31 research outputs found

    Embedding nuclear physics inside the unitary window

    Full text link
    The large values of the singlet and triplet scattering lengths locate the two-nucleon system close to the unitary limit, the limit in which these two values diverge. As a consequence, the system shows a continuous scale invariance which strongly constrains the values of the observables, a well-known fact already noticed a long time ago. The three-nucleon system shows a discrete scale invariance that can be observed by correlations of the triton binding energy with other observables as the doublet nucleon-deuteron scattering length or the alpha-particle binding energy. The low-energy dynamics of these systems is universal; it does not depend on the details of the particular way in which the nucleons interact. Instead, it depends on a few control parameters, the large values of the scattering lengths and the triton binding energy. Using a potential model with variable strength set to give values to the control parameters, we study the spectrum of A=2,3,4,6A=2,3,4,6 nuclei in the region between the unitary limit and their physical values. In particular, we analyze how the binding energies emerge from the unitary limit forming the observed levels

    Nuclear matter saturation with chiral three-nucleon interactions fitted to light nuclei properties

    Get PDF
    The energy per particle of symmetric nuclear matter and pure neutron matter is calculated using the many-body Brueckner-Hartree-Fock approach and employing the Chiral Next-to-next-to-next-to leading order (N3LO) nucleon-nucleon (NN) potential, supplemented with various parametrizations of the Chiral Next-to-next-to leading order (N2LO) three-nucleon interaction. Such combination is able to reproduce several observables of the physics of light nuclei for suitable choices of the parameters entering in the three-nucleon interaction. We find that some of these parametrizations provide a satisfactory saturation point of symmetric nuclear matter and values of the symmetry energy and its slope parameter L in very good agreement with those extracted from various nuclear experimental data. Thus, our results represent a significant step toward a unified description of few- and many-body nuclear systems starting from two- and three-nucleon interactions based on the symmetries of QCD

    Nuclear matter calculations with chiral interactions

    Get PDF
    We calculate the energy per particle of symmetric nuclearmatter and pure neutronmatter using the many-body Brueckner-Hartree-Fock approach and employing the Chiral Next-To-next-To-next-To leading order (N3LO) nucleon-nucleon (NN) potential, supplemented with various parametrizations of the Chiral Next-To-next-To leading order (N2LO) three-nucleon force. Such combination is able to reproduce several observables of the physics of light nuclei for suitable choices of the parameters entering in the three-nucleon interaction. We find that some of these parametrizations, provide also reasonable values for the observables of nuclear matter at the saturation point

    Local chiral potentials and the structure of light nuclei

    Get PDF
    We present fully local versions of the minimally non-local nucleon-nucleon potentials constructed in a previous paper [M.\ Piarulli {\it et al.}, Phys.\ Rev.\ C {\bf 91}, 024003 (2015)], and use them in hypersperical-harmonics and quantum Monte Carlo calculations of ground and excited states of 3^3H, 3^3He, 4^4He, 6^6He, and 6^6Li nuclei. The long-range part of these local potentials includes one- and two-pion exchange contributions without and with Δ\Delta-isobars in the intermediate states up to order Q3Q^3 (QQ denotes generically the low momentum scale) in the chiral expansion, while the short-range part consists of contact interactions up to order Q4Q^4. The low-energy constants multiplying these contact interactions are fitted to the 2013 Granada database in two different ranges of laboratory energies, either 0--125 MeV or 0--200 MeV, and to the deuteron binding energy and nnnn singlet scattering length. Fits to these data are performed for three models characterized by long- and short-range cutoffs, RLR_{\rm L} and RSR_{\rm S} respectively, ranging from (RL,RS)=(1.2,0.8)(R_{\rm L},R_{\rm S})=(1.2,0.8) fm down to (0.8,0.6)(0.8,0.6) fm. The long-range (short-range) cutoff regularizes the one- and two-pion exchange (contact) part of the potential.Comment: 29 pages, 3 figure

    New trends in few-body systems: a 30th anniversary collection

    No full text
    Few-Body Systems refer to a multidisciplinary subject of research in different sectors of physics in which the number of degrees of freedom governing the dynamics is sufficiently low to allow a description with controlled approximations. Examples can be found in atomic, nuclear and subnuclear physics as well as in some aspects of condensed matter. This issue, celebrating the 30th Anniversary of the Journal, contains two review articles, one in exotic hadrons and one in antikaon-nucleon systems, as well as a selection of original articles on experimental and theoretical physics in which modern problems in few-body systems are discussed. Specific arguments, presented by world expert leaders, are very extensive and include the three and four-nucleon system, short-range correlations, universal behavior in few-boson systems, perspectives on the origin of hadron masses, scattering problems and studies using electromagnetic probes. This issue gives an overview of actual problems in Few-Body Systems

    Nuclear matter properties from local chiral interactions with Delta isobar intermediate states

    No full text
    Using two-nucleon and three-nucleon interactions derived in the framework of chiral perturbation theory (ChPT) with and without the explicit Δ isobar contributions, we calculate the energy per particle of symmetric nuclear matter and pure neutron matter in the framework of the microscopic Brueckner-Hartree-Fock approach. In particular, we present for the first time nuclear matter calculations using the new fully local in coordinate-space two-nucleon interaction at the next-to-next-to-next-to-leading-order (N3LO) of ChPT with Δ isobar intermediate states (N3LOΔ) recently developed by Piarulli et al. [arXiv:1606.06335]. We find that using this N3LOΔ potential, supplemented with a local N2LO three-nucleon interaction with explicit Δ isobar degrees of freedom, it is possible to obtain a satisfactory saturation point of symmetric nuclear matter. For this combination of two- and three-nucleon interactions we also calculate the nuclear symmetry energy and we compare our results with the empirical constraints on this quantity obtained using the excitation energies to isobaric analog states in nuclei and using experimental data on the neutron skin thickness of heavy nuclei, finding a very good agreement in all the considered nucleonic density range. In addition, we find that the explicit inclusion of Δ isobars diminishes the strength of the three-nucleon interactions needed to get a good saturation point of symmetric nuclear matter. We also compare the results of our calculations with those obtained by other research groups using chiral nuclear interactions with different many-body methods, finding in many cases a very satisfactory agreement
    corecore