15 research outputs found

    Capability of Neutrophils to Form NETs Is Not Directly Influenced by a CMA-Targeting Peptide

    Get PDF
    During inflammatory reaction, neutrophils exhibit numerous cellular and immunological functions, notably the formation of neutrophil extracellular traps (NETs) and autophagy. NETs are composed of decondensed chromatin fibers coated with various antimicrobial molecules derived from neutrophil granules. NETs participate in antimicrobial defense and can also display detrimental roles and notably trigger some of the immune features of systemic lupus erythematosus (SLE) and other autoimmune diseases. Autophagy is a complex and finely regulated mechanism involved in the cell survival/death balance that may be connected to NET formation. To shed some light on the connection between autophagy and NET formation, we designed a number of experiments in human neutrophils and both in normal and lupus-prone MRL/lpr mice to determine whether the synthetic peptide P140, which is capable of selectively modulating chaperone-mediated autophagy (CMA) in lymphocytes, could alter NET formation. P140/Lupuzor™ is currently being evaluated in phase III clinical trials involving SLE patients. Overall our in vitro and in vivo studies established that P140 does not influence NET formation, cytokine/chemokine production, or CMA in neutrophils. Thus, the beneficial effect of P140/Lupuzor™ in SLE is apparently not directly related to modulation of neutrophil function

    Capability of Neutrophils to Form NETs Is Not Directly Influenced by a CMA-Targeting Peptide

    Get PDF
    During inflammatory reaction, neutrophils exhibit numerous cellular and immunological functions, notably the formation of neutrophil extracellular traps (NETs) and autophagy. NETs are composed of decondensed chromatin fibers coated with various antimicrobial molecules derived from neutrophil granules. NETs participate in antimicrobial defense and can also display detrimental roles and notably trigger some of the immune features of systemic lupus erythematosus (SLE) and other autoimmune diseases. Autophagy is a complex and finely regulated mechanism involved in the cell survival/death balance that may be connected to NET formation. To shed some light on the connection between autophagy and NET formation, we designed a number of experiments in human neutrophils and both in normal and lupus-prone MRL/lpr mice to determine whether the synthetic peptide P140, which is capable of selectively modulating chaperone-mediated autophagy (CMA) in lymphocytes, could alter NET formation. P140/Lupuzor™ is currently being evaluated in phase III clinical trials involving SLE patients. Overall our in vitro and in vivo studies established that P140 does not influence NET formation, cytokine/chemokine production, or CMA in neutrophils. Thus, the beneficial effect of P140/Lupuzor™ in SLE is apparently not directly related to modulation of neutrophil function

    Capability of Neutrophils to Form NETs Is Not Directly Influenced by a CMA-Targeting Peptide

    Get PDF
    During inflammatory reaction, neutrophils exhibit numerous cellular and immunological functions, notably the formation of neutrophil extracellular traps (NETs) and autophagy. NETs are composed of decondensed chromatin fibers coated with various antimicrobial molecules derived from neutrophil granules. NETs participate in antimicrobial defense and can also display detrimental roles and notably trigger some of the immune features of systemic lupus erythematosus (SLE) and other autoimmune diseases. Autophagy is a complex and finely regulated mechanism involved in the cell survival/death balance that may be connected to NET formation. To shed some light on the connection between autophagy and NET formation, we designed a number of experiments in human neutrophils and both in normal and lupus-prone MRL/lpr mice to determine whether the synthetic peptide P140, which is capable of selectively modulating chaperone-mediated autophagy (CMA) in lymphocytes, could alter NET formation. P140/Lupuzor™ is currently being evaluated in phase III clinical trials involving SLE patients. Overall our in vitro and in vivo studies established that P140 does not influence NET formation, cytokine/chemokine production, or CMA in neutrophils. Thus, the beneficial effect of P140/Lupuzor™ in SLE is apparently not directly related to modulation of neutrophil function

    Stunning of neutrophils accounts for the anti-inflammatory effects of clodronate liposomes.

    Get PDF
    Clodronate liposomes (Clo-Lip) have been widely used to deplete mononuclear phagocytes (MoPh) to study the function of these cells in vivo. Here, we revisited the effects of Clo-Lip together with genetic models of MoPh deficiency, revealing that Clo-Lip exert their anti-inflammatory effects independent of MoPh. Notably, not only MoPh but also polymorphonuclear neutrophils (PMN) ingested Clo-Lip in vivo, which resulted in their functional arrest. Adoptive transfer of PMN, but not of MoPh, reversed the anti-inflammatory effects of Clo-Lip treatment, indicating that stunning of PMN rather than depletion of MoPh accounts for the anti-inflammatory effects of Clo-Lip in vivo. Our data highlight the need for a critical revision of the current literature on the role of MoPh in inflammation.This work was supported by the Deutsche Forschungsgemeinschaft (FG 2886 “PANDORA” – B01/B02/A03/ B04 to G. Kronke, F. Nimmerjahn, G. Schett, and M.H. Hoff- ¨ mann, respectively, and the CRC1181-A03/A01/A02/A07/C03 Z2 to G. Kronke, G. Schett, F. Nimmerjahn, and M.H. Hoffmann), ¨ the Emerging Field Initiative of the Friedrich-Alexander University Erlangen-Nürnberg (EFI_Verbund_Med_05_MIRACLE to G. Kronke), the Bundesministerium für Bildung und For- ¨ schung (MASCARA to G. Kronke and G. Schett; MelAutim to G. ¨ Kronke), and the European Union (Horizon 2020 ERC-2014-StG ¨ 640087 – SOS and ERC-2020-CoG 101001866 – INSPIRE to G. Kronke; and ERC-2018-SyG nanoSCOPE and RTCure to G. ¨ Schett). This work was supported by grants R01AI165661 from the National Institutes of Health/National Institute of Allergy and Infectious Diseases, H2020-FET-OPEN-2018- 2020 (no. 861878) from the European Commission to A. Hidalgo and M.H. Hoffmann, and HR17_00527 from Fundacion La Caixa to A. Hidalgo. The CNIC is supported by the Ministerio de Ciencia e Innovacion and the Pro-CNIC Foundation and is a Severo Ochoa Center of Excellence (MICINN award CEX2020-001041-S).S

    Ménage-à-trois: The ratio of bicarbonate to CO2 and the pH regulate the capacity of neutrophils to form NETs

    Get PDF
    In this study we identified and characterized the potential of a high ratio of bicarbonate to CO2 and a moderately alkaline pH to render neutrophils prone to undergo neutrophil extracellular trap (NET) formation. Both experimental settings increased the rate of spontaneous NET release and potentiated the NET-inducing capacity of phorbol esters (PMA), ionomycin, monosodium urate and LPS. In contrast, an acidic environment impaired neutrophil extracellular trap formation both spontaneous and induced. Our findings indicate that intracellular alkalinization of neutrophils in response to an alkaline environment leads to an increase of intracellular calcium and neutrophil activation. We further found that the anion channel blocker DIDS strongly reduced NET formation induced by bicarbonate. This finding suggests that the effects observed are due to a molecular program that renders neutrophils susceptible to neutrophil extracellular trap formation. Inflammatory foci are characterized by an acidic environment. Our data indicates that NET formation is favored by the higher pH at the border regions of inflamed areas. Moreover our findings highlight the necessity for strict pH control during assays of neutrophil extracellular trap formation

    Oxidative burst-dependent NETosis is implicated in the resolution of necrosis-associated sterile inflammation

    Get PDF
    Necrosis is associated with a profound inflammatory response. The regulation of necrosis-associated inflammation, particularly the mechanisms responsible for resolution of inflammation are incompletely characterized. Nanoparticles are known to induce plasma membrane damage and necrosis followed by sterile inflammation. We observed that injection of metabolically inert nanodiamonds resulted in paw edema in WT and Ncf1** mice. However, while inflammation quickly resolved in WT mice, it persisted over several weeks in Ncf1** mice indicating failure of resolution of inflammation. Mechanistically, NOX2-dependent reactive oxygen species (ROS) production and formation of neutrophil extracellular traps (NETs) were essential for the resolution of necrosis-induced inflammation: Hence, by evaluating the fate of the particles at the site of inflammation, we observed that Ncf1** mice deficient in NADPH-dependent ROS failed to generate granulation tissue therefore being unable to trap the nanodiamonds. These data suggest that NOX2-dependent NETosis is crucial for preventing the chronification of the inflammatory response to tissue necrosis by forming NETosis-dependent barriers between the necrotic and healthy surrounding tissue
    corecore