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Quantum theory of a micromaser operating on the atomic scattering
from a resonant standing wave
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We study the amplification of a resonant standing-wave light field due to the interaction with a beam of
monovelocity two-level atoms moving in the Raman-Nath regime and in the Bragg regime. The atomic density
is low so that, at most, one atom is inside the cavity at a time. This system is very similar to the well-known
micromaser but it is operating in the optical region of the field frequencies. Therefore, the situation corresponds
to a microlaser. Unlike the micromaser system, the momentum transfer between the atoms and photons in the
microlaser essentially effects the center-of-mass motion of the atoms and the evolution of the field.
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I. INTRODUCTION

Experimental realization of micromasers@1–3# has set the
stage to comprehend the fundamental concepts, such as
plimentarity and the nonlocal nature of the quantum wor
In recent years, the invention of superconducting microca
ties of high quality factors has made it possible to extend
subject to the cavity field of optical wavelength. This wo
has given birth to the field of microlasers@4,5#.

In microlasers the de Broglie wavelength of atoms
comparable to the optical wavelength of the cavity fie
Moreover, during an atom-field interaction, the moment
transfer from the atom to the field is inversely proportional
the wavelength of the field. Hence, in contrast to the mic
masers, there occurs a much larger momentum transfer
the atom to the field. As a result the recoil effects may
come significantly large and the inclusion of atomic scatt
ing from the cavity field becomes important. This natura
has effects on the photon statistics of the cavity field@6,7#.

In this paper we study the amplification of the optical fie
of a microcavity via resonant atoms. The momentum tran
between the atom and the field essentially effects the cen
of-mass motion. Therefore, for our study, we consider t
regimes of atomic deflection:~i! the Raman-Nath regime an
~ii ! the Bragg regime. In the Raman-Nath regime the rec
energy is much smaller than the interaction energy resul
in momentum transfer in a number of directions@8#. On the
other hand, in the Bragg regime the recoil energy very m
exceeds the interaction energy. Under a resonant cond
the energy and momentum conservation restricts to only
directions@9–11#.

We show that in the Raman-Nath regime the probabi
amplitudes are having periodic dependence on interac
time and for these values of interaction time the field ins
the cavity becomes transparent to the atom. The atom le
the cavity without contributing to photon statistics. In th
Bragg regime we have a multiphoton process for the gro
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of the optical field in the microcavity. In the Bragg regim
the recoil frequency is much larger as compared with
Rabi frequency and there is an appreciable transfer of en
from the cavity field to the incoming atom in the form of a
integral multiple of field quanta. As a result of energy co
servation, there exists two values for the transferred fi
momenta corresponding to initial momentum of the ato
The atom that is initially coming in an excited state leav
the cavity after contributing photons to the cavity. The nu
ber of photons contributed to the cavity are proportional
the initial momentum of the atom.

The paper is organized as follows: In Sec. II we descr
scattering of an atom in an optical regime by a quantiz
standing-wave field and lay foundations for our analytic
calculations. In Sec. III we construct a master equation
the field in a microlaser operating on the atomic scatteri
We examine the photon statistics of the field in Sec. IV. W
devote Sec. V to study the decay of off-diagonal matrix e
ments and the linewidth of the microlaser field. We conclu
our paper with discussion of our results in Sec. VI.

II. SCATTERING OF AN ATOM BY A QUANTUM
RESONANT STANDING-WAVE FIELD

We consider a single two-level atom of massM passing
with the velocity vz along the z axis through a single
standing-wave mode of the electromagnetic field in a cav
The cavity is aligned along thex axis. We neglect damping
of the cavity mode and the spontaneous emission of the a
into other field modes. In order to study the interaction of
atom with the single-mode field we consider the dipole a
proximation and rotating-wave approximations. The init
momentum of the atomic center-of-mass motion along thz
direction,Mvz , is assumed to be large enough; therefore,
treat it classically. However, we quantize the motion of t
atom along the standing-wave mode, together with the in
nal degrees of freedom of the atom, and the cavity field. T
field is uniform in they direction, and we do not conside
motion of the atom in this direction.

Hence, the Hamiltonian of the atom-field system is
©2001 The American Physical Society12-1
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Ĥ[
p̂2

2M
1

1

2
\v0ŝz1\vâ†â1\g cos~kx̂!~ ŝ1â1ŝ2â†!.

~1!

Here, the operatorsx̂ and p̂ describe the position and mo
mentum of the atom along the cavity mode, andŝz and ŝ6

are the Pauli spin operators. Moreover,â and â† denote the
annihilation and creation operators of the cavity mode,v0 is
the transition frequency of the atom, andv is the frequency
of the cavity mode. We describe the vacuum Rabi freque
as g, and the wave number of the cavity mode ask. For
simplicity, we consider the exact resonance between the
and the atom, that isv5v0.

In the interaction picture, the atom-field system is d
scribed by the Hamiltonian

Ĥ int[
p̂2

2M
1\g cos~kx̂!~ ŝ1â1ŝ2â†!. ~2!

The corresponding time evolution of the combined system
governed by the unitary operator,

Û~ t !5exp~2 i Ĥ intt/\!. ~3!

Starting from an initial atomic momentum eigenstateup0&,
the energy operatorĤ int expressed in Eq.~2! mixes in only
the componentsup01 l\k&, wherel is any integer. Since the
atom is initially prepared in the excited internal stateua&, and
the field is initially in the number stateun&, the wave func-
tion of the combined system after interaction timet is

Û~ t !up0 ,a,n&5expS 2 i
p0

2t

2M\ D (
l 52`

`

upl&@Cl
(a,n)~ t !ua,n&

1Cl
(b,n11)~ t !ub,n11&], ~4!

where we express the momentum of the atoms after inte
tion aspl5p01 l\k.

The probability amplitudesCl
a,n andCl

b,n11 are governed
by the Schro¨dinger equations

i
d

dt
Cl

(a,n)~ t !5~D0l 1v rl
2!Cl

(a,n)~ t !

1
1

2
gAn11@Cl 11

(b,n11)~ t !1Cl 21
(b,n11)~ t !#, ~5!

i
d

dt
Cl

(b,n11)~ t !5~D0l 1v rl
2!Cl

(b,n11)~ t !

1
1

2
gAn11@Cl 11

(a,n)~ t !1Cl 21
(a,n)~ t !#, ~6!

with the initial conditions defined as

Cl
(a,n)~0!5d l ,0 ,

Cl
(b,n11)~0!50. ~7!
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Here we have the initial Doppler shiftD0[p0k/M and the
recoil frequency, associated with a photon recoil,v r
5\k2/2M . Note that the normalization condition

(
l 52`

`

@ uCl
(a,n)~ t !u21uCl

(b,n11)~ t !u2#51 ~8!

of the wave function is automatically satisfied.

A. Raman-Nath regime

A simple analytical solution of Eqs.~5! and ~6! can be
achieved when the recoil energy is smaller than the inte
tion energy, that is,

v r!gAn11. ~9!

It is the Raman-Nath regime@10#. For this regime, we@12#
find the analytical solution as

C2l
(a,n)~ t !5exp@2 i ~D0t1p!l #J2l S 2gAn11

D0
sin

D0t

2 D ,

~10!

C2l 11
(b,n11)~ t !5exp@2 i ~D0t1p!~ l

11/2!#J2l 11S 2gAn11

D0
sin

D0t

2 D , ~11!

whereJm is themth-order Bessel function and all the oth
probability amplitudes are zero.

Note that, in the caseD0Þ0, which implies thatp0Þ0,
the probability amplitudesCl

(a,n)(t) andCl
(b,n11)(t) are pe-

riodic functions oft with the periodicity

T52p/D05l/v0 , ~12!

where l52p/k is the wavelength of the field andv0
5p0 /M is the velocity of the atomic motion along th
cavity.

If the interaction timet is an integer multiple of the pe
riod, given in Eq.~12!, we haveC0

(a,n)(t)51 while all the
other probability amplitudes are zero. For these values of
time of interaction the atom completes full cycles and lea
the cavity in an excited state without contributing to the ca
ity field. Hence, in these cases, the cavity field, the atom
internal state, and the atomic center-of-mass motion rem
unchanged. This implies that in this case the quant
standing-wave field, acting as a medium, becomes perfe
transparent with respect to the incident atomic de Brog
wave. The atom leaves the cavity after a displacementv0t
which is an integer multiple of the wavelength of the field

B. Bragg regime

In the Bragg regime the recoil energy is larger than
interaction energy@10#,

v r@gAn11. ~13!
2-2
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QUANTUM THEORY OF A MICROMASER OPERATING ON . . . PHYSICAL REVIEW A64 043812
In this case, conservation of the kinetic energy becomes
portant leading to resonance between the two solutions o
equation,

D0l 1v r l
250. ~14!

The solutionl 50 corresponds to the incoming atomic bea
and the second solution to Eq.~14!,

l 52 l 0[2
D0

v r
52

2p0

\k
, ~15!

gives the scattered component, conserving energy and
mentum. The relation expressed in Eq.~15! corresponds to
the Bragg condition in x-ray scattering from crystals.

When the condition expressed in Eq.~15! is fulfilled for a
positive integerl 0, an adiabatic approximation allows us
eliminate the amplitudes corresponding to the nonreson
atomic beams. Following the procedures of Ref.@10#, we
find the analytical solution

C0
(a,n)~ t !5exp@2 i ~n11!nt#cos@~n11! l 0/2kt# ~16!

for the incoming atomic beam. Here we have introduced
notationsn andk, which we define as

n5H 2g2/8v r , l 051

g2/2v r~ l 0
221!, l 0.1

~17!

and

k5
gl 0

2l 0v r
l 021

@~ l 021!! #2
. ~18!

For the scattered beam, we find the probability amplitude

C2 l 0
(a,n)~ t !52 i exp@2 i ~n11!nt#sin@~n11! l 0/2kt#

~19!

if l 0 is even, or

C2 l 0
(b,n11)~ t !52 i exp@2 i ~n11!nt#sin@~n11! l 0/2kt#

~20!

if l 0 is odd, whereas all the other probability amplitudes
negligible.

The above equations show that the flipping between
two resonant momentum eigenstatesup0& and up2 l 0

& occurs

at the frequency (n11)l 0/2k. In addition to the main flipping,
there is a modulation at the frequency (n11)n. Sincek/g
}(g/v r)

l 021 and n/g}g/v r , the flipping frequency is
larger, of the same order, or smaller than the modula
frequency if l 0 is equal to one, two, or larger than two, r
spectively.

III. MICROLASER OPERATING
ON ATOMIC SCATTERING

In this section we study a micromaser operating on
scattering of the atoms. We take the atoms initially exci
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and prepared in the transverse-momentum eigenstateup0&.
They pass through the cavity according to a Poissonian
cess with an average rater. The atomic flux is assumed to b
so low that only one atom is in the cavity at a time. W
consider the atomic decay as negligible. The time of inter
tion of each atom with the cavity field is much shorter th
the cavity damping time so that the relaxation of the cav
field can be ignored while an atom is inside the cavity. F
simplicity, we suppose that the injected atoms have the s
longitudinal velocity and, therefore, interact with the cav
field for the same interval of timet.

The time evolution of the density matrix@6,7,13#, that is,

%̂5 (
n,n850

`

%n,n8un&^n8u ~21!

of the cavity field in the interaction picture is governed
the equation

%̇̂5rdt%̂1L%̂. ~22!

Here,dt%̂ is the change in%̂ due to an atom interacting with
the field for the timet, andL%̂ is the Liouvillian operator
which describes losses due to the coupling of the ca
mode to a thermal bath.

The expression of the gain operatordt%̂ is

dt%̂5TrA$Û~t!~ up0 ,a&^p0 ,au ^ %̂ !Û†~t!%2%̂. ~23!

When we use Eq.~4!, the matrix elements of the gain oper
tor are found to be

^nudt%̂un8&52an,n8%n,n81bn21,n821%n21,n821 , ~24!

where

an,n8512 (
l 52`

`

Cl
(a,n)~t!Cl*

(a,n8)~t!,

bn,n85 (
l 52`

`

Cl
(b,n11)~t!Cl*

(b,n811)~t!. ~25!

It is interesting to note that the normalization condition e
pressed in Eq.~8! yields an,n5bn,n .

The loss operatorL%̂ @6,7,13# is given by

L%̂5
1

2
C~nT11!~2â%̂â†2â†â%̂2%̂â†â!1

1

2
CnT~2â†%̂â

2ââ†%̂2%̂ââ†!. ~26!

Here nT is the number of photons in thermal equilibrium
andC is the cavity damping rate. The matrix elements of t
loss operator read
2-3
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F. SAIF, FAM LE KIEN, AND M. S. ZUBAIRY PHYSICAL REVIEW A 64 043812
^nuL%̂un8&5C~nT11!FA~n11!~n811!%n11,n8112
1

2
~n

1n8!%n,n8G1CnTFAnn8%n21,n8212
1

2
~n1n8

12!%n,n8G . ~27!

By substituting Eqs.~24! and~27! into Eq.~22!, we obtain an
expression for%̇n,n8 , such that

%̇n,n852ran,n8%n,n81rbn21,n821%n21,n8211C~nT11!

3FA~n11!~n811!%n11,n8112
1

2
~n1n8!%n,n8G

1CnTFAnn8%n21,n8212
1

2
~n1n812!%n,n8G .

~28!

As it stands, the master equation~28! is the basic equation
for the micromaser operating on the scattering of two-le
atoms.

IV. PHOTON STATISTICS OF THE MICROLASER FIELD

We may obtain a rate equation for%n,n[Pn from Eq.~28!
as

Ṗn52ranPn1ran21Pn211C~nT11!@~n11!Pn112nPn#

1CnT@nPn212~n11!Pn#. ~29!

HerePn is the probability of havingn photons in the cavity
and

an5 (
l 52`

`

uCl
(b,n11)~t!u2, ~30!

is the probability for the scattered atom to go from the e
cited state to the ground state in the presence ofn photons in
the cavity. Various terms on the right-hand side of Eq.~29!
can be interpreted as outflow and inflow of probabilities.

For the mean photon number, we find from Eq.~29!

^ṅ&5r ^an&2C~^n&2nT!. ~31!

Here we have introduced the notation^ f n&5(n50
` ( f n)Pn for

any arbitrary functionf n . Clearly, the termr ^an& determines
the gain in the field whileC(^n&2nT) characterizes the loss

In steady state, the functionPn is independent of time
Therefore, in Eq.~29!, by setting the time derivative ofPn
equal to zero, we obtain an equation for steady-state ph
distribution. Under the detailed balance condition, the eq
tion reduces to

~ran211CnTn!Pn215C~nT11!nPn . ~32!

Hence, the steady-state solution for the photon distributio
04381
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Pn5P0 )
m51

n
nT1~r /C!am21 /m

nT11
, ~33!

where P0 is determined by the normalization conditio
(n50

` Pn51.
In order to study the peak structure ofPn , we approxi-

mate this distribution by the continuous function

P̃n5P0expH E
0

n

dm lnFnT1~r /C!am21 /m

nT11 G J . ~34!

Here, we have replaced)m51
n ( f m) in Eq. ~33! by

exp@*0
ndmln(fm)#. The peakn0 of the photon distributionPn

is determined approximately by the equation

n05~r /C!an021 . ~35!

Below, we calculate the emission probabilityan , and then
study in detail the photon statistics of the micromaser fi
operating in the Raman-Nath regime and in the Bragg
gime.

A. Raman-Nath regime

We first consider the case when the micromaser is op
ating in the Raman-Nath regime of the atomic scattering
this regime, the amplitudesCl

(b,n11)(t) are given by Eq.
~11!. On substituting the expression for probability amlitu
Cl

(b,n11) from Eq. ~11! in Eq. ~30!, and by using the relation
@14#

(
l 52`

`

J2l 11
2 ~j!5

1

2
@12J0~2j!#, ~36!

we find the coefficentan as

an5
1

2 F12J0S 4gAn11

D0
sin

D0t

2 D G , ~37!

which describes emission probability. This expression
gether with Eq.~29! describes the evolution of the photo
distribution in the micromaser operating in the Raman-N
regime of the atomic scattering.

It is interesting to note that whenD0Þ0, that is when
p0Þ0, the coefficientsan and, therefore, the photon distr
bution Pn are periodic functions of the interaction timet,
with the period 2p/D0. Furthermore, whent is an integer
multiple of 2p/D0, we havean50 for any n. In this case,
there is no gain in the field, and the evolution of the phot
distributionPn is solely determined by the loss mechanis

WhenD050, that is, when the atoms hit the cavity fie
orthogonally, we have

an5
1

2
@12J0~2gtAn11!#. ~38!

In this case, there is no periodicity ofan andPn in t. Since
uJ0(j)u,1 for jÞ0, we havean.0 for anyn and any non-
zero t. The fact thatanÞ0 for any n and any nonzerot
2-4
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QUANTUM THEORY OF A MICROMASER OPERATING ON . . . PHYSICAL REVIEW A64 043812
shows that there exists no trapping state. Due to the deca
the Bessel functionJ0 with increasing argument, we hav
an→1/2 whengt→`. Therefore, when the normalized in
teraction timegt is large and the mean numbernT of thermal
photons in the bath is zero, the steady-state photon distr
tion, given in Eq.~33!, approaches the Poisson distributio
exp(2^n&)^n&n/n! with the mean photon number^n&5r /2C.
This feature was not observed in the standard microm
@16,17#, where the oscillations of the emission probability
not decay.

When the interaction timet is small, so that

D0t!1, gt^n&1/2!1, ~39!

we can expandan to the second order int, and obtain

an5
1

2
~gt!2~n11!. ~40!

Apart from the prefactor 1/2, the expression~40! is the same
as that for the probability of a one-photon transition in
two-level atom in the second-order perturbation theory. T
prefactor 1/2 results from the spread of the atomic posit
along the standing-wave cavity field.

B. Bragg regime

We now consider the case when the micromaser is o
ating in the Bragg regime of the atomic scattering. In t
regime the amplitudesCl

(b,n11)(t) are given by Eq.~20!. On
substituting Eq.~20! into Eq. ~30!, we find

an5sin2@~n11! l 0/2kt#. ~41!

This expression, together with Eq.~29!, describes the evolu
tion of the photon distribution in the micromaser operati
on the Bragg scattering of the atoms. Apart from the defi
tion, given in Eq.~18! for k, Eq. ~41! is similar to the prob-
ability for a l 0-photon transition in a two-level atom. Henc
the operation of the micromaser in the Bragg regime of
atomic scattering is a multiphoton action. Note that if t
interaction timet is chosen so that for integer numbersn0
andq we have

~n011! l 0/2kt5qp, ~42!

then we havean0
50. In this case the steady-state phot

distribution of Eq.~33!, for nT50, is truncated at the valu
n0, that is, the field trapping phenomenon@16# occurs.

When the interaction timet is small so that

kt^n& l 0/2!1, ~43!

we can expandan to the second order int and obtain

an5~kt!2~n11! l 0. ~44!
04381
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V. DECAY OF OFF-DIAGONAL DENSITY MATRIX
ELEMENTS AND THE LINEWIDTH

In this section we study the decay of off-diagonal dens
matrix elements and the linewidths of the field mode, follo
ing the approach of Ref.@15#.

When we add and subtract appropriate terms, we can
write Eq. ~28! for the matrix elements%n

(q)[%n,n1q in the
form

%̇n
(q)52mn

(q)%n
(q)1~O% !n

(q) , ~45!

where

mn
(q)5run

(q)1cn
(q) ~46!

and

~O% !n
(q)5rbn21

(q) %n21
(q) 2rbn

(q)%n
(q)

1C~nT11!A~n11!~n1q11!%n11
(q)

2C~nT11!An~n1q!%n
(q)1CnTAn~n1q!%n21

(q)

2CnTA~n11!~n1q11!%n
(q) . ~47!

Here, we have introduced the notation

un
(q)5an,n1q2bn,n1q , ~48!

bn
(q)5bn,n1q , ~49!

and

cn
(q)5C~nT11!~n1q/2!1CnT~n1q/211!

2C~nT11!An~n1q!2CnTA~n11!~n1q11!.

~50!

It is clear that the expression given in Eq.~47! for (O%)n
(q)

consists of the terms that can be interpreted as outflows
inflows of %n

(q) . Therefore, the operatorO can be considered
as an operator for the right-hand side of a kinetic equati

%̇̃n
(q)5(O%̃)n

(q) . We call %̄n
(q) a steady-state solution of thi

kinetic equation,

~O%̄ !n
(q)50. ~51!

We assume that the initial density matrix of the field is%̄n
(q) .

We study the decay of the off-diagonal matrix elements d
ing the time when the field state is still near to the initial sta
%̄n

(q) . When we substitute the ansatz

%n
(q)~t!5exp@2Dn

(q)~t!#%̄n
(q) ~52!

into Eq. ~45! and assume that

D n61
(q) ~t!>D n

(q)~t!, ~53!

we find
2-5
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Ḋn
(q)~t!5mn

(q) . ~54!

Taking into account the initial conditionD n
(q)(0)50, we find

from Eq. ~54!

D n
(q)~t!5mn

(q)t. ~55!

The condition~53! is fulfilled when

U ]

]n
mn

(q)Ut!1, ~56!

that is,~i! for short timest and ~ii ! whenmn
(q) , given in Eq.

~46!, is a slowly varying function ofn.
According to Eqs.~52! and~55!, the coefficientmn

(q) char-
acterizes the phase diffusion of the matrix element%n

(q) from

the initial value %̄n
(q) . Its real part is associated with th

exponential decay of the field. In contrast to the stand
micromaser@15# the coefficient mn

(q) here may have an
imaginary part that which corresponds to the frequency s
of the field. We, therefore, present the coefficientmn

(q) as

mn
(q)5gn

(q)1 inn
(q) , ~57!

wheregn
(q) andnn

(q) are the real and imaginary parts, respe
tively. Then, from Eq.~46!, we find

gn
(q)5r Reun

(q)1cn
(q) , ~58!

nn
(q)5r Im un

(q) . ~59!

On substituting Eq.~25! into Eq. ~48!, we obtain

un
(q)512 (

l 52`

`

@Cl
(a,n)~t!Cl*

(a,n1q)~t!

1Cl
(b,n11)~t!Cl*

(b,n1q11)~t!#. ~60!

By using the normalization condition given in Eq.~8!, we
find that Eq.~60! reduces toun

(0)50. On the other hand, Eq
~50! yields cn

(0)50. Hence, we have

gn
(0)5nn

(0)50. ~61!

This formula indicates that the diagonal matrix elements%n
(0)

do not decay.
The coefficientsgn

(1) determine the decay rates of th
first-off-diagonal matrix elements%n

(1) and, consequently, th
linewidth of the field mode@6,7,13#. The coefficientsnn

(1)

characterize the frequency shift. In general, the coefficie
gn

(1) and nn
(1) depend onn. Therefore, the spectrum of th

field is not a Lorentzian line but a sum of Lorentzian dist
butions. It is not easy to find the exact expressions for
linewidth and the frequency shift of such a spectrum. F
lowing Refs.@13,6,7,15#, we estimate the linewidth and th
frequency shift by

D[2g^n&
(1)52@r Reu^n&

(1)1c^n&
(1)# ~62!

and
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d

ft

-

ts

e
l-

V[2n^n&
(1)52r Im u^n&

(1) , ~63!

respectively. Herê n& is the steady-state mean number
photons.

Below, we examine in more detail the linewidth and t
frequency shift of the field in the Raman-Nath and Bra
regimes.

A. Raman-Nath regime

In the Raman-Nath regime, the probability amplitud
Cl

(a,n)(t) and Cl
(b,n11)(t) are given by Eqs.~10! and ~11!,

respectively. We substitute these probability amplitudes
Eq. ~60! and perform the summation. With the help of th
relation @14#

(
l 52`

`

Jl~j!Jl~j8!5J0~j2j8!, ~64!

we obtain

un
(q)512J0@~2g/D0!sin~D0t/2!~An1q112An11!#.

~65!

Since the above expression forun
(q) is real, we findnn

(q)50
andV50, that is, there is no frequency shift of the field
the microlaser operating in the Raman-Nath regime.

We now assume that̂n&@1. In this case, we find from
Eq. ~65! the approximate expression

u^n&
(1)>12J0@~g/D0A^n&!sin~D0t/2!#. ~66!

The corresponding evaluation forc^n&
(1) is found from Eq.~50!

to be

c^n&
(1)>

C~2nT11!

8^n&
. ~67!

When we substitute Eqs.~66! and ~67! into Eq. ~62!, we
arrive at the expression

D>2r F12J0S g

D0A^n&
sin

D0t

2 D G1
C~2nT11!

4^n&
~68!

for the linewidth of the field.

B. Bragg regime

In the Bragg regime the amplitudesCl
(a,n)(t) and

Cl
(b,n11)(t) are given by Eqs.~16! and ~20!, respectively.

When we insert these equations in Eq.~60!, we find

un
(q)512eiqntcos$@~n1q11! l 0/22~n11! l 0/2#kt%.

~69!

In the casê n&@1, we find the approximate expression

u^n&
(1)>12eintcos@~ l 0/2!^n& l 0/221kt#. ~70!
2-6
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When we substitute this equation into Eqs.~62! and~63! and
use Eq.~67!, we obtain the linewidth as

D>2r F12cos~nt!cosS 1

2
l 0^n& l 0/221kt D G1

C~2nT11!

4^n&
~71!

and the frequency shift as

V>r sin~nt!cosS 1

2
l 0^n& l 0/221kt D , ~72!

of the field in the microlaser operating on the atomic Bra
scattering.

VI. DISCUSSION

In this paper we have studied the microlasers in two
tical regimes, namely, the Raman-Nath regime and the Br
regime. The set of basic equations is obtained by conside
the preparation of an atom in a specific momentum state,
taken to be in resonant with the field of the cavity.

In the Raman-Nath regime, the cavity field remains u
form on the dimension of the cavity, and the recoil frequen
is very low compared with the Rabi frequency. Therefo
there is no appreciable energy transfer from the cavity to
atom, hence, the momentum of the atom is required to
conserved. The cavity mode function contributes in the fo
of Bessel behavior to the probability amplitudes.

In the case of zero transversal momentum, that is w
the atom is incident perpendicularly at the field, the proba
ity amplitudes are no more periodic functions of interacti
time. This implies that for a large interaction time the gain
the medium becomes constant which indicates a steady s
and if the mean thermal photon numbers are zero, the ph
distribution becomes just Poissonian with the mean pho
numberŝ n&5r /2C. This feature is again to the credit of th
microlaser. At the onset of the experiment the photon dis
bution inside the cavity is thermal, which changes as
atoms pass through the cavity with fluctuations in mean p
ton number depending upon the Rabi frequency and aft
few oscillations it gets a constant value of mean phot
with a Poisson distribution of photons. This feature can
seen from Fig. 1~a!, where the average number of photons
plotted as a function of scaled interaction time.

In case the initial transversal momentum of the atom
nonzero, the probability amplitudes are having periodic
pendence on interaction time with a periodT52p/D0. This
interesting behavior adds up more properties to the sys
Initially the average number of photons observes the sa
behavior as in the case of zero transversal momentum; h
ever, after half of the period,T/2, it just reverses and come
to the initial value when the interaction time becomes eq
to one period. Physically, for these values of interaction ti
the field inside the cavity becomes transparent to the a
and displays, therefore, thermal distribution. The atom lea
the cavity without contributing to photon statistics. A com
plete cycle of the photon distribution function resulting fro
this phenomenon is shown in Fig. 3.
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In the Bragg regime, the recoil frequency is much larg
as compared with Rabi frequency and there is an appreci
transfer of energy from the cavity field to the incoming ato
in the form of integral multiple of field quanta. Hence, in th
case conservation of energy is the governing principle. A
result of energy conservation, there exists two values for
transferred field momenta corresponding to initial mome
tum of the atom, that is, the number of transferred quantal 0,
can be zero or 2p0 /\k. The valuel 050 stands for the in-
coming field whereasl 052p0 /\k indicates the scattere
beam of atoms. The incident atom entering with an init
transversal momentump0 contributesl 0 photons to the field
and leaves the cavity with a lesser momentumpout5p0
2 l 0\k, hence conserving the momentum and energy. T
phenomenon is analogous to Bragg scattering in solid s
physics.

FIG. 1. We display~a! the mean number of photons and~b! the
cavity Q factor of the emitted field as a function of the interactio
time in a case of normal incidence of the atoms at the field. In~c!
we display photon statistics for three different interaction times
2-7
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Looking at the probability amplitudes in this case, giv
in Eq. ~19! and Eq.~20!, it comes out that the probability
amplitudes have sinusoidal dependence on interaction
as in conventional micromasers. However, the depende
on the number of photons is governed byl 0 as (n11)l 0/2;
moreover, a phase factor appears that depends upon the
ber of photonsn, linearly. This phase shift provides a fre
quency shift to the emitted field spectra, as expressed in
~72!. A point to note is that this observed frequency shift
associated only with the microlasers.

When the initial momentum of the atom is such that th
can support the transfer of just one photon from the atom
the field, that is,l 051, the probability amplitudes, apa
from the phase factor, are exactly the same as in the cas
micromasers. The only difference appears in the Rabi
quency which reduces to half as compared with conventio
lasers and micromasers. This difference arises since an a
on its passage through the node of the optical field, is pus
towards the antinodes and thus reduces the probability
plitude in either of the emitted directions to half. Apart fro
this slight difference, the microlaser for these values has
average number of photonŝN& and cavity Q factor Qf ,
exactly similar to conventional micromasers@16–18#. The
spectrum of the field, as expressed in Eq.~71!, is having an
additional modulation which is again special to microlase

FIG. 2. We display~a! the mean number of photons and~b! the
cavity Q factor of the emitted field as a function of the interacti
time in the Raman-Nath regime.
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This modulation indicates the behavior of noise in the cav
field as a function of the interaction time.

For all the odd values ofl 0, the atom that initially comes
in an excited state leaves the cavity after contributing p
tons to the cavity. The number of photons contributed to
cavity are proportional to the initial momentum of the ato
hence in this regime the microlaser observes a multipho
transition. Hence, the gain of the cavity field also becom
nonlinear. The gain of the field can be expressed as

^ṅ&5rg2k2^~n11! l 0&2C~^n&2nT!, ~73!

which indicates this phenomenon.
In order to realize our suggested scheme, we use the

perimental setup of Hennrichet al. @19#. We consider a cloud
of rubidium atoms, cooled and stored in a magneto-op
trap. By means of an atomic fountain we control the atom
dynamics in such a way that at one time there is only o
atom in the cavity. We take the vacuum Rabi frequency
g52p35 MHz. We consider the atoms with a small velo
ity component from 1 m/s to 1 cm/s, parallel to the cavi
For a rubidium atom of mass 1.42310225 kg moving with a
velocity 0.01 m/s out of the above-mentioned range, the
Broglie wavelength is 2 nm. In the Raman-Nath regime w
these parameters at hand we may find the periodic beha
in an average photon number^n& with a period of 0.2ms.
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FIG. 3. A complete cycle of photon statistics inside the cav
for initial nonzero transversal momentum in Raman-Nath scat
ing.
@1#
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