669 research outputs found

    Decoherence of Einstein-Podolsky-Rosen steering

    Full text link
    We consider two systems A and B that share Einstein-Podolsky-Rosen (EPR) steering correlations and study how these correlations will decay, when each of the systems are independently coupled to a reservoir. EPR steering is a directional form of entanglement, and the measure of steering can change depending on whether the system A is steered by B, or vice versa. First, we examine the decay of the steering correlations of the two-mode squeezed state. We find that if the system B is coupled to a reservoir, then the decoherence of the steering of A by B is particularly marked, to the extent that there is a sudden death of steering after a finite time. We find a different directional effect, if the reservoirs are thermally excited. Second, we study the decoherence of the steering of a Schr\"odinger cat state, modeled as the entangled state of a spin and harmonic oscillator, when the macroscopic system (the cat) is coupled to a reservoir

    Investment perspectives on costs for air pollution control affect the optimal use of emission control measures

    Get PDF
    Cost-effective air pollution emission control has been in focus for decades in international air pollution regulations. Despite large observed emission reductions for many air pollutants, environmental and human health problems persist and more efforts are needed. However, some stakeholders are concerned that the costs for remaining emission control measures are prohibitively high. There are several reasons for concern, and one can be the difference in investment perspectives—i.e. costs of borrowing and time constraints—held by stakeholders. By using the integrated assessment model GAINS, we study whether differences in investment perspectives of Nordic stakeholders influence measures selected for cost-effective emission control and can motivate concerns for high costs of emission control. We distinguish the control cost calculations between a social planner perspective and a corporate perspective and apply these to the GAINS model database on emission control measures. A cost-minimized selection of measures in 2030 is then calculated for increasing environmental and health ambitions for both perspectives. The results show an irregular pattern, but for a range of ambition levels the corporate perspective affects the selection of measures and implies surplus costs for the Nordic social planner of up to 120 million € per year. This is 36% more expensive than the costs of the social planners’ selection. Conversely, from a corporate perspective the social planners’ selection can imply cost increases of up to 180 million €. We therefore suggest that control of investment perspective effects should be standard in analysis of cost-effective air pollution measures

    Quantifying national household air pollution (HAP) exposure to PM2.5 in rural and urban areas

    Get PDF
    According to WHO (World Health Organization), in 2020, 14% of people in global urban areas relied on polluting solid fuels and technologies, compared with 52% of the rural population. The health impacts of such inequality are massive. It was estimated that 3.2 million premature deaths per year (2020), particularly in low-income and middle-income countries due to household air pollution (HAP). Several studies provide estimates of the exposure to fine particulate matter (PM2.5) from household air pollution (HAP-PM2.5) for users of different fuel/cookstove types in rural and urban areas. However, hardly any studies estimate the population-weighted exposure to HAP-PM2.5 at the global scale. A Bayesian hierarchical model was developed to estimate PM2.5 exposure coefficients and their uncertainties for an annual average of HAP-PM2.5 personal exposure. The predicted HAP-PM2.5 exposure at the user level was used to estimate the national-level exposure for the population living in urban and rural areas. The results suggest that switching from polluting solid fuels (biomass, charcoal, coal) to cleaner fuels (gas and electricity) for heating and cooking can potentially reduce the national-level HAP-PM2.5 personal exposure on average by 53%. However, there exists a significant disparity between rural and urban areas, partly reflecting inequality in energy access. More specifically, switching from polluting solid fuels for heating and cooking to cleaner fuels can reduce the personal exposure to HAP-PM2.5 in rural areas by 54% and in urban areas by 38%. The study indicates that increased access to clean fuels and improved stove interventions are needed to achieve the goals of universal energy access and equality between urban and rural areas

    Urban versus rural health impacts attributable to PM2.5 and O3 in northern India

    Get PDF
    Ambient air pollution in India contributes to negative health impacts and early death. Ground-based monitors often used to quantify health impacts are located in urban regions, yet approximately 70% of India's population lives in rural communities. We simulate high-resolution concentrations of fine particulate matter (PM) and ozone from the regional Community Multi-scale Air Quality model over northern India, including updated estimates of anthropogenic emissions for transportation, residential combustion and location-based industrial and electrical generating emissions in a new anthropogenic emissions inventory. These simulations inform seasonal air quality and health impacts due to anthropogenic emissions, contrasting urban versus rural regions. For our northern India domain, we estimate 463 200 (95% confidence interval: 444 600–482 600) adults die prematurely each year from PM2.5 and that 37 800 (28 500–48 100) adults die prematurely each year from O3. This translates to 5.8 deaths per 10 000 attributable to air pollution out of an annual rate of 72 deaths per 10 000 (8.1% of deaths) using 2010 estimates. We estimate that the majority of premature deaths resulting from PM2.5 and O3 are in rural (383 600) as opposed to urban (117 200) regions, where we define urban as cities and towns with populations of at least 100 000 people. These findings indicate the need for rural monitoring and appropriate health studies to understand and mitigate the effects of ambient air pollution on this population in addition to supporting model evaluation

    Health impacts of fine particles under climate change mitigation, air quality control, and demographic change in India

    Get PDF
    Despite low per capita emissions, with over a billion population, India is pivotal for climate change mitigation globally, ranking as the third largest emitter of greenhouse gases. We linked a previously published multidimensional population projection with emission projections from an integrated assessment model to quantify the localised (i.e. state-level) health benefits from reduced ambient fine particulate matter in India under global climate change mitigation scenarios in line with the Paris Agreement targets and national scenarios for maximum feasible air quality control. We incorporated assumptions about future demographic, urbanisation and epidemiological trends and accounted for model feedbacks. Our results indicate that compared to a business-as-usual scenario, pursuit of aspirational climate change mitigation targets can avert up to 8.0 million premature deaths and add up to 0.7 years to life expectancy (LE) at birth due to cleaner air by 2050. Combining aggressive climate change mitigation efforts with maximum feasible air quality control can add 1.6 years to life expectancy. Holding demographic change constant, we find that climate change mitigation and air quality control will contribute slightly more to increases in LE in urban areas than in rural areas and in states with lower socio-economic development

    Projecting the impact of air pollution on child stunting in India – synergies and trade-offs between climate change mitigation, ambient air quality control, and clean cooking access

    Get PDF
    Many children in India face the double burden of high exposure to ambient (AAP) and household air pollution (HAP), both of which can affect their linear growth. Although climate change mitigation is expected to decrease AAP, climate policies could increase the cost of clean cooking fuels. Here, we develop a static microsimulation model to project the air pollution-related burden of child stunting in India up to 2050 under four scenarios combining climate change mitigation (2°C target) with national policies for AAP control and subsidised access to clean cooking. We link data from a nationally representative household survey, satellite-based estimates of fine particulate matter (PM2.5), multi-dimensional demographic projection and PM2.5 and clean cooking access projections from an integrated assessment model. We find that the positive effects on child linear growth from reductions in AAP under the 2°C Paris Agreement target could be fully offset by the negative effects of climate change mitigation through reduced clean cooking access. Targeted AAP control or subsidised access to clean cooking could shift this trade-off to result in net benefits of 2.8 (95% uncertainty interval [UI]: 1.4, 4.2) or 6.5 (UI: 6.3, 6.9) million cumulative prevented cases of child stunting between 2020-50 compared to business-as-usual. Implementation of integrated climate, air quality, and energy access interventions has a synergistic impact, reducing cumulative number of stunted children by 12.1 (UI: 10.7, 13.7) million compared to business-as-usual, with the largest health benefits experienced by the most disadvantaged children and geographic regions. Findings underscore the importance of complementing climate change mitigation efforts with targeted air quality and energy access policies to concurrently deliver on carbon mitigation, health and air pollution and energy poverty reduction goals in India
    • …
    corecore