197 research outputs found
Positive Correlations in Tunneling through coupled Quantum Dots
Due to the Fermi-Dirac statistics of electrons the temporal correlations of
tunneling events in a double barrier setup are typically negative. Here, we
investigate the shot noise behavior of a system of two capacitively coupled
quantum dot states by means of a Master equation model. In an asymmetric setup
positive correlations in the tunneling current can arise due to the bunching of
tunneling events. The underlying mechanism will be discussed in detail in terms
of the current-current correlation function and the frequency-dependent Fano
factor.Comment: HCIS 13 in Moden
Co-tunneling current and shot noise in quantum dots
We derive general expressions for the current and shot noise, taking into
account non-Markovian memory effects. In generalization of previous approaches
our theory is valid for arbitrary Coulomb interaction and coupling strength and
is applicable to quantum dots and more complex systems like molecules. A
diagrammatic expansion up to second-order in the coupling strength, taking into
account co-tunneling processes, allows for a study of transport in a regime
relevant to many experiments. As an example, we consider a single-level quantum
dot, focusing on the Coulomb-blockade regime. We find super-Poissonian shot
noise due to spin-flip co-tunneling processes at an energy scale different from
the one expected from first-order calculations, with a sensitive dependence on
the coupling strength.Comment: 4 pages, three figures, submitted to PR
Noise enhancement due to quantum coherence in coupled quantum dots
We show that the intriguing observation of noise enhancement in the charge
transport through two vertically coupled quantum dots can be explained by the
interplay of quantum coherence and strong Coulomb blockade. We demonstrate that
this novel mechanism for super-Poissonian charge transfer is very sensitive to
decoherence caused by electron-phonon scattering as inferred from the measured
temperature dependence.Comment: 4 pages, 3 figures, corrected version (Figs.2 and 3
Shot noise in resonant tunneling through a zero-dimensional state with a complex energy spectrum
We investigate the noise properties of a GaAs/AlGaAs resonant tunneling
structure at bias voltages where the current characteristic is determined by
single electron tunneling. We discuss the suppression of the shot noise in the
framework of a coupled two-state system. For large bias voltages we observed
super-Poissonian shot noise up to values of the Fano factor .Comment: 4 pages, 4 figures, accepted for Phys. Rev.
Hidden Quantum Markov Models and Open Quantum Systems with Instantaneous Feedback
Hidden Markov Models are widely used in classical computer science to model
stochastic processes with a wide range of applications. This paper concerns the
quantum analogues of these machines --- so-called Hidden Quantum Markov Models
(HQMMs). Using the properties of Quantum Physics, HQMMs are able to generate
more complex random output sequences than their classical counterparts, even
when using the same number of internal states. They are therefore expected to
find applications as quantum simulators of stochastic processes. Here, we
emphasise that open quantum systems with instantaneous feedback are examples of
HQMMs, thereby identifying a novel application of quantum feedback control.Comment: 10 Pages, proceedings for the Interdisciplinary Symposium on Complex
Systems in Florence, September 2014, minor correction
Weak coupling approximations in non-Markovian Transport
We study the transport properties of the Fano-Anderson model with a
Lorentzian-shaped density of states in one of the electronic reservoirs. We
explicitly show that the energy dependence of the density of states can cause
non-Markovian effects and that the non-Markovian master equation may fail if
these effects are strong. We evaluate the stationary current, the zero
frequency current noise and the occupation dynamics of the resonant level by
means of a quantum master equation approach within different approximation
schemes and compare the results to the exact solution obtained by scattering
theory and Green's functions.Comment: 9 pages, 6 figures; due to suggestions of a referee we have added an
appendix where our kernel is derived in detail; a few typos are correcte
Shot noise in tunneling transport through molecules and quantum dots
We consider electrical transport through single molecules coupled to metal
electrodes via tunneling barriers. Approximating the molecule by the Anderson
impurity model as the simplest model which includes Coulomb charging effects,
we extend the ``orthodox'' theory to expand current and shot noise
systematically order by order in the tunnel couplings. In particular, we show
that a combined measurement of current and shot noise reveals detailed
information of the system even in the weak-coupling limit, such as the ratio of
the tunnel-coupling strengths of the molecule to the left and right electrode,
and the presence of the Coulomb charging energy. Our analysis holds for
single-level quantum dots as well.Comment: 8 page
Local barrier dysfunction identified by confocal laser endomicroscopy predicts relapse in inflammatory bowel disease
Loss of intestinal barrier function plays an important role in the pathogenesis of inflammatory bowel disease (IBD). Shedding of intestinal epithelial cells is a potential cause of barrier loss during inflammation. The objectives of the study were (1) to determine whether cell shedding and barrier loss in humans can be detected by confocal endomicroscopy and (2) whether these parameters predict relapse of IBD
- …