528 research outputs found

    SciRecSys: A Recommendation System for Scientific Publication by Discovering Keyword Relationships

    Full text link
    In this work, we propose a new approach for discovering various relationships among keywords over the scientific publications based on a Markov Chain model. It is an important problem since keywords are the basic elements for representing abstract objects such as documents, user profiles, topics and many things else. Our model is very effective since it combines four important factors in scientific publications: content, publicity, impact and randomness. Particularly, a recommendation system (called SciRecSys) has been presented to support users to efficiently find out relevant articles

    STR-846: METHODS OF COMPARING EXTREME LOAD EFFECTS BASED ON WEIGH-IN-MOTION DATA

    Get PDF
    The estimation of extreme load effects caused by vehicles is of critical importance in the evaluation and design of bridge structures. Two methods for estimating extreme load effects over the service life of bridges are commonly cited in literature: (1) the use of a fitted probability distribution based on statistical data to extrapolate the extreme load effects on a probability plot, or (2) the application of Monte Carlo simulation to generate representative truck data over a bridge’s lifespan such that maximum load effect values can then be determined directly. In this paper, results obtained using the two aforementioned methods are presented including their advantages and disadvantages in the context of the analysis of rural bridges in Saskatchewan. For this purpose, estimated load effects are based on truck data recorded over a period of one year at several weigh-in-motion (WIM) stations located on Saskatchewan highways. The conducted analyses are based on a typical bridge type common to rural Saskatchewan. It was found that the Monte Carlo simulation approach resulted in more reliable extreme load effect estimations, along with providing other information that is of value in the development of new truck loading models

    Effect of an atom on a quantum guided field in a weakly driven fiber-Bragg-grating cavity

    Full text link
    We study the interaction of an atom with a quantum guided field in a weakly driven fiber-Bragg-grating (FBG) cavity. We present an effective Hamiltonian and derive the density-matrix equations for the combined atom-cavity system. We calculate the mean photon number, the second-order photon correlation function, and the atomic excited-state population. We show that, due to the confinement of the guided cavity field in the fiber cross-section plane and in the space between the FBG mirrors, the presence of the atom in the FBG cavity can significantly affect the mean photon number and the photon statistics even though the cavity finesse is moderate, the cavity is long, and the probe field is weak.Comment: Accepted for Phys. Rev.

    The M, E, and N structural proteins of the severe acute respiratory syndrome coronavirus are required for efficient assembly, trafficking, and release of virus-like particles

    Get PDF
    Copyright @ 2008 American Society for Microbiology.The production of virus-like particles (VLPs) constitutes a relevant and safe model to study molecular determinants of virion egress. The minimal requirement for the assembly of VLPs for the coronavirus responsible for severe acute respiratory syndrome in humans (SARS-CoV) is still controversial. Recent studies have shown that SARS-CoV VLP formation depends on either M and E proteins or M and N proteins. Here we show that both E and N proteins must be coexpressed with M protein for the efficient production and release of VLPs by transfected Vero E6 cells. This suggests that the mechanism of SARS-CoV assembly differs from that of other studied coronaviruses, which only require M and E proteins for VLP formation. When coexpressed, the native envelope trimeric S glycoprotein is incorporated onto VLPs. Interestingly, when a fluorescent protein tag is added to the C-terminal end of N or S protein, but not M protein, the chimeric viral proteins can be assembled within VLPs and allow visualization of VLP production and trafficking in living cells by state-of-the-art imaging technologies. Fluorescent VLPs will be used further to investigate the role of cellular machineries during SARS-CoV egress.The University of Hong Kong and the French Ministry of Health

    Formation of virus-like particles from human cell lines exclusively expressing Influenza Neuraminidase

    Get PDF
    The minimal virus requirements for the generation of influenza virus-like particle (VLP) assembly and budding were reassessed. Using neuraminidase (NA) from the H5N1 and H1N1 subtypes, it was found that the expression of NA alone was sufficient to generate and release VLPs. Biochemical and functional characterization of the NA-containing VLPs demonstrated that they were morphologically similar to influenza virions. The NA oligomerization was comparable to that of the live virus, and the enzymic activity, whilst not required for the release of NA-VLPs, was preserved. Together, these findings indicate that NA plays a key role in virus budding and morphogenesis, and demonstrate that NA-VLPs represent a useful tool in influenza research. © 2010 SGM.link_to_OA_fulltex

    Quantum theory of a micromaser operating on the atomic scattering from a resonant standing wave

    Get PDF
    Journals published by the American Physical Society can be found at http://publish.aps.org/We study the amplification of a resonant standing-wave light field due to the interaction with a beam of monovelocity two-level atoms moving in the Raman-Nath regime and in the Bragg regime. The atomic density is low so that, at most, one atom is inside the cavity at a time. This system is very similar to the well-known micromaser but it is operating in the optical region of the field frequencies. Therefore, the situation corresponds to a microlaser, Unlike the micromaser system, the momentum transfer between the atoms and photons in the microlaser essentially effects the center-of-mass motion of the atoms and the evolution of the field
    corecore