18 research outputs found

    Quantification and Predictors of OCT-Based Macular Curvature and Dome-Shaped Configuration: Results From the UK Biobank

    Get PDF
    PURPOSE. To investigate macular curvature, including the evaluation of potential associations and the dome-shaped macular configuration, given the increasing myopia prevalence and expected associated macular malformations. METHODS. The study included a total of 65, 440 subjects with a mean age (± SD) of 57.3 ± 8.11 years with spectral-domain optical coherence tomography (OCT) data from a unique contemporary resource for the study of health and disease that recruited more than half a million people in the United Kingdom (UK Biobank). A deep learning model was used to segment the retinal pigment epithelium. The macular curvature of the OCT scans was calculated by polynomial fit and evaluated. Further, associations with demographic, functional, ocular, and infancy factors were examined. RESULTS. The overall macular curvature values followed a Gaussian distribution with high inter-eye agreement. Although all of the investigated parameters, except maternal smoking, were associated with the curvature in a multilinear analysis, ethnicity and refractive error consistently revealed the most significant effect. The prevalence of a macular dome-shaped configuration was 4.8% overall, most commonly in Chinese subjects as well as hypermetropic eyes. An increasing frequency up to 22.0% was found toward high refractive error. Subretinal fluid was rarely found in these eyes. CONCLUSIONS. Macular curvature revealed associations with demographic, functional, ocular, and infancy factors, as well as increasing prevalence of a dome-shaped macular configuration in high refractive error including high myopia and hypermetropia. These findings imply different pathophysiologic processes that lead to macular development and might open new fields to future myopia and macula research

    Foveal Curvature and Its Associations in UK Biobank Participants

    Get PDF
    PURPOSE. To examine whether sociodemographic, and ocular factors relate to optical coherence tomography (OCT)-derived foveal curvature (FC) in healthy individuals. METHODS. We developed a deep learning model to quantify OCT-derived FC from 63, 939 participants (age range, 39-70 years). Associations of FC with sociodemographic, and ocular factors were obtained using multilevel regression analysis (to allow for right and left eyes) adjusting for age, sex, ethnicity, height (model 1), visual acuity, spherical equivalent, corneal astigmatism, center point retinal thickness (CPRT), intraocular pressure (model 2), deprivation (Townsend index), higher education, annual income, and birth order (model 3). Fovea curvature was modeled as a z-score. RESULTS. Males had on average steeper FC (0.077; 95% confidence interval [CI] 0.077-0.078) than females (0.068; 95% CI 0.068-0.069). Compared with whites, non-white individuals showed flatter FC, particularly those of black ethnicity. In black males, -0.80 standard deviation (SD) change when compared with whites (95% CI -0.89, -0.71; P 5.2e10-68). In black females, -0.70 SD change when compared with whites (95% CI -0.77, -0.63; p 2.3e10-93). Ocular factors (visual acuity, refractive status, and CPRT) showed a graded inverse association with FC that persisted after adjustment. Macular curvature showed a positive association with FC. Income showed a linear trend increase in males (P for linear trend = 0.005). CONCLUSIONS. We demonstrate marked differences in FC with ethnicity on the largest cohort studied for this purpose to date. Ocular factors showed a graded association with FC. Implementation of FC quantification in research and on the clinical setting can enhance the understanding of clinical macular phenotypes in health and disease

    Biallelic mutations in <i>KDSR </i>disrupt ceramide synthesis and result in a spectrum of keratinization disorders associated with thrombocytopenia

    Get PDF
    Mutations in ceramide biosynthesis pathways have been implicated in a few Mendelian disorders of keratinization, although ceramides are known to have key roles in several biological processes in skin and other tissues. Using whole-exome sequencing in four probands with undiagnosed skin hyperkeratosis/ichthyosis, we identified compound heterozygosity for mutations in KDSR, encoding an enzyme in the de novo synthesis pathway of ceramides. Two individuals had hyperkeratosis confined to palms, soles, and anogenital skin, whereas the other two had more severe, generalized harlequin ichthyosis-like skin. Thrombocytopenia was present in all patients. The mutations in KDSR were associated with reduced ceramide levels in skin and impaired platelet function. KDSR enzymatic activity was variably reduced in all patients, resulting in defective acylceramide synthesis. Mutations in KDSR have recently been reported in inherited recessive forms of progressive symmetric erythrokeratoderma, but our study shows that biallelic mutations in KDSR are implicated in an extended spectrum of disorders of keratinization in which thrombocytopenia is also part of the phenotype. Mutations in KDSR cause defective ceramide biosynthesis, underscoring the importance of ceramide and sphingosine synthesis pathways in skin and platelet biology

    A foundation model for generalizable disease detection from retinal images

    Get PDF
    Medical artificial intelligence (AI) offers great potential for recognizing signs of health conditions in retinal images and expediting the diagnosis of eye diseases and systemic disorders 1. However, the development of AI models requires substantial annotation and models are usually task-specific with limited generalizability to different clinical applications 2. Here, we present RETFound, a foundation model for retinal images that learns generalizable representations from unlabelled retinal images and provides a basis for label-efficient model adaptation in several applications. Specifically, RETFound is trained on 1.6 million unlabelled retinal images by means of self-supervised learning and then adapted to disease detection tasks with explicit labels. We show that adapted RETFound consistently outperforms several comparison models in the diagnosis and prognosis of sight-threatening eye diseases, as well as incident prediction of complex systemic disorders such as heart failure and myocardial infarction with fewer labelled data. RETFound provides a generalizable solution to improve model performance and alleviate the annotation workload of experts to enable broad clinical AI applications from retinal imaging.</p

    A foundation model for generalizable disease detection from retinal images

    Get PDF
    Medical artificial intelligence (AI) offers great potential for recognizing signs of health conditions in retinal images and expediting the diagnosis of eye diseases and systemic disorders1. However, the development of AI models requires substantial annotation and models are usually task-specific with limited generalizability to different clinical applications2. Here, we present RETFound, a foundation model for retinal images that learns generalizable representations from unlabelled retinal images and provides a basis for label-efficient model adaptation in several applications. Specifically, RETFound is trained on 1.6 million unlabelled retinal images by means of self-supervised learning and then adapted to disease detection tasks with explicit labels. We show that adapted RETFound consistently outperforms several comparison models in the diagnosis and prognosis of sight-threatening eye diseases, as well as incident prediction of complex systemic disorders such as heart failure and myocardial infarction with fewer labelled data. RETFound provides a generalizable solution to improve model performance and alleviate the annotation workload of experts to enable broad clinical AI applications from retinal imaging

    Anticancer drug clustering in lung cancer based on gene expression profiles and sensitivity database

    Get PDF
    BACKGROUND: The effect of current therapies in improving the survival of lung cancer patients remains far from satisfactory. It is consequently desirable to find more appropriate therapeutic opportunities based on informed insights. A molecular pharmacological analysis was undertaken to design an improved chemotherapeutic strategy for advanced lung cancer. METHODS: We related the cytotoxic activity of each of commonly used anti-cancer agents (docetaxel, paclitaxel, gemcitabine, vinorelbine, 5-FU, SN38, cisplatin (CDDP), and carboplatin (CBDCA)) to corresponding expression pattern in each of the cell lines using a modified NCI program. RESULTS: We performed gene expression analysis in lung cancer cell lines using cDNA filter and high-density oligonucleotide arrays. We also examined the sensitivity of these cell lines to these drugs via MTT assay. To obtain our reproducible gene-drug sensitivity correlation data, we separately analyzed two sets of lung cancer cell lines, namely 10 and 19. In our gene-drug correlation analyses, gemcitabine consistently belonged to an isolated cluster in a reproducible fashion. On the other hand, docetaxel, paclitaxel, 5-FU, SN-38, CBDCA and CDDP were gathered together into one large cluster. CONCLUSION: These results suggest that chemotherapy regimens including gemcitabine should be evaluated in second-line chemotherapy in cases where the first-line chemotherapy did not include this drug. Gene expression-drug sensitivity correlations, as provided by the NCI program, may yield improved therapeutic options for treatment of specific tumor types

    Membrane Protein Location-Dependent Regulation by PI3K (III) and Rabenosyn-5 in Drosophila Wing Cells

    Get PDF
    The class III phosphatidylinositol-3 kinase (PI3K (III)) regulates intracellular vesicular transport at multiple steps through the production of phosphatidylinositol-3-phosphate (PI(3)P). While the localization of proteins at distinct membrane domains are likely regulated in different ways, the roles of PI3K (III) and its effectors have not been extensively investigated in a polarized cell during tissue development. In this study, we examined in vivo functions of PI3K (III) and its effector candidate Rabenosyn-5 (Rbsn-5) in Drosophila wing primordial cells, which are polarized along the apical-basal axis. Knockdown of the PI3K (III) subunit Vps15 resulted in an accumulation of the apical junctional proteins DE-cadherin and Flamingo and also the basal membrane protein β-integrin in intracellular vesicles. By contrast, knockdown of PI3K (III) increased lateral membrane-localized Fasciclin III (Fas III). Importantly, loss-of-function mutation of Rbsn-5 recapitulated the aberrant localization phenotypes of β-integrin and Fas III, but not those of DE-cadherin and Flamingo. These results suggest that PI3K (III) differentially regulates localization of proteins at distinct membrane domains and that Rbsn-5 mediates only a part of the PI3K (III)-dependent processes

    Detection of Nonexudative Macular Neovascularization on Structural OCT Images Using Vision Transformers

    No full text
    A deep learning model was developed to detect nonexudative macular neovascularization (neMNV) using OCT B-scans. Retrospective review of a prospective, observational study. Normal control eyes and patients with age-related macular degeneration (AMD) with and without neMNV. Swept-source OCT angiography (SS-OCTA) imaging (PLEX Elite 9000, Carl Zeiss Meditec, Inc) was performed using the 6 × 6-mm scan pattern. Individual B-scans were annotated to distinguish between drusen and the double-layer sign (DLS) associated with the neMNV. The machine learning model was tested on a dataset graded by humans, and model performance was compared with the human graders. Intersection over Union (IoU) score was measured to evaluate segmentation network performance. Area under the receiver operating characteristic curve values, sensitivity, specificity, and positive predictive value (PPV) and negative predictive value (NPV) were measured to assess the performance of the final classification performance. Chance-corrected agreement between the algorithm and the human grader determinations was measured with Cohen’s kappa. A total of 251 eyes from 210 patients, including 182 eyes with DLS and 115 eyes with drusen, were used for model training. Of 125 500 B-scans, 6879 B-scans were manually annotated. A vision transformer segmentation model was built to extract DLS and drusen from B-scans. The extracted prediction masks from all B-scans in a volume were projected to an en face image, and an eye-level projection map was obtained for each eye. A binary classification algorithm was established to identify eyes with neMNV from the projection map. The algorithm achieved 82%, 90%, 79%, and 91% sensitivity, specificity, PPV, and NPV, respectively, on a separate test set of 100 eyes that were evaluated by human graders in a previous study. The area under the curve value was calculated as 0.91 (95% confidence interval, 0.85–0.98). The results of the algorithm showed excellent agreement with the senior human grader (kappa = 0.83, P < 0.001) and moderate agreement with the junior grader consensus (kappa = 0.54, P < 0.001). Our network (code is available at https://github.com/uw-biomedical-ml/double_layer_vit) was able to detect the presence of neMNV from structural B-scans alone by applying a purely transformer-based model
    corecore