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ABSTRACT 

The estimation of extreme load effects caused by vehicles is of critical importance in the evaluation and design of 

bridge structures. Two methods for estimating extreme load effects over the service life of bridges are commonly cited 

in literature: (1) the use of a fitted probability distribution based on statistical data to extrapolate the extreme load 

effects on a probability plot, or (2) the application of Monte Carlo simulation to generate representative truck data 

over a bridge’s lifespan such that maximum load effect values can then be determined directly. In this paper, results 

obtained using the two aforementioned methods are presented including their advantages and disadvantages in the 

context of the analysis of rural bridges in Saskatchewan. For this purpose, estimated load effects are based on truck 

data recorded over a period of one year at several weigh-in-motion (WIM) stations located on Saskatchewan highways. 

The conducted analyses are based on a typical bridge type common to rural Saskatchewan. It was found that the Monte 

Carlo simulation approach resulted in more reliable extreme load effect estimations, along with providing other 

information that is of value in the development of new truck loading models. 

 

Keywords: extreme load effects; WIM data; Monte Caro simulation; rural bridges. 

1. INTRODUCTION  

The basic equation defining the ultimate limit state in the load and resistance factor (LRFD) design method is: 

 

[1] 𝑅𝑛 ≥  
𝑄

𝑄𝑛 , as illustrated in 0: 

 

Where:  Rn, Qn= nominal resistance and nominal (or design) load effect, respectively. 𝑅𝑛 = 𝑅𝑅
;  𝑄𝑛 = 𝑄𝑄

. 

     R, Q= mean value of resistance and load effect, respectively 

     , Q, R, Q= resistance factor, load factor, bias factor of resistance and of load effect, respectively 

 
Figure 1: Relationship between mean, nominal and factored values of load effect and resistance 
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In defining design truck loads in bridge codes, the mean value of the load effect (Q) is not based on one specific truck 

type experienced routinely by the bridges in question; in fact, load effects caused by typical truck types would be 

much lower than those due to the nominal loads used for design purposes. This is illustrated in Figure 2, where peak 

bending moments in a typical 6 m bridge caused by actual truck traffic observed at a WIM station located near St. 

Dennis, Saskatchewan, are compared with those generated by the design (CL625) truck as defined by the Canadian 

Highway Bridge Design Code (CHBDC) (CSA 2014). From the histogram plotted on the left of Figure 2, it is evident 

that the ratio between observed and design peak truck load effects over the observation period was consistently well 

below unity; when this same data is plotted on the inverse cumulative distribution function (CDF) plot shown on the 

right of Figure 2, the mean value of the observed-to-design peak load effect is seen to be approximately equal to 0.4. 

For the purposes of structural design, however, only the largest load effect values are generally of interest in 

establishing design requirements. In the CHBDC and American Association of State Highway and Transportation 

Officials (AASHTO) LRFD Bridge (AASHTO 2012) codes, for example, the mean nominal load effect Q was 

extrapolated from observed truck data to correspond to a design return period of 75 years. Therefore, the load effect 

(red) curve in 0 does not represent the distribution of daily traffic load effects but, rather, the projected maximum load 

effects over a specified (for example, annual) period. 

 

  

Figure 2: Histogram (a) and probability plot on normal probability paper (b) of truck load effect. 

 

The estimation of lifetime load effects in bridge structures under truck loads has been considered by many researchers. 

Depending on factors such as the method of collecting truck data, the total number of trucks in a data set, the location 

of the collected data, etc. the methods applied to estimate the extreme truck load effects have varied.  

 

As an example of one common method, Nowak and his colleagues (Nowak 1994, Nowak and Hong 1991, Nowak, 

1993, Nowak and Collin 2000) applied a fitted distribution model based on statistical distributions of load effects for 

traffic data observed over relatively short periods. In this approach, extrapolation on normal probability plots (based 

on an inverse cumulative distribution function of the standard normal variable, -1) is used to determine the mean 

extreme value of the maximum load effects (bending moments and shear) for different time periods, such as 50 years 

or 75 years, from the short-period survey data. 0 shows a typical example of the extrapolation method used by Nowak 

and his co-workers incorporating statistical data from truck surveys of nearly 10,000 heavy trucks on Ontario highways 

carried out by the Ontario Ministry of Transportation in the 1970s (Nowak and Hong 1991). For the extrapolation 

procedure, it was assumed that live load effects could be described by a normal probability distribution function and 

that the target return period was equal to the nominal bridge lifetime (75 years). The mean maximum value of load 

effect was extrapolated corresponding to the bridge lifetime. 

 

The other common approach involves the use of Monte Carlo simulation to determine extreme load effects over the 

lifetime of a bridge. For example, this method was employed in several studies by O’Brien, Enright and their 
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colleagues (Enright and Caprani 2011, O’Brien, Enright and Getachew 2010, Enright and O’Brien 2012). As shown 

in 0, the Monte Carlo simulation method was used to generate truck data for four locations in Europe which were then 

used directly to determine extreme load effects for a return period of 1000 years. 

 

Figure 3: Extrapolation for extreme maximum 

moment in girder bridge (Nowak, 1994) 

 

Figure 4: Extrapolation for extreme maximum moment in 

girder bridge (Enright and O’Brien, 2012) 

 

The extrapolations of Nowak et al. were based on the following equations: 

 

[2] 𝐹𝑚𝑎𝑥(𝑥) =  [𝐹(𝑥)]𝑛 

 

[3] 𝑓𝑚𝑎𝑥(𝑥) = 𝑛𝑓(𝑥)[𝐹(𝑥)]𝑛−1 
 

in which:    

F(x), f(x) - CDF and PDF functions of load effect from the parent distribution of observed truck data, respectively 

 Fmax(x), fmax(x) - CDF and PDF functions, respectively, of the extreme load effect in a statistical order size, n, in 

period, T (years) 

 

Examples of PDF and CDF distributions for various return periods are shown in 0, based on an assumed normally 

distributed parent population using average daily traffic (ADT) values typical of rural Saskatchewan. 

Slovenia - SI 
Poland - PL 

Slovakia - SK 
Czech Republic - CZ 
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Figure 5: Plots of extreme load effects corresponding to different time-periods: (a) PDF, and (b) CDF 

 

From a theoretical point of view, the assessment of the best (or better) method for determining extreme values in 

statistics is not well defined. As a result, to aid in the selection of an appropriate method for use with WIM truck 

data in Saskatchewan, a series of numerical experiments were carried out to compare extreme predictions using the 

two approaches described above. The present study focused on a prevalent heavy truck configuration allowed to 

travel on Saskatchewan roads, namely a 5-axle configuration 7 vehicle (a tractor with a single steering axle and a 

tandem drive combined a semi-trailer with a tandem). 

2. WEIGH-IN-MOTION DATA IN SASKATCHEWAN 

The WIM technique has been developed to a point where and it can provide accurate results for a traffic survey. WIM 

systems include sensors embedded in a roadway that measure and record axle weights and configurations, vehicle 

speeds, etc. In recent years, the WIM technique has been implemented for collecting traffic data in Saskatchewan, 

with 12 WIM stations located throughout the province to obtain detailed data of traffic on major highways (see Table 

1 below for specific locations). In this study, WIM data collected over a period of one year will be used as the main 

source of information on traffic characteristics with the assumption that this data is accurate and reliable, and that it 

can be used to obtain the representative data of large truck traffic on rural roads. 

Table 1. Names and locations of WIM stations in Saskatchewan 

No Names Locations Notes 

1 Grand Coulee Highway 1  

2 Fleming Highway 1  

3 Alsask  Highway 7  

4 Roche Percee  Highway 39  

5 Maple Creek West  Highway 1  

6 Lang  Highway 39  

7 Farley  Highway 14  

8 Maidstone  Highway 16  

9 Maymont  Highway 16  

10 Bethune  Highway 11  

11 Bredenbury  Highway 16  

12 St. Denis  Highway 5  

 

Sample PDF and CDF plots of peak midspan bending moments based on a representative 6.1 m simple-span bridge 

are shown in 0, considering data from truck configuration 7-5 axle truck events observed during 2013 at the WIM 
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station near Maidstone, SK. For this case, a lognormal probability distribution is seen to provide the best fit as 

compared to peak calculated load effects.  On the other hand, similar plots shown in 0 representing load effects based 

on a WIM data from a station near Maple Creek, SK, suggest that a normal probability distribution provides a better 

fit for that location.   

 

Since the best-fit distributions did tend to vary based on the WIM station location, it was not possible at this stage to 

identify a single distribution that adequately describes the load effects for all the locations considered. Because of the 

observed differences in probability distributions, truck data from each WIM station was processed independently in 

the current study. It can be stated, though, that the data at the majority of weigh stations did not result in normally 

distributed peak load effect distributions, as assumed by Nowak and his co-workers. This finding is significant since 

the estimation of extreme values for a given parameter is influenced strongly by the form of the underlying probability 

distribution. 

 

Figure 6: Probability plot of ratio of maximum moment 

of truck data/CL-625 at midspan of bridge.  

(6.1m bridge span; Truck configuration 7-5axles, based 

on WIM data from Maid Stone, 2013, SK) 

 

Figure 7: Probability plot of ratio of maximum moment 

of truck data/CL-625 at midspan of bridge. 

 (6.1m bridge span; Truck configuration 7-5axles, 

based on WIM data from Maple Creek, 2013, SK) 

3. EXPERIMENTS TO DETERMINE MAXIMUM LIFETIME LOAD EFFECTS 

Based on the statistical characteristics inferred from the WIM data, a series of numerical experiments were performed 

to compare various approaches for estimating extreme values of peak load effects in bridges over various time periods.  

In this exercise, peak midspan bending moments in a 6.1 m simple span bridge were normalized by the corresponding 

response caused by the CL625 design truck as defined in the CHBDC to obtain a normalized response ratio.  Extreme 

values of this normalized response ratio were then generated using the methodologies described below. 

 Experiment 1 

In the first experiment, it was assumed that the normalized response ratio could be represented as a continuous variable 

with a normal probability distribution defined by a mean value of  = 0.4 and a standard deviation of  = 0.1 (close 

to observed values from the WIM data at several locations in Saskatchewan).  Using this assumed normal distribution, 

a set of data was randomly generated to represent the total number large truck events over a 1,000 year period at a 

bridge site experiencing approximately 6,000 truck events annually (i.e. a total number of N=6,000,000 random truck 

loading events were generated); this data set was then assumed to represent the total population of lifetime truck 

events. From this population, a random sample was drawn of a size equal to the expected number of truck events in 

one year (i.e., n=6,000) which were treated as sample of measured data. The six different methods described below 

were then used to produce estimates of the extreme load effect over time periods of 1 year, 50 years and 75 years. 

 

- Exact Method: From the exact function of the continuous normal variable, extreme value theory was applied to 
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construct the PDF and CDF functions of extreme values for the different periods. The mean value and coefficient of 

variation (COV) of the extreme values were determined from these functions using numerical methods. 

- Fitted Method: From a distribution function fitted to the set of sample data from one year, extreme value theory 

was used to construct the PDF and CDF functions of extreme values for different periods. As in the exact method, the 

mean and COV of each function were calculated by numerical methods. 

- Extrapolated Exact Method: From the exact function of the continuous normal variable, a straight line was plotted 

on normal probability paper to determine the extreme values at intersection points corresponding to the periods. 

- Extrapolated Fitted: Using the distribution fitted to the randomly selected annual sample (n=6,000 events), a 

straight line was plotted on normal probability paper and used to determine the extreme values at intersection points 

corresponding to the periods of interest. 

- Sample Method: Multiple randomly selected samples of size, n, corresponding to different periods (where n=6,000 

x number of years in the sampling period) were taken from the total population of truck events. The maximum 

normalized response ratio (maxima) was extracted from each sample and used to determine the mean value and COV 

of the peak response ratio across all the samples. 

- Monte Carlo Simulation: Using a probability distribution fitted to data from a random selected annual sample 

(n=6,000 events), the Monte Carlo Simulation method was applied to generate new samples of a sizes corresponding 

to the periods of interest. The maximum normalized response ratio (maxima) was extracted from each sample and 

used to determine the mean value and COV of the peak response ratio across all the samples. 

 

Sample results from experiment 1 are illustrated in 0  and 9. 0 shows the results from the Extrapolated Fitted method; 

the graph on the right-hand side of this figure shows an expanded view of the data at the upper end of the plot. The 

fitted normal distribution (green line) based on the annual sample is plotted on normal probability paper and 

extrapolated to horizontal lines representing different periods (1 year, 50 years, 75 years or 1000 years) to find 

corresponding mean extreme values. 0, on the other hand, shows plots of PDF functions of both the annual sample 

(red line) and the 75-year extreme values (blue line). Graphs are provided for data based on the exact continuous 

function on the left of 0 and the Monte Carlo Simulation method on the right; here, a generalized extreme value (GEV) 

distribution has been fit to the Monte Carlo simulated data. It is evident that distributions based on the Monte Carlo 

Simulation data closely resemble those derived using the exact probability functions.  

  

Figure 8: Extrapolated fitted method of extreme value from a basic sample data 
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Figure 9: PDF of sample and 75-year extreme of continuous function and Monte Carlo simulation 

 

Detailed results from Experiment 1 listing mean extreme values of the normalized response ratio and their associated 

coefficients of variations (COV) for the six methods are showed in 0 and 3; since the two extrapolation methods are 

graphically based, estimates for the COV could not be determined for those methods. Numbers shown in parenthesis 

represent the difference between the result for a given method and the corresponding value from the Exact method.  It 

is apparent that, if the distribution for the load effect variable is known exactly, all of the methods considered produce 

very similar results, with mean extreme value estimates differing from the exact value by less than 1.5% in most cases, 

and 3% overall. Even under these conditions, however, the Monte Carlo Simulation method is seen to provide extreme 

value estimates that are closer to exact values than the Extrapolated Fitted method, which is significant since those are 

the two methods that can be applied to real traffic data for which the exact distribution and total population of possible 

events are unknown. 

 

 

Table 2: Comparison of mean extreme values of the normalized response ratio () for Experiment 1 

No Extreme value Exact  Fitted Extrap  

Exact 

Extrap 

Fitted     

Sample MC Simul 

1 1 year 
0.7724 

 

0.7626 

(1.27%) 

0.7588 

(1.76%) 

0.7494 

(2.98%) 

0.7702 

(0.28%) 

0.7628 

(1.24%) 

2 50 years 0.8618 
0.8496 

(1.42%) 

0.8504 

(1.32%) 

0.8385 

(2.70%) 

0.8540 

(0.91%) 

0.8498 

(1.39%) 

3 75 years 0.8702 
0.8578 

(1.42%) 

0.8589 

(1.30%) 

0.8468 

(2.69%) 

0.8617 

(0.98%) 

0.8586 

(1.33%) 

 

 

Table 3: Comparison of coefficients of variation (COV) of extreme normalized response for Experiment 1  

No COV value Exact  Fitted Extrap  

Exact 

Extrap 

Fitted     

Sample MC Simul 

1 1 year 0.04052 
0.03993 

(1.46%) 
- - 

0.03992 

(1.48%) 

0.04117 

(1.60%) 

2 50 years 0.03013 
0.02973 

(1.33%) 
- - 

0.03031 

(0.60%) 

0.02998 

(0.05%) 

3 75 years 0.02937 
0.02899 

(1.29%) 
- - 

0.02947 

(0.34%) 

0.02992 

(0.58%) 
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 Experiment 2 

In reality, the true form of the probability distribution describing a specific load effect, along with the parameters 

needed to fully define any given distribution, are unknown. Therefore, the accuracy of the extreme value estimate will 

depend on the selection of the type of distribution fitted to the observed data, and to the parameters used to define that 

distribution. In some cases, in fact, a best fit model cannot be found that provides consistently close agreement to 

observed data, introducing the possibility of greater errors in the estimation of the extreme value of that load effect. 

In Experiment 2, therefore, it was assumed that the probability distribution of the load effect was unknown, but that 

the distributions of selected variables required to define the truck load (i.e., axle spacing and weights) were known or 

assumed.  

 

A population of 5-axle truck events experienced by the bridge over a 1,000 year period (with N=6,000,000) was 

generated based on the assumed parameter distributions shown in 0, which were selected based on typical trends in 

observed WIM data. From this population, a sample representing observed data for a one year period (with n=6,000) 

was randomly selected. Methods similar to those described in Experiment 1 were subsequently applied to obtain 

estimates of extreme values of normalized response ratios over the different periods of interest. In the Fitted and 

Extrapolated Fitted methods, the one year sample was used to calculate normalized response ratios (as defined for 

Experiment 1) for each truck event within sample. In the Monte Carlo Simulation, the one year sample was used to 

generate other truck event samples. In the Sample method, samples with sizes corresponding to the different periods 

were selected randomly from the population; since the exact distribution of the load effects was unknown in this case, 

the Exact and Extrapolated Exact methods could not be used. 

 

 

Table 4: Probability distribution parameters describing 5-axle truck loading events for Experiment 2 

No Names of variables Parameters: , , MP* Model of distribution 

1 Axle distance: L12 
1=5.2 (m); 1=0.35 (m); MP1=70% 

2=3.8 (m); 2=0.25 (m); MP2=30% 
Bi-modal normal 

2 Axle distance: L23 

1=1.31 (m); 1=0.018 (m); MP1=60% 

2=1.38 (m); 2=0.022 (m); MP2=33% 

3=1.52 (m); 3=0.048 (m); MP3=7.0% 

Tri-modal normal 

3 Axle distance: L34 

1=10.8 (m); 1=0.32 (m); MP1=40% 

2=7.60 (m); 2=1.52 (m); MP2=28% 

3=10.2 (m); 3=0.69 (m); MP3=32% 

Tri-modal normal 

4 Axle distance: L45 

1=1.83 (m); 1=0.016 (m); MP1=2% 

2=1.24 (m); 2=0.012 (m); MP2=80% 

3=1.48 (m); 3=0.10 (m); MP3=18% 

Tri-modal normal 

5 Axle weight: W1 =4.7 (T); =0.93 (T) Normal 

6 Axle weight: W2 log=1.58 (T); log=0.28 (T) Lognormal 

7 Axle weight: W3 log=1.56 (T); log=0.29 (T) Lognormal 

8 Axle weight: W4 log=1.38 (T); log=0.38 (T) Lognormal 

9 Axle weight: W5 log=1.37 (T); log=0.37 (T) Lognormal 

*MP = mixing proportion 

 

Comparisons of the mean extreme values and COV's of the normalized response ratios determined from the various 

methods in Experiment 2 are provided in the 0 and 6. Since the exact method was unavailable in this experiment, the 

sample method was used as the benchmark against which other methods were compared since the truck loading event 

data used in this approach were selected directly from the population with no further simulation or extrapolation 

required. It is apparent that, when using known distributions to describe truck loading parameters rather than assuming 

the distribution of load effects directly, the Monte Carlo method still provides estimates of mean extreme values that 

were within approximately 1% of the benchmark values for all periods of interest, along with COVs within 5% of 

benchmark values. In contrast, the Fitted method produced mean extreme value estimates that differed from 

benchmark values by up to 6% and, significantly, COV values that differed from benchmark values by up to 27%.  

 

 

Table 5: Comparison of mean extreme values of the normalized response ratio () for Experiment 2 
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No Extreme values Exact  Fitted Extrap  

Exact 

Extrap 

Fitted     

Sample MC Simul 

1 1 year - 
0.9337 

(3.08%) 
- 

0.9093 

(0.30%) 

0.9058 

 

0.9089 

(0.34%) 

2 50 years - 
1.0921 

(5.93%) 
- 

1.0725 

(4.03%) 

1.0308 

 

1.0345 

 (0.36%) 

3 75 years - 
1.1067 

(5.98%) 
- 

1.0874 

(4.14%) 

1.0442 

 

1.0437 

(0.05%) 

 

 

Table 6: Comparison of coefficient of variation (COV) of extreme normalized response ratio for Experiment 2 

No COV Exact  Fitted Extrap 

Exact 

Extrap 

Fitted     

Sample MC Simul 

1 1 year - 
0.05847 

(18.24%) 
- - 

0.04945 

 

0.04795 

(3.03%) 

2 50 years - 
0.04119 

(20.26%) 
- - 

0.03401 

 

0.03341 

(1.76%) 

3 75 years - 
0.03978 

(27.30%) 
- - 

0.03125 

 

0.03280 

(4.96%) 

 

 Experiment 3 

It is further recognized that the probability distributions of parameters defining the truck loading model are often 

unclear. From the available WIM data at different stations in Saskatchewan, it was found that that, in most cases, the 

distribution model for axle-distances could reasonably be fitted to normal, bi-modal normal, or tri-modal normal 

distributions, while axle-weight distribution models were similar to lognormal or normal or generalized extreme value 

or gamma distributions. However, it can be surmised that the upper tail of the axle-weight probability distribution and 

the lower tail of axle-distance distribution, in particular, will exert a significant influence on extreme value estimates 

of the load effects in short bridge structures. 

 

To compare the sensitivity of extreme value estimates to the selection of distribution models for the parameters 

defining the truck load, Monte Carlo simulations similar to those performed in Experiment 2 were repeated using truck 

loading parameter distributions described in 0. In the first Monte Carlo simulation, the distributions for all nine truck 

loading parameters were selected to be of a different form than what was considered to be the optimal fit to observed 

data (i.e., those used in Experiment 2). In the second Monte Carlo simulation, only the axle-weight parameters were 

assumed to have distributions that differed from optimal. In all cases, non-optimal distributions were selected such 

that they would produce conservative results. In the following discussion, the data used for the Sample and Fitted 

method remain unchanged from Experiment 2. 

 

 

Table 7: Probability distribution parameters describing 5-axle loading events for Experiment 3 

No Names of variables Exact models 

of distribution 

Fitted models in MC 

Simul 1 

Fitted models in MC 

Simul 2 

1 Axle distance: L12 Bi-modal normal Normal Bi-modal normal 

2 Axle distance: L23 Tri-modal normal Bi-modal normal Tri-modal normal 

3 Axle distance: L34 Tri-modal normal Bi-modal normal Tri-modal normal 

4 Axle distance: L45 Tri-modal normal Bi-modal normal Tri-modal normal 

5 Axle weight: W1 Normal Gamma Gamma 

6 Axle weight: W2 Lognormal GEV GEV 

7 Axle weight: W3 Lognormal GEV GEV 

8 Axle weight: W4 Lognormal GEV GEV 

9 Axle weight: W5 Lognormal GEV GEV 
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Comparing the results for Experiment 3 provided in 0 and 9 with those from Experiment 2, it can be concluded that 

the best fit forms of the truck loading parameter probability distributions had a negligible effect on the mean extreme 

value estimates, as well as a small effect on the associated COV values. This result suggests that extreme value 

predictions obtained using the Monte Carlo Simulation method are relatively insensitive to uncertainties in the form 

of the truck loading parameter distributions. 

 

 

Table 8: Comparison of mean extreme values () 

No Extreme values Fitted Extrap Fitted     Sample MC Simul 1 MC Simul 2 

1 1 year 
0.9337 

(3.08%) 

0.9093 

(0.30%) 

0.9058 

 

0.9164 

(1.17%) 

0.9129 

(0.78%) 

2 50 years 
1.0921 

(5.93%) 

1.0725 

(4.03%) 

1.0308 

 

1.0405 

(0.94%) 

1.0365 

(0.55%) 

3 75 years 
1.1067 

(5.98%) 

1.0874 

(4.14%) 

1.0442 

 

1.0483 

(0.39%) 

1.0498 

(0.54%) 

 

 

Table 9: Comparison of coefficient of variation (COV) 

No COV Fitted Extrap Fitted     Sample MC Simul 1 MC Simul 2 

1 1 year 
0.05847 

(18.24%) 
- 

0.04945 

 

0.04977 

(0.65%) 

0.05266 

(6.49%) 

2 50 years 
0.04119 

(20.26%) 
- 

0.03401 

 

0.03390 

(0.32%) 

0.03326 

(2.21%) 

3 75 years 
0.03978 

(27.30%) 
- 

0.03125 

 

0.03022 

(3.29%) 

0.03248 

(3.94%) 

4. SUMMARY AND CONCLUSIONS 

Numerical simulations were carried out to compare extreme value estimates for critical load effects over the lifetime 

of short-span bridges based on WIM truck loading data obtained from 12 locations on the Saskatchewan highway 

system. Of particular interest was the comparison between the accuracy and reliability of extreme value estimates 

derived using two approaches commonly cited in the literature, namely graphical extrapolation methods using 

probability distributions fitted to short-term data and methods based on Monte Carlo simulation. 

 

If the precise form of the underlying probability distribution for the critical load effect (peak midspan bending 

moments, in this case) was known or assumed, all methods considered generated similar estimates of the mean extreme 

value, as well as comparable levels of variability in that estimate. If, on the other hand, the load effect distribution was 

assumed to be unknown, but, instead, the probability distributions of the parameters defining the governing truck load 

model were known or assumed, the Monte Carlo method was found to provide a slightly more accurate result, as well 

as featuring substantially less variability in the extreme value estimates.  Since this second scenario is the more realistic 

approximation of the situation in practice, the Monte Carlo method appears to be the preferred approach based on the 

results of this study. 

 

In addition, it was found that the accuracy and reliability of extreme value predictions based on the Monte Carlo 

simulation method were relatively insensitive to the precise form of the assumed truck loading model parameter 

distributions, as long as those distributions provided a reasonable fit to the observed data. This apparent robust nature 

of the Monte Carlo simulation results is thought to be very beneficial, given the variability in the traffic data observed 

at the different WIM stations considered. 
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