2,772 research outputs found

    Using abundance data to assess the relative role of sampling biases and evolutionary radiations in Upper Muschelkalk ammonoids

    Get PDF
    The Middle Triassic ammonoid genus Ceratites diversified spectacularly within the Germanic Muschelkalk Basin during the Anisian/Ladian (244–232 Mya). Previous studies have interpreted this diversification as a sequence of rapid, endemic radiations from a few immigrant taxa. Here we investigate the possibility that geological and sampling biases, rather than ecological and evolutionary processes, are responsible for this pattern. A new specimen based dataset of Ceratites species-richness and abundance was assembled. This dataset was combined with 1:200000 geological maps in a geodatabase to facilitate geospatial analyses. One set of analyses compared species richness per geological map with the number of occurrences and localities per map. Per-map change in the amount of rock available to sample for fossils was also included as a variable. Of these three variables, number of occurrences is the most strongly correlated with richness. Variation in the amount of rock is not a strong determinant of species-richness. However, rarefaction of basin-wide species/abundance data demonstrates that differences in species-richness through time are not attributable to sample size differences. The average percent similarity among sites remained close to 50% throughout the Upper Muschelkalk. The rank abundance distribution (RAD) of species from the first interval of the Upper Muschelkalk is consistent with colonization of a disturbed environment, while the other two intervals have RADs consistent with more stable ecosystems. These results indicate that genuine ecological and evolutionary events are partly responsible for the observed differences in richness and abundance. Although changes in the RADs through time support changes in the ammonoid assemblage structure, the processes underlying increasing richness and change in RADS cannot be explained by increasing geographic distinctiveness or isolation among the ammonoid assemblages present at different localities

    Ground State H-Atom in Born-Infeld Theory

    Full text link
    Within the context of Born-Infeld (BI) nonlinear electrodynamics (NED) we revisit the non-relativistic, spinless H-atom. The pair potential computed from the Born-Infeld equations is approximated by the Morse type potential with remarkable fit over the critical region where the convergence of both the short and long distance expansions slows down dramatically. The Morse potential is employed to determine both the ground state energy of the electron and the BI parameter.Comment: 4 pages, 1 figure, final version to appear in Foundation of Physic

    Two-cycle curriculum - bachelor-master structure according to the Bologna agreement: the Swiss experience in Basle

    Get PDF
    In the autumn of 2006, the first cohort of students started with the bachelor programme in Basle. The whole curriculum had to be changed from the old system to the new two-cycle system. The implementation of the Bologna reform in Switzerland has been successful especially with regard to the very tight time schedule. Ongoing evaluation will detect fields for improvement which will of course arise in such a fundamental process of change. A major challenge for the future will be the sustainable consolidation of high quality in medical education

    Damping by slow relaxing rare earth impurities in Ni80Fe20

    Full text link
    Doping NiFe by heavy rare earth atoms alters the magnetic relaxation properties of this material drastically. We show that this effect can be well explained by the slow relaxing impurity mechanism. This process is a consequence of the anisotropy of the on site exchange interaction between the 4f magnetic moments and the conduction band. As expected from this model the magnitude of the damping effect scales with the anisotropy of the exchange interaction and increases by an order of magnitude at low temperatures. In addition our measurements allow us to determine the relaxation time of the 4f electrons as a function of temperature

    Unique Transcriptional Profile of Sustained Ligand-Activated Preconditioning in Pre- and Post-Ischemic Myocardium

    Get PDF
    BACKGROUND: Opioidergic SLP (sustained ligand-activated preconditioning) induced by 3–5 days of opioid receptor (OR) agonism induces persistent protection against ischemia-reperfusion (I-R) injury in young and aged hearts, and is mechanistically distinct from conventional preconditioning responses. We thus applied unbiased gene-array interrogation to identify molecular effects of SLP in pre- and post-ischemic myocardium. METHODOLOGY/PRINCIPAL FINDINGS: Male C57Bl/6 mice were implanted with 75 mg morphine or placebo pellets for 5 days. Resultant SLP did not modify cardiac function, and markedly reduced dysfunction and injury in perfused hearts subjected to 25 min ischemia/45 min reperfusion. Microarray analysis identified 14 up- and 86 down-regulated genes in normoxic hearts from SLP mice (≥1.3-fold change, FDR≤5%). Induced genes encoded sarcomeric/contractile proteins (Myh7, Mybpc3,Myom2,Des), natriuretic peptides (Nppa,Nppb) and stress-signaling elements (Csda,Ptgds). Highly repressed genes primarily encoded chemokines (Ccl2,Ccl4,Ccl7,Ccl9,Ccl13,Ccl3l3,Cxcl3), cytokines (Il1b,Il6,Tnf) and other proteins involved in inflammation/immunity (C3,Cd74,Cd83, Cd86,Hla-dbq1,Hla-drb1,Saa1,Selp,Serpina3), together with endoplasmic stress proteins (known: Dnajb1,Herpud1,Socs3; putative: Il6, Gadd45g,Rcan1) and transcriptional controllers (Egr2,Egr3, Fos,Hmox1,Nfkbid). Biological themes modified thus related to inflammation/immunity, together with cellular/cardiovascular movement and development. SLP also modified the transcriptional response to I-R (46 genes uniquely altered post-ischemia), which may influence later infarction/remodeling. This included up-regulated determinants of cellular resistance to oxidant (Mgst3,Gstm1,Gstm2) and other forms of stress (Xirp1,Ankrd1,Clu), and repression of stress-response genes (Hspa1a,Hspd1,Hsp90aa,Hsph1,Serpinh1) and Txnip. CONCLUSIONS: Protection via SLP is associated with transcriptional repression of inflammation/immunity, up-regulation of sarcomeric elements and natriuretic peptides, and modulation of cell stress, growth and development, while conventional protective molecules are unaltered

    Virial theorem for rotating self-gravitating Brownian particles and two-dimensional point vortices

    Full text link
    We derive the proper form of Virial theorem for a system of rotating self-gravitating Brownian particles. We show that, in the two-dimensional case, it takes a very simple form that can be used to obtain general results about the dynamics of the system without being required to solve the Smoluchowski-Poisson system explicitly. We also develop the analogy between self-gravitating systems and two-dimensional point vortices and derive a Virial-like relation for the vortex system

    Deep-time climate legacies affect origination rates of marine genera

    Get PDF
    Biodiversity dynamics are shaped by a complex interplay between current conditions and historic legacy. The interaction of short- and long-term climate change may mask the true relationship of evolutionary responses to climate change if not specifically accounted for. These paleoclimate interactions have been demonstrated for extinction risk and biodiversity change, but their importance for origination dynamics remains untested. Here, we show that origination probability in marine fossil genera is strongly affected by paleoclimate interactions. Overall, origination probability increases by 27.8% [95% CI (27.4%, 28.3%)] when a short-term cooling adds to a long-term cooling trend. This large effect is consistent through time and all studied groups. The mechanisms of the detected effect might be manifold but are likely connected to increased allopatric speciation with eustatic sea level drop caused by sustained global cooling. We tested this potential mechanism through which paleoclimate interactions can act on origination rates by additionally examining a proxy for habitat fragmentation. This proxy, continental fragmentation, has a similar effect on origination rates as paleoclimate interactions, supporting the importance of allopatric speciation through habitat fragmentation in the deep-time fossil record. The identified complex nature of paleoclimate interactions might explain contradictory conclusions on the relationship between temperature and origination in the previous literature. Our results highlight the need to account for complex interactions in evolutionary studies both between and among biotic and abiotic factors

    X-ray photoelectron spectroscopy studies of non-stoichiometric superconducting NbB2+x

    Full text link
    Polycrystalline samples of NbB2+x with nominal composition (B/Nb) = 2.0, 2.1, 2.2, 2.3, 2.4 and 2.5 were studied by X-ray photoelectron spectroscopy (XPS). The spectra revealed Nb and B oxides on the surface of the samples, mainly B2O3 and Nb2O5. After Ar ion etching the intensity of Nb and B oxides decreased. The Nb 3d5/2 and B 1s core levels associated with the chemical states (B/Nb) were identified and they do not change with etching time. The Binding Energy of the Nb 3d5/2 and B 1s core levels increase as boron content increases, suggesting a positive chemical shift in the core levels. On the other hand, analysis of Valence Band spectra showed that the contribution of the Nb 4d states slightly decreased while the contribution of the B 2p(pi) states increased as the boron content increased. As a consequence, the electronic and superconducting properties were substantially modified, in good agreement with band-structure calculations.Comment: 10 pages, 7 figures, 1 tabl

    Optical spin pumping of modulation doped electrons probed by a two-color Kerr rotation technique

    Full text link
    We report on optical spin pumping of modulation electrons in CdTe-based quantum wells with low intrinsic electron density (by 10^10 cm^{-2}). Under continuous wave excitation, we reach a steady state accumulated spin density of about 10^8 cm^{-2}. Using a two-color Hanle-MOKE technique, we find a spin relaxation time of 34 ns for the localized electrons in the nearly unperturbed electron gas. Independent variation of the pump and probe energies demonstrates the presence of additional non-localized electrons in the quantum well, whose spin relaxation time is substantially shorter
    • …
    corecore