89 research outputs found

    proton-deuteron elastic scattering above the deuteron breakup

    Get PDF
    The complex Kohn variational principle and the (correlated) hyperspherical harmonics method are applied to study the proton-deuteron elastic scattering at energies above the deuteron breakup threshold. Results for the elastic cross section and various elastic polarization observables have been obtained by fully taking into account the long-range effect of the Coulomb interaction and using a realistic nucleon-nucleon interaction model. Detailed comparison between the theoretical predictions and the accurate and abundant proton-deuteron experimental data can now be performed.Comment: 6 pages, 2 figure

    Variational Calculation on A=3 and 4 Nuclei with Non-Local Potentials

    Full text link
    The application of the hyperspherical harmonic approach to the case of non-local two-body potentials is described. Given the properties of the hyperspherical harmonic functions, there are no difficulties in considering the approach in both coordinate and momentum space. The binding energies and other ground state properties of A=3 and 4 nuclei are calculated using the CD Bonn 2000 and N3LO two-body potentials. The results are shown to be in excellent agreement with corresponding ones obtained by other accurate techniques.Comment: 12 pages, 6 tables, RevTex

    The Ay Problem for p-3He Elastic Scattering

    Get PDF
    We present evidence that numerically accurate quantum calculations employing modern internucleon forces do not reproduce the proton analyzing power, A_y, for p-3He elastic scattering at low energies. These calculations underpredict new measured analyzing powers by approximately 30% at E_{c.m.} = 1.20 MeV and by 40% at E_{c.m.} = 1.69 MeV, an effect analogous to a well-known problem in p-d and n-d scattering. The calculations are performed using the complex Kohn variational principle and the (correlated) Hyperspherical Harmonics technique with full treatment of the Coulomb force. The inclusion of the three-nucleon interaction does not improve the agreement with the experimental data.Comment: Latex file, 4 pages, 2 figures, to be published on Phys. Rev. Let

    Neutron-3H and Proton-3He Zero Energy Scattering

    Get PDF
    The Kohn variational principle and the (correlated) Hyperspherical Harmonics technique are applied to study the n-3H and p-3He scattering at zero energy. Predictions for the singlet and triplet scattering lengths are obtained for non-relativistic nuclear Hamiltonians including two- and three-body potentials. The calculated n-3H total cross section agrees well with the measured value, while some small discrepancy is found for the coherent scattering length. For the p-3He channel, the calculated scattering lengths are in reasonable agreement with the values extrapolated from the measurements made above 1 MeV.Comment: 13 pages, REVTEX, 1 figur

    Computations of Three-Body Continuum Spectra

    Get PDF
    We formulate a method to solve the coordinate space Faddeev equations for positive energies. The method employs hyperspherical coordinates and analytical expressions for the effective potentials at large distances. Realistic computations of the parameters of the resonances and the strength functions are carried out for the Borromean halo nucleus 6He (n+n+alpha) for J = 0+, 0-, 1+, 1-, 2+,2-. PACS numbers: 21.45.+v, 11.80.Jy, 31.15.Ja, 21.60.GxComment: 10 pages, 3 postscript figures, LaTeX, epsf.sty, corrected misprints in the caption of Fig.

    Calculation of the Alpha--Particle Ground State within the Hyperspherical Harmonic Basis

    Get PDF
    The problem of calculating the four--nucleon bound state properties for the case of realistic two- and three-body nuclear potentials is studied using the hyperspherical harmonic (HH) approach. A careful analysis of the convergence of different classes of HH functions has been performed. A restricted basis is chosen to allow for accurate estimates of the binding energy and other properties of the 4He ground state. Results for various modern two-nucleon and two- plus three-nucleon interactions are presented. The 4He asymptotic normalization constants for separation in 2+2 and 1+3 clusters are also computed.Comment: 29 pages, 4 figures, 11 tables, revtex

    State Dependent Effective Interaction for the Hyperspherical Formalism

    Get PDF
    The method of effective interaction, traditionally used in the framework of an harmonic oscillator basis, is applied to the hyperspherical formalism of few-body nuclei (A=3-6). The separation of the hyperradial part leads to a state dependent effective potential. Undesirable features of the harmonic oscillator approach associated with the introduction of a spurious confining potential are avoided. It is shown that with the present method one obtains an enormous improvement of the convergence of the hyperspherical harmonics series in calculating ground state properties, excitation energies and transitions to continuum states.Comment: LaTeX, 16 pages, 8 ps figure

    The three-nucleon bound state using realistic potential models

    Full text link
    The bound states of 3^3H and 3^3He have been calculated using the Argonne v18v_{18} plus the Urbana three-nucleon potential. The isospin T=3/2T=3/2 state have been included in the calculations as well as the nn-pp mass difference. The 3^3H-3^3He mass difference has been evaluated through the charge dependent terms explicitly included in the two-body potential. The calculations have been performed using two different methods: the solution of the Faddeev equations in momentum space and the expansion on the correlated hyperspherical harmonic basis. The results are in agreement within 0.1% and can be used as benchmark tests. Results for the CD-Bonn interaction are also presented. It is shown that the 3^3H and 3^3He binding energy difference can be predicted model independently.Comment: 5 pages REVTeX 4, 1 figures, 6 table

    Quantum Monte Carlo Studies of Relativistic Effects in Light Nuclei

    Get PDF
    Relativistic Hamiltonians are defined as the sum of relativistic one-body kinetic energy, two- and three-body potentials and their boost corrections. In this work we use the variational Monte Carlo method to study two kinds of relativistic effects in the binding energy of 3H and 4He. The first is due to the nonlocalities in the relativistic kinetic energy and relativistic one-pion exchange potential (OPEP), and the second is from boost interaction. The OPEP contribution is reduced by about 15% by the relativistic nonlocality, which may also have significant effects on pion exchange currents. However, almost all of this reduction is canceled by changes in the kinetic energy and other interaction terms, and the total effect of the nonlocalities on the binding energy is very small. The boost interactions, on the other hand, give repulsive contributions of 0.4 (1.9) MeV in 3H (4He) and account for 37% of the phenomenological part of the three-nucleon interaction needed in the nonrelativistic Hamiltonians.Comment: 33 pages, RevTeX, 11 PostScript figures, submitted to Physical Review

    The AyA_y Puzzle and the Nuclear Force

    Full text link
    The nucleon-deuteron analyzing power AyA_y in elastic nucleon-deuteron scattering poses a longstanding puzzle. At energies ElabE_{lab} below approximately 30 MeV AyA_y cannot be described by any realistic NN force. The inclusion of existing three-nucleon forces does not improve the situation. Because of recent questions about the 3PJ^3P_J NN phases, we examine whether reasonable changes in the NN force can resolve the puzzle. In order to do this we investigate the effect on the 3PJ^3P_J waves produced by changes in different parts of the potential (viz., the central force, tensor force, etc.), as well as on the 2-body observables and on AyA_y. We find that it is not possible with reasonable changes in the NN potential to increase the 3-body AyA_y and at the same time to keep the 2-body observables unchanged. We therefore conclude that the AyA_y puzzle is likely to be solved by new three-nucleon forces, such as those of spin-orbit type, which have not yet been taken into account.Comment: 35 pages in REVTeX, 1 figure in postscript and 3 figures in PiCTe
    • …
    corecore