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The energy per particle of symmetric nuclear matter and pure neutron matter is calculated using the 
many-body Brueckner–Hartree–Fock approach and employing the Chiral Next-to-next-to-next-to leading 
order (N3LO) nucleon–nucleon (NN) potential, supplemented with various parametrizations of the Chiral 
Next-to-next-to leading order (N2LO) three-nucleon interaction. Such combination is able to reproduce 
several observables of the physics of light nuclei for suitable choices of the parameters entering in the 
three-nucleon interaction. We find that some of these parametrizations provide a satisfactory saturation 
point of symmetric nuclear matter and values of the symmetry energy and its slope parameter L in very 
good agreement with those extracted from various nuclear experimental data. Thus, our results represent 
a significant step toward a unified description of few- and many-body nuclear systems starting from two-
and three-nucleon interactions based on the symmetries of QCD.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The advent of interactions derived in the framework of chiral 
perturbation theory (ChPT) [1–3] opened a new and systematic 
way to investigate the properties of finite nuclear systems and nu-
clear matter. The big advantage of using such method lies in the 
fact that two-body as well as many-body forces can be calculated 
order by order according to a well defined scheme based on a low-
energy effective QCD Lagrangian which retains the symmetries of 
QCD, and in particular the approximate chiral symmetry. Within 
this approach the details of the QCD dynamics are contained in 
parameters, the so-called low-energy constants (LECs), which are 
fixed by low-energy experimental data. This systematic procedure 
is particularly useful for nucleonic systems where the importance 
of the three-nucleon force (TNF) is a well established feature. It is 
indeed well known that high precision nucleon–nucleon (NN) po-
tentials, fitting NN scattering data up to energy of 350 MeV, with 
a χ2 per datum next to 1, underestimate the experimental bind-
ing energies of 3H, 3He by about 1 MeV and that of 4He by about 
4 MeV [4]. This missing binding energy can be accounted for by 
introducing a TNF into the nuclear Hamiltonian [4].
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NN potentials plus TNFs based on ChPT have been recently used 
to investigate properties of medium-mass nuclei [5,6] and heavy 
nuclei [7]. A very important task in this line is the evaluation of 
the uncertainties originating in the nuclear Hamiltonian [8] and 
in particular on the LECs and to establish which should be the 
best fitting procedure to fix them [9]. For example, in Ref. [5] a 
simultaneous optimization of the NN interaction plus a TNF in light 
and medium-mass nuclei has been performed.

In the present work, we use nuclear interactions derived within 
the framework of ChPT to calculate the equation of state (EoS) 
of symmetric nuclear matter and pure neutron matter using the 
Brueckner–Hartree–Fock (BHF) approach [10,11]. In particular, we 
intend to study nuclear matter properties using different sets of 
TNFs constructed to reproduce specific observables in the three-
and four-nucleon systems. In this way we can estimate the sensi-
tivity introduced by the different LECs’ values.

In a previous paper [12], we have investigated whether using 
the same interactions at two- and three-body level, it was possible 
to concurrently reproduce properties of finite light nuclei and nu-
clear matter. Fixing the parameters of the TNF to simultaneously 
describe the 3H, 3He and 4He binding energies and the neutron–
deuteron (n-d) doublet scattering length [13], we found that none 
of the considered interactions was able to reproduce a good sat-
uration point of symmetric nuclear matter. In [12] we used the 
Argonne V18 NN potential [14] supplemented with two different 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Table 1
Five (two) different parametrizations of the N2LOL three-body force with � =
500 MeV (� = 450 MeV). The values c1 = −0.00081 MeV−1, c3 = −0.0032 MeV−1

(c3 = −0.0034 MeV−1), c4 = −0.0054 MeV−1 (c4 = −0.0034 MeV−1) and � =
500 MeV (� = 450 MeV) have been kept fix in all the five (two) cases. See text 
for details.

� (MeV) cD cE

N2LOL1 500 1.00 −0.029
N2LOL2 500 −0.20 −0.208
N2LOL3 500 −0.04 −0.184
N2LOL4 500 0.00 −0.180
N2LOL5 500 0.25 −0.135
N2LOL6 450 −0.24 −0.110
N2LOL7 450 0.40 −0.011

TNFs. In the first case we employed various parametrizations of 
the Tucson–Melbourne TNF [15], while in the second case, we used 
the local version of the chiral N2LO [16] TNF (hereafter N2LOL) 
[17]. The N2LOL differs from the usual N2LO TNF only for the use 
of a local cutoff (see Refs. [13] and [12]) for other details. In the 
present work, we consider an interaction fully based on ChPT both 
for the two- and three- nucleon sectors. We use indeed the chiral 
N3LO [18] NN potential in conjunction with different parametriza-
tions of the N2LOL three-nucleon interaction [17]. As the N3LO 
NN interaction has been produced in versions with different cutoff 
values, we intend to study the sensitivity of our results on the cut-
off. Partially this dependence could arise from the fact that while 
the NN potential is calculated at order N3LO of chiral perturba-
tion expansion, the three-nucleon one is calculated at order N2LO. 
Chiral TNFs have also been calculated at order N3LO [19]. Their 
effect in the description of light nuclei is at present under inves-
tigation [20]. It should be noticed that no additional low energy 
constant (LEC) appears at this order. New LECs appear in short 
range subleading contributions to the TNF at order N4LO [21] and 
their contribution seems to be potentially important [22]. The long 
range part of TNF at the same order contains no additional LEC 
[23]. In this work we limit our study considering TNFs calculated 
at order N2LO.

Nuclear interactions based on ChPT have been used by several 
groups for calculating the EoS of pure neutron matter [24–30] and 
symmetric nuclear matter [31–35]. A comparison with some of 
these calculations will be performed in last part of this work.

The paper is organized as follows: in section 2 we review the 
parameters of the N2LOL three-nucleon force and the determina-
tion of the low energy constants; in section 3 we briefly discuss 
how to include a TNF in the Brueckner–Hartree–Fock (BHF) ap-
proach; section 4 is devoted to show and discuss the results of our 
calculations; finally in section 5 we outline the main conclusions 
of the present study.

2. The N2LOL three nucleon force

Following Ref. [17], the N2LOL potential can be written as func-
tion of the transferred momenta q and q′ of the external nucleons. 

We adopted [17] a cut off function of the form F� = e
− q2n

�2n and 
a similar one for q′ . We employ n = 2 in the case of a momen-
tum cutoff parameter � = 500 MeV and n = 3 in the case � =
450 MeV. For � = 500 MeV, we have then considered five differ-
ent parametrizations of the N2LOL TNF (hereafter N2LOL1, N2LOL2, 
N2LOL3, N2LOL4, N2LOL5). For all these five parametrizations, we 
have kept the values of parameters c1, c3 and c4 as the original 
ones determined in [18]. For the case � = 450 MeV, we have con-
sidered two additional parametrizations denoted as N2LOL6 and 
N2LOL7. In this case c1, c3 and c4 have been taken from Ref. [34]. 
The values of ci are reported in the caption of Table 1 for the two 
considered values of the momentum cutoff �. The values of the 
remaining LECs cE and cD are shown in Table 1. The parametriza-
tion N2LOL1, is the original one proposed in Ref. [17], where cE

and cD were fitted to reproduce the binding energies of 3H and 
4He in a no-core shell model calculation. In Ref. [36], fixing the 
range of cD between −3 and 3, the parameter cE was determined 
fitting the binding energies of 3H and 3He. In this way the authors 
of Ref. [36] obtained two curves cE (cD) fulfilling the previous con-
straints. As the two curves turned out to be very close, the authors 
of Ref. [36] performed an average between them. Finally, for each 
set of parameters (cE , cD), the Gamow–Teller (GT) matrix element 
of tritium β-decay was calculated and, using the corresponding 
experimental value and its error-bars, the minima and a maxima 
values for cD and cE satisfying this requirement were determined. 
In the parametrizations N2LOL2 and N2LOL3, we have adopted the 
minima and the maxima values allowed for cD and cE according 
to the construction described above. The parametrization N2LOL4, 
taken again from Ref. [34], was obtained in the same way as the 
N2LOL2 and N2LOL3 ones but allowing that the GT matrix element 
of tritium β-decay to be reproduced with a slight larger uncer-
tainty (however less than 1%). The last parametrization (N2LOL5) 
that we have considered, has been obtained fixing the couple (cD , 
cE ) on the trajectory reproducing the binding energies of 3H and 
3He and requiring to get the best saturation density ρ0 of symmet-
ric nuclear matter. As we have said before, for � = 450 MeV we 
have explored just two parametrizations of the N2LOL TNF, namely 
N2LOL6 and N2LOL7. Concerning the parametrization N2LOL6, we 
have fixed the values of the low energy constants cD and cE in the 
same way of N2LOL4 in the case � = 500 MeV; for parametriza-
tion N2LOL7, we have optimized the symmetric nuclear matter 
saturation point with the constraint to reproduce the binding en-
ergies of 3H and 3He. Finally, we underline that in the two-body 
N3LO interaction we have adopted the same value of the cut off �
used for the N2LOL TNF. Thus the LECs (see Table 1 caption) have 
been consistently calculated for the two different values of � [34].

3. Inclusion of three body forces in the BHF approach

As discussed in the literature [37–40], three-nucleon forces can-
not be included in the BHF formalism [11,41,42] in their origi-
nal form. This would require the solution of three-body scatter-
ing equations in the nuclear medium (Bethe–Faddeev equations) 
which is an extremely demanding task from a technical and com-
putational point of view. A possible simplification is to build an 
effective density dependent two-body force starting from the orig-
inal three-body one by averaging over the coordinates (spatial, spin 
and isospin) of one of the nucleons. The effective NN force due to 
the general three-nucleon force W (1, 2, 3) can be written as [37,
43]:

W (1,2) = 1

3

∫
dx3

∑
cyc

W (1,2,3) n(1,2,3)(1 − P13 − P23) ,

(1)

where we have defined 
∫

dx3 = Tr(τ 3,σ 3)

∫
dr3 and n(1, 2, 3) is the 

density distribution of nucleon 3 in relation to nucleon 1 at r1 and 
nucleon 2 at r2. The function n(1, 2, 3) contains the effect of the 
NN short-range correlations suppressing the probability of finding 
two nucleons close to each other. In the following, we assume that 
this density distribution can be factorized as [37,12]

n(1,2,3) = ρ g2(1,3) g2(2,3) , (2)

where ρ is the nucleon density, g(1, 3) and g(2, 3) are the correla-
tion functions between the nucleons (1, 3) and (2, 3) respectively. 
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The latter quantities can be written as g(1, 3) = 1 − η(1, 3), where 
η(1, 3) is the so-called defect function (and similarly for g(2, 3)). 
The defect function η(i, j) is the difference between the corre-
lated and the uncorrelated wave functions and thus represents a 
measure of short range correlations [44,45]. To simplify the nu-
merical calculations and following [37,12], in the present work we 
use central correlation functions g(i, j) independent on spin and 
isospin. Moreover, it has been shown [37–39] that this central cor-
relation functions, in which are included the main contributions of 
the 1 S0 and 3 S1 channels, are weakly dependent on the density, 
and in principle can be approximated by a Heaviside step function 
θ(ri j − rc), with rc = 0.6 fm in all the considered density range. 
However in the present work η(i, j) has been calculated in a self-
consistent way at each step of the iterative procedure from the 
Brueckner G-matrix [44]. Finally Pij are the spin, isospin and space 
exchange operators between nucleon i and j.

A different average procedure, with respect to the one discussed 
above, has been performed in Ref. [46], where an in medium effec-
tive NN potential was derived from the N2LO three-nucleon force. 
In [46] just the on-shell contributions have been determined while 
the off-shell counterparts have been obtained by extrapolation.

We want to stress that the presence of contributions arising 
from the cyclic permutations of W (1, 2, 3) and from the exchange 
operators Pij in the average Eq. (1) has been neglected in the BHF 
calculations reported in [32], where no saturation of nuclear mat-
ter has been obtained using the N3LO NN potential plus the N2LOL 
three nucleon interaction. The presence of the exchange operators 
in Eq. (1) has been neglected in our previous work [12]. As we 
will show in the following, these contributions to the TNF play 
a very important role for the nuclear matter saturation mecha-
nism. In our present calculation scheme, we take into account of 
all internal and external permutations of the TNF. The resulting 
effective density dependent potential contains in particular some 
purely repulsive contributions which are missing when neglecting 
the Pij exchange operators. Such repulsion is needed to contrast 
the strong attraction provided at two-body level by the N3LO po-
tential as we will show in next section.

4. Results and discussions

We now present the results of our calculations of the energy 
per particle E/A of symmetric nuclear matter and pure neutron 
matter using N3LO NN potential supplemented with the N2LOL 
three-body force. These calculations have been performed using 
the BHF approximation of the Brueckner–Bethe–Goldstone hole-
line expansion [10,11] with the BHF continuous choice [47,42] for 
the auxiliary single particle potential U (k) entering in the self-
consistent procedure to determine E/A. As suggested in Ref. [47]
and later on numerically confirmed in Ref. [48,49], the BHF con-
tinuous choice for U (k) optimizes the convergence of the hole-line 
expansion thus illustrating the accuracy of the calculated energy 
per baryon at the two-hole line approximation with this prescrip-
tion for th auxiliary potential.

In Fig. 1 we show the energy per particle of pure neutron mat-
ter (left panel) and symmetric nuclear matter (right panel) using 
the cutoff � = 500 MeV. The dotted lines in both panels refer to 
the calculation performed employing the N3LO two-body potential 
without any TNF. First we note the sizeable contribution provided 
by the TNF to the energy per particle of both symmetric nuclear 
matter and pure neutron matter. In the case of symmetric nu-
clear matter the saturation point moves indeed from 0.41 fm−3

to values between 0.16 fm−3 and 0.185 fm−3, depending on em-
ployed TNF parametrization (see Table 1). More specifically, the 
parametrization N2LOL1 predicts a satisfactory saturation point for 
symmetric nuclear matter at a density of 0.185 fm−3 and an en-
Fig. 1. Energy per nucleon for pure neutron matter (left panel) and symmetric 
nuclear matter (right panel) versus the nucleonic density for the five parametriza-
tions of the N2LOL model with � = 500 MeV. The green-dotted line, in both pan-
els, represents the energy per nucleon with no three-body force contribution and 
using the N3LO NN potential. The empirical saturation point of nuclear matter 
ρ0 = 0.16 ± 0.01 fm−3, E/A|ρ0 = −16.0 ± 1.0 MeV is denoted by the black box in 
the right panel.

Fig. 2. Energy per nucleon for pure neutron matter (left panel) and symmetric nu-
clear matter (right panel) versus the nucleonic density for the two parametrizations 
of the N2LOL model with � = 450 MeV.

ergy per nucleon equal to −15.48 MeV. The shift introduced by 
the N2LOL1 TNF to the energy per nucleon at the empirical sat-
uration density ρ0 = 0.16 fm−3 is �E = 2.73 MeV for symmetric 
nuclear matter and �E = 4.84 MeV for pure neutron matter. The 
parametrizations N2LOL2, N2LOL3 and N2LOL4, all produce a sat-
uration density of 0.15 fm−3, but the corresponding energy per 
nucleon ranges between −11.23 MeV and −12.16 MeV (see Ta-
ble 1) to be compared with the empirical value (−16 ± 1) MeV. 
We note that the parametrization N2LOL5 has been constructed to 
reproduce the 3H and 3He binding energies and the best saturation 
density of symmetric nuclear matter. However, we want again to 
remark that in this case the GT matrix element of tritium β-decay 
is not reproduced. The curves for the energy per nucleon of pure 
neutron matter (right panel in Fig. 1) are very similar in all the 
density range considered.

In Fig. 2, we show the same quantities of Fig. 1, but adopt-
ing the cutoff � = 450 MeV. In this case we have considered the 
two parametrizations N2LOL6 and N2LOL7 (see Table 1) of the TNF. 
The results obtained for � = 450 MeV are very similar to the ones 
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Fig. 3. Symmetry energy versus nucleonic density for the parametrizations of the 
N2LOL with � = 500 MeV (left panel) and with � = 450 MeV (right panel). The 
triangles labeled DSS represent the results of Ref. [51].

discussed above for the case � = 500 MeV at least for densities 
around the empirical saturation density one or slightly larger. At 
densities larger than ∼ 0.25 fm−3 E/A is systematically smaller in 
the case � = 450 MeV compared to the � = 500 MeV one. This 
behavior is mainly due to the strong attraction introduced by the 
NN potential N3LO for the choice � = 450 MeV of the cutoff. It is 
apparent that none of the present interactions can fulfill the re-
quirement to reproduce simultaneously the 3H and 3He binding 
energies, the GT matrix element of tritium β-decay and the satura-
tion point of symmetric nuclear matter. However the parametriza-
tions N2LOL1 and N2LOL7, which reproduce 3H and 3He binding 
energies, produce also a satisfactory saturation point for symmetric 
nuclear matter. Such achievements represent a big improvement of 
our previous calculations [12].

In the case of asymmetric nuclear matter with neutron den-
sity ρn , proton density ρp , total nucleon density ρ = ρn + ρp and 
asymmetry parameter β = (ρn − ρp)/ρ the energy per nucleon in 
the BHF approach can be accurately reproduced [50] using the so-
called parabolic approximation

E

A
(ρ,β) = E

A
(ρ,0) + Esym(ρ)β2 , (3)

where Esym(ρ) is the nuclear symmetry energy. Thus the symme-
try energy can be calculated as the difference between the energy 
per particle of pure neutron matter (β = 1) and symmetric nuclear 
matter (β = 0).

The nuclear symmetry energy, calculated with this prescription, 
is plotted in Fig. 3 for the parametrizations of the N2LOL TNF with 
� = 500 MeV (left panel) and � = 450 MeV (right panel) used in 
the present work. In the same figure, we show Esym (triangles) as 
obtained from recent calculations [51] of asymmetric neutron-rich 
matter with two- and three-body chiral interactions. The results 
of Ref. [51] have confirmed the validity of the quadratic approxi-
mation (Eq. (3)) for describing the EOS highly asymmetric matter. 
However, it has been recently shown [52,53] that the β4 term in 
the energy per nucleon of asymmetric nuclear matter could not be 
negligible, especially at supranuclear densities, thus having size-
able influence e.g. on neutron star cooling [54].

To compare our results with the value of the symmetry energy 
extracted from various nuclear experimental data [55,56], we re-
port in Table 2 and Table 3 the symmetry energy Esym(ρ0) and 
the so-called slope parameter

L = 3ρ0
∂ Esym(ρ) ∣∣∣ (4)
∂ρ ρ0
Table 2
Properties of nuclear matter at saturation point for � = 500 MeV. In the five 
columns are shown: parametrization of the N2LOL three-body force, saturation den-
sity, corresponding value of energy per particle E/A, symmetry energy Esym(ρ0)

and slope L of the symmetry energy at the calculated saturation density. The last 
row refers to the calculation in which just the N3LO NN force has been used. See 
text for details.

ρ0 (fm−3) E/A (MeV) Esym (MeV) L (MeV)

N2LOL1 0.185 −15.48 35.5 58.5
N2LOL2 0.15 −11.23 29.0 44.1
N2LOL3 0.15 −11.96 29.3 45.0
N2LOL4 0.15 −12.16 29.4 45.2
N2LOL5 0.16 −13.04 31.3 48.7
N3LO 0.41 −24.25 55.0 108.2

Table 3
The same of Table 2 but with � = 450 MeV. See text for details.

ρ0 (fm−3) E/A (MeV) Esym (MeV) L (MeV)

N2LOL6 0.15 −13.04 29.4 40.2
N2LOL7 0.18 −15.01 33.6 44.3

at the calculated saturation density ρ0 (second column in Table 2
and 3) for the TNF parametrizations considered in this work. As 
we can see our calculated Esym(ρ0) and L are in good agreement 
with the values extracted from experimental data [55]: Esym(ρ0) =
29.0–32.7 MeV, and L = 40.5–61.9 MeV. This agreement is lost 
when the TNF is not included in the calculations (see e.g. the last 
row in Table 2). Notice that the value of the nuclear incompress-
ibility K0 of symmetric nuclear matter, at the calculated satura-
tion density, is generally quite low when compared with the value 
deduced from measured isoscalar giant monopole resonances in 
medium-heavy nuclei K0 = 240 ± 20 MeV [57] K0. Our calculated 
value of K0 ranges between 150 and 170 MeV, depending on the 
TNF model.

Let us now compare our results with those of similar calcu-
lations present in literature based on chiral nuclear interactions. 
Our present results are in good agreement with the recent nonper-
turbative quantum Monte Carlo calculations [26] of pure neutron 
matter. The authors of Ref. [34] performed nuclear matter calcu-
lations up to third order many-body perturbation theory, adopt-
ing the effective density dependent NN force derived in Ref. [46]. 
These authors found results in acceptable agreement with ours 
both for nuclear matter and pure neutron matter. Several nuclear 
matter calculations based on chiral interactions have been per-
formed using other many-body techniques. In Ref. [31], using the 
Vlowk-approach and the similarity renormalization group (SRG), it 
was shown that for a suitable choice of the cutoff �V lowk it was 
possible to reproduce a good saturation point of symmetric nu-
clear matter keeping for the parameters of the TNF the values fixed 
in few-body calculations. In Ref. [33], using the self-consistent 
Green’s functions method, it has been found that the saturation 
point of symmetric nuclear matter is strongly improved with the 
help of the N2LOL three-nucleon force although, also in this case, 
the saturation energy results underestimated.

In Fig. 4 we compare our results (using the parametrizations 
N2LOL1, N2LOL4 and N2LOL6) for the energy per particle of pure 
neutron matter with those obtained by other researchers using dif-
ferent many-body approaches. The black- and red-dashed regions 
in the left panel of Fig. 4 represent the results of the many-body 
perturbative calculations of Ref. [25] using complete two-, three-
and four-body interactions at the N3LO of the ChPT. In particu-
lar, the region between the two short-dashed black curves (black-
dashed band partially overlapped by the red-dashed band) is rela-
tive to the N3LO Entem–Machleidt [18] NN potential, whereas the 
red-dashed band refers to the Epelbaum–Glockle–Meißner (EGM) 



D. Logoteta et al. / Physics Letters B 758 (2016) 449–454 453
Fig. 4. Comparison of pure neutron matter energy per particle with other many-
body methods (see text for details).

potentials [58]. The width of the bands represents the uncertain-
ties related to the values of the LECs and the cutoff of the three-
and four-body forces. The dash-dotted (blue) curves in both panels 
in Fig. 4, represent the results [29] of an auxiliary field diffusion 
Monte Carlo (AFDMC) calculation of neutron matter using a lo-
cal form of two- and three-body chiral interactions at N2LO and 
two different values of the NN cutoff (see [29] for more details). 
The green-dotted line in both panels of Fig. 4, corresponds to the 
results of Ref. [27] with the auxiliary field quantum Monte Carlo 
(AFQMC) obtained with chiral N3LO two-body force plus N2LO 
TNF. Finally, the red-dashed band in the right panel of Fig. 4
represents the results of Ref. [30] for the energy per particle of 
neutron matter after a renormalization group (RG) evolution of 
the N3LO Entem–Machleidt [18] NN interaction to low-momentum 
scale (� = 394.6 MeV) and including N2LO TBF (the width of the 
band reflecting the uncertainties of the LECs in the TNF). As one 
can see, our results are in very good agreement with all the other 
calculations considered in Fig. 4, except with the calculations of 
Ref. [29] for densities close to the empirical saturation density. In 
fact, in this density region the AFDMC curves are “flat” compared 
to other calculations [29], thus implying low values, in the range 
L = (16.0–36.5) MeV, for the slope parameter calculated using the 
parabolic approximation Eq. (3) at the empirical saturation density 
ρ0 = 0.16 fm−3.

5. Conclusions

We have performed BHF calculations of the EoS symmetric nu-
clear matter and pure neutron matter considering the N3LO NN 
potential plus the N2LOL three nucleon interaction. The last one 
has been reduced to an effective density dependent two-body in-
teraction averaging over the coordinates (spatial, spin and isospin) 
of one of the nucleons. We have shown that the contributions aris-
ing from the cyclic permutations of W (1, 2, 3) and from the nu-
cleon exchange operators Pij in the average (see Eq. (1)) of the TNF 
play a decisive role for the nuclear matter saturation mechanism. 
In fact, no saturation is obtained [32] when these contributions are 
not taken into account. We want to stress that the parameters of 
the TNF fitted in calculations of light nuclei have been kept fixed 
in our nuclear matter calculations.

From one side we found that it was not possible to reproduce 
simultaneously the binding energy of 3H, 3He, the GT matrix el-
ement of tritium β-decay and the empirical saturation point of 
symmetric nuclear matter. However some trends can be extracted, 
in particular, those parametrizations that reproduce the binding 
energy of 3H, 3He and the GT matrix element of tritium β-decay 
predict a reasonable value (0.15 fm−3) of the saturation density, 
but the corresponding binding energy per nucleon (B/A = −E/A) 
is underestimated. The two parametrizations, N2LOL1 and N2LOL7, 
that are not constrained to reproduce the GT matrix element of 
tritium β-decay are able to reproduce quite well the empirical 
saturation energy but at a too large value of ρ0. Finally we have 
observed a reduced dependence on the momentum cutoff param-
eter. We have found in addition a good agreement with recent 
AFQMC [27] and MBPT [25] calculations of neutron matter.

These encouraging results represent a significant step toward a 
unified description of few- and many-body nuclear systems start-
ing from two- and three-nucleon interactions derived in the frame-
work of chiral perturbation theory.
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