the form of the austenitic nanoparticles with low carbon content from 0.60% through 0.93%. The nanoparticles have controllable diameter range from 30 nm through 200 nm. They are stabilized by a layer of Fe/C solid solution on the surface, serving as the buffer controlling carbon content in the core, and by a few-layer graphene as an outermost shell

    Liang Qichao’s Thoughts on “Revolution”

    Get PDF
    This essay focuses on Liang Qichao (1873-1929), an important figure in modern Chinese history, and explores his discussion and views of “revolution”. There are many who point to Kang and Liang as being the “reformation school”, but at the beginning of the 20th century, Liang Qichao experienced internal conflict over “reform” and “revolution”, and faced a watershed in his thinking. I have therefore turned to the concept of “revolution” as a suggestion or hint to analyse the interior and exterior background that led to the changes in Liang’s theory of “revolution” as well as the changes in his ideology in an attempt to portray Liang’s “change” and his “stability”.After providing a basic background for Liang’s activities, I focus on an historical setting for 1902, and open with a discussion of Liang’s political novel Xinzhongguo weilaiji, in which I consider the psychological conflict of “reform” and “revolution” in this work. I trace the changes in his ideology through an interpretation of Liang’s choice of terms for translation of “revolution” – geming [Jp. kakumei] – and the implications of this choice. I end with an analysis of his record of a tour of the United States in 1903 as part of my search to identify the catalyst that lead to the change in his ideology.Given that the Xinhai Revolution occurred one hundred years ago, I believe there is great significance in returning once more to the era in which the term geming, or“revolution”, first appeared
    corecore