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Quantum theory of a micromaser operating on the atomic scattering
from a resonant standing wave
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We study the amplification of a resonant standing-wave light field due to the interaction with a beam of
monovelocity two-level atoms moving in the Raman-Nath regime and in the Bragg regime. The atomic density
is low so that, at most, one atom is inside the cavity at a time. This system is very similar to the well-known
micromaser but it is operating in the optical region of the field frequencies. Therefore, the situation corresponds
to a microlaser. Unlike the micromaser system, the momentum transfer between the atoms and photons in the
microlaser essentially effects the center-of-mass motion of the atoms and the evolution of the field.
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[. INTRODUCTION of the optical field in the microcavity. In the Bragg regime,
the recoil frequency is much larger as compared with the
Experimental realization of micromasgfis-3] has set the Rabi frequency and there is an appreciable transfer of energy
stage to comprehend the fundamental concepts, such as cofrem the cavity field to the incoming atom in the form of an
plimentarity and the nonlocal nature of the quantum world.integral multiple of field quanta. As a result of energy con-
In recent years, the invention of superconducting microcaviservation, there exists two values for the transferred field
ties of high quality factors has made it possible to extend thgnomenta corresponding to initial momentum of the atom.
subject to the cavity field of optical wavelength. This work The atom that is initially coming in an excited state leaves
has given birth to the field of microlasefs,5]. the cavity after contributing photons to the cavity. The num-
In microlasers the de Broglie wavelength of atoms isber of photons contributed to the cavity are proportional to
comparable to the optical wavelength of the cavity field.the initial momentum of the atom. .
Moreover, during an atom-field interaction, the momentum 1 he paper is organized as follows: In Sec. Il we describe
transfer from the atom to the field is inversely proportional toSCa{t€ring of an atom in an optical regime by a quantized
the wavelength of the field. Hence, in contrast to the micro-Standing-wave field and lay foundations for our analytical

masers, there occurs a much larger momentum transfer fro Iculations. In Sec. Il we construct a master equation for

the atom to the field. As a result the recoil effects may be—t e field na microlaser operating on the. atomic scattering.
A . . . We examine the photon statistics of the field in Sec. IV. We
come significantly large and the inclusion of atomic scatter-

. A . . devote Sec. V to study the decay of off-diagonal matrix ele-
ing from the cavity field becomes important. This n"’V[ur"""yments and the linewidth of the microlaser field. We conclude
has effects on the photon statistics of the cavity fl@d].

) S ! _our paper with discussion of our results in Sec. VI.
In this paper we study the amplification of the optical field
of a microcavity via resonant atoms. The momentum transfer
between the atom and the field essentially effects the center-
of-mass motion. Therefore, for our study, we consider two
regimes of atomic deflectiorii) the Raman-Nath regime and
(i) the Bragg regime. In the Raman-Nath regime the recoil We consider a single two-level atom of madspassing
energy is much smaller than the interaction energy resultingvith the velocity v, along the z axis through a single
in momentum transfer in a number of directid®. On the  standing-wave mode of the electromagnetic field in a cavity.
other hand, in the Bragg regime the recoil energy very mucliihe cavity is aligned along the axis. We neglect damping
exceeds the interaction energy. Under a resonant conditioof the cavity mode and the spontaneous emission of the atom
the energy and momentum conservation restricts to only twinto other field modes. In order to study the interaction of an
directions[9-11]. atom with the single-mode field we consider the dipole ap-
We show that in the Raman-Nath regime the probabilityproximation and rotating-wave approximations. The initial
amplitudes are having periodic dependence on interactiomomentum of the atomic center-of-mass motion alongzthe
time and for these values of interaction time the field insidedirection,Mv,, is assumed to be large enough; therefore, we
the cavity becomes transparent to the atom. The atom leavéat it classically. However, we quantize the motion of the
the cavity without contributing to photon statistics. In the atom along the standing-wave mode, together with the inter-
Bragg regime we have a multiphoton process for the growtmal degrees of freedom of the atom, and the cavity field. The
field is uniform in they direction, and we do not consider
motion of the atom in this direction.
*Email address: farhan@qau.edu.pk Hence, the Hamiltonian of the atom-field system is

II. SCATTERING OF AN ATOM BY A QUANTUM
RESONANT STANDING-WAVE FIELD
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Here we have the initial Doppler shiffy=pyk/M and the

n2
. 1 - npn N ma A
H= 2p—M+ EﬁwOO'Z-FfLa)aTa‘F hgcogkx)(o,a+o_a’). recoil frequency, associated with a photon recail,
) =#%k?/2M. Note that the normalization condition
Here, the operators and p describe the position and mo- l;w [|C|(a,n)(t)|2+|C|(b,n+1)(t)|2]:1 (8)

mentum of the atom along the cavity mode, andand o .
are the Pauli spin operators. Moreovaranda' denote the
annihilation and creation operators of the cavity magdgijs
the transition frequency of the atom, awdis the frequency

of the wave function is automatically satisfied.

of the cavity mode. We describe the vacuum Rabi frequency A. Raman-Nath regime
asg, and the wave number of the cavity modelasFor ~ p simple analytical solution of Eqg5) and (6) can be
simplicity, we consider the exact resonance between the field-hieved when the recoil energy is smaller than the interac-
In the interaction picture, the atom-field system is de-
scribed by the Hamiltonian w,<gyn+1. 9
~2 . . . .
- Ala A A A It is the Raman-Nath regimlel0]. For this regime, w¢12]
" t
Hin= 57 T 79 cogkx)(o,ato-a)). @ find the analytical solution as
The corresponding time evolution of the combined system is ] 2gyn+1  Agt
governed by the unitary operator, CEM () =exp —i(Agt+m)1]3y A, M)
N o (10
U(t)=exp(—iHit/h). 3
(b,n+1) _ i
Starting from an initial atomic momentum eigenstég), Coirr () =exd —i(Agt+m)(l
the energy operatdtl;,, expressed in Eq2) mixes in only 2gyn+1 Aot
the componentfp, + 1%k), wherel is any integer. Since the +1/2)]3214+1 A, oMo ) (11

atom is initially prepared in the excited internal stitg, and
the field is initially in the number stat@), the wave func-

. . . . o whereJ,, is the mth-order Bessel function and all the other
tion of the combined system after interaction tiinis

probability amplitudes are zero.

® Note that, in the casd&,# 0, which implies thatpy#0,
S IpICEMt)]a,n) the probability amplitude€{®"(t) andC*"*)(t) are pe-
I=—o riodic functions oft with the periodicity

. pat
U(t)lpo,a,n>=exr< YT

+Ce Dty b,n+1)], (4) T=27m/Ag=\lvy, (12)

where we express the momentum of the atoms after interac-
tion asp,= pOF-)i-|ﬁk. where \=2x/k is the wavelength of the field and,

The probability amplitude€?" andc|b,n+l are governed :a?/(i)t;M is the velocity of the atomic motion along the
by the Schrdinger equations If the interaction timet is an integer multiple of the pe-
d riod, given in Eq.(12), we haveC{™(t)=1 while all the
iacfa'n)(t) = (Aol +wd?)C{*V(1) other probability amplitudes are zero. For these values of the
time of interaction the atom completes full cycles and leaves
1 the cavity in an excited state without contributing to the cav-
+50Vn+ 1B +CEI ()], (5) ity field. Hence, in these cases, the cavity field, the atomic
internal state, and the atomic center-of-mass motion remain
d unchanged. This implies that in this case the quantum
i—CPM (1) = (Aol + wl?)CP" (1) standing-wave field, acting as a medium, becomes perfectly
dt transparent with respect to the incident atomic de Broglie
1 wave. The atom leaves the cavity after a displacenognt
+ Eg\/n+1[C|(a+'£‘)(t)+C|(3{‘)(t)], (6)  which is an integer multiple of the wavelength of the field.

with the initial conditions defined as B. Bragg regime

In the Bragg regime the recoil energy is larger than the
interaction energy10],

cbn+1(0)=0. @) w,>gyn+1. (13

C®M(0)= 40,

043812-2



QUANTUM THEORY OF A MICROMASER OPERATING ON ... PHYSICAL REVIEW /&4 043812

In this case, conservation of the kinetic energy becomes imand prepared in the transverse-momentum eigen§pgie
portant leading to resonance between the two solutions of th€hey pass through the cavity according to a Poissonian pro-
equation, cess with an average rateThe atomic flux is assumed to be
5 so low that only one atom is in the cavity at a time. We
Aol + o 1°=0. (149 consider the atomic decay as negligible. The time of interac-
tion of each atom with the cavity field is much shorter than
'the cavity damping time so that the relaxation of the cavity
field can be ignored while an atom is inside the cavity. For
Ao 2Po simplicity, we suppose that the injected atoms have the same
l=—lpg=——=—— (15 longitudinal velocity and, therefore, interact with the cavity
field for the same interval of time.
The time evolution of the density matrj%,7,13, that is,

The solutionl =0 corresponds to the incoming atomic beam
and the second solution to E@.4),

gives the scattered component, conserving energy and mo-
mentum. The relation expressed in Ef5) corresponds to -
the Bragg condition in x-ray scattering from crystals. ~ ,

When the condition expressed in EG5) is fulfilled for a Q_n nz,::o @nnr[N)(N'| (D)
positive integety, an adiabatic approximation allows us to '
eliminate the amplitudes corresponding to the nonresonand the cavity field in the interaction picture is governed by
atomic beams. Following the procedures of Réf0], we o equation
find the analytical solution

CEM(t)=exd —i(n+1)vt]cod(n+1)'0%t] (16) o=rée+Lo. (22)

for the incoming atomic beam. Here we have introduced thEHere S

, . \ _0 is the change i@ due to an atom interacting with
notationsy and «, which we define as g ge e 9

the field for the timer, andLg is the Liouvillian operator
—g%8w,, lo=1 which describes losses due to the coupling of the cavity
(17) mode to a thermal bath.

=2 2_ R
g72w,(Io=1), lo>1 The expression of the gain operat®yp is

and
. 8,0=Tra{U(7)(|po,a)po.al®0)0T(N}-0. (23

_ ge
2w (-1 4

When we use Eq4), the matrix elements of the gain opera-
tor are found to be

For the scattered beam, we find the probability amplitude

n5’\n, =—a, ’ /+b_ r_ _ 1, 24
C(_afg)(t):—ieXF[—i(n-l—l)V'[]Sil’[(n-f—1)'0/2Kt] < | TQ| > nn@nn n-1n"-1€n-1n7-1 ( )

(19 where

if 1 is even, or

o

2 cnct (),

c&bfgm(t) =—iexg —i(n+1)pt]sin(n+1)'"2t] an = 1_|
(20)

if 15 is odd, whereas all the other probability amplitudes are
negligible.

The above equations show that the flipping between the
two resonant momentum eigenstafpg) and|p-,) OCCUIS 4 s interesting to note that the normalization condition ex-
at the frequencyr(+1)'o?«. In addition to the main flipping, pressed in Eq(8) yieldsa, ,=b, .
there is a modulation at the frequenay+1)v. Sincex/g The loss operatok ¢ [6 7 13 is given by
«(glw;)'o! and v/gxgl/w,, the flipping frequency is v
larger, of the same order, or smaller than the modulation 1
frequency ifl, is equal to one, two, or larger than two, re- | o= _¢(n;+1)(2apa’—a'ap—pa'a)+=Cn;(2a'pa
spectively. 2 2

b= 2 Cf™ U(nCY D7), (25)

—aa'o—paal). (26)
I1l. MICROLASER OPERATING

ON ATOMIC SCATTERING . . A
Here ny is the number of photons in thermal equilibrium,

In this section we study a micromaser operating on thendcC is the cavity damping rate. The matrix elements of the
scattering of the atoms. We take the atoms initially excitedoss operator read
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TN TGS 1 e+ (r/C)ay_1/m
(nlLe[n")=C(nr+ 1) y(n+1)(n +1)Qn+1,n’+l_§(n 1;[ Y] , (33
1 : . o .
1) |+Cne| AN @011 1—§(n+n’ \g?:e;eanz)ﬁs determined by the normalization condition
In order to study the peak structure Bf,, we approxi-
+2)Qn,n/} (27 mate this distribution by the continuous function
- . . ~ n N+(r/C)am—1/m
By substituting Eqs(24) and(27) into Eq.(22), we obtain an P,=Poyex f dmin P—] . (39
0 T

expression for, ./, such that

. 3 Here, we have replacedl,_,(f,) in Eq. (33) by
Onn="TannCnntrbp_1p—10n—1p -1+ C(NT+1) exf fodmIn(f,)]. The peakn, of the photon distributiorP,,

1 is determined approximately by the equation
X \/(I’H’ 1)(n, + 1)Qn+1,n’+1_ E(n+ n,)en,n’}

No=(r/C)an 1. (35
1 - .
+Cng|Vnn'@, 11— s(n+n'+ Z)Qn,n’}- Below, we calculate the emission probabilty, and then
2 study in detail the photon statistics of the micromaser field

(29 operating in the Raman-Nath regime and in the Bragg re-
gime.
As it stands, the master equati¢®8) is the basic equation
for the micromaser operating on the scattering of two-level A. Raman-Nath regime

atoms. ) , , ,
We first consider the case when the micromaser is oper-

ating in the Raman-Nath regime of the atomic scattering. In
this regime, the amplitude€®"*1(7) are given by Eq.
We may obtain a rate equation foy, ,=P,, from Eq.(28) (11). On substituting the expression for probability amlitude

IV. PHOTON STATISTICS OF THE MICROLASER FIELD

as c{"*1) from Eq.(11) in Eq. (30), and by using the relation
Pn=—ra,Pp+ra, 1P 1+C(nr+1)[(n+1)Py 1 —nP,] . )
FCne{nPy_—(n+1)P]. (29 2 J§|+1(§):;[1_Jo(2§)]y (36)
Here P, is the probability of havingh photons in the cavity . ]
and we find the coefficena, as
am 3 1COTI( (30 n=3|1-2 4gﬁ+_13 AzOT) 37

which describes emission probability. This expression to-
gether with Eq.(29) describes the evolution of the photon
distribution in the micromaser operating in the Raman-Nath
regime of the atomic scattering.
It is interesting to note that wheny#0, that is when
po# 0, the coefficientsa, and, therefore, the photon distri-
N _ _ bution P, are periodic functions of the interaction time
{m=r(an =C(n)=nm). S with the period 2r/A,. Furthermore, wherr is an integer
Here we have introduced the notatigh,)==7_(f,)P, for ~ multiple of 27/Ao, we havea,=0 for anyn. In this case,
any arbitrary functiorf,,. Clearly, the ternt(a,) determines ~there is no gain in the field, and the evolution of the photon
the gain in the field whil&€((n)—n;) characterizes the loss. distribution Py, is solely determined by the loss mechanism.
In steady state, the functioR, is independent of time. ~ WhenAo=0, that is, when the atoms hit the cavity field
Therefore, in Eq(29), by setting the time derivative g,  Orthogonally, we have
equal to zero, we obtain an equation for steady-state photon 1
distribution. Under the detailed balance condition, the equa- a,==[1—Jo(2g7yn+1)]. (39)
tion reduces to 2

is the probability for the scattered atom to go from the ex-

cited state to the ground state in the presenaemiotons in

the cavity. Various terms on the right-hand side of Ezf)

can be interpreted as outflow and inflow of probabilities.
For the mean photon number, we find from E2Q)

(rap_,+Cnn)P,_=C(nt+1)nP,. (32 In this case, there is no periodicity af, andP,, in 7. Since
|Jo(€)| <1 for é#0, we havea,>0 for anyn and any non-
Hence, the steady-state solution for the photon distribution igero 7. The fact thata,#0 for any n and any nonzera
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shows that there exists no trapping state. Due to the decay of V. DECAY OF OFF-DIAGONAL DENSITY MATRIX
the Bessel functiordy with increasing argument, we have ELEMENTS AND THE LINEWIDTH

a,— 1/2 whengr—«. Therefore, when the normalized in- hi . dv the d f off-di | densi
teraction timeg 7 is large and the mean numbey of thermal In_t IS section we study the decay of off-diagonal density
photons in the bath is zero, the steady-state photon Olistriburpatrlx elements and the linewidths of the field mode, follow-

. . : ) .~ "1ing the approach of Ref15].
tion, given in Eq.(33), approaches the Poisson distribution . )
exp(—(n)(yn! with the mean photon numben)=r/2C. When we add and subtract appropriate terms, we can re

This feature was not observed in the standard micromas V\r’me Eq. (28) for the matrix element®n”=gn,n+q in the

[16,17], where the oscillations of the emission probability do
not decay.

o — _ (@) ,(a) (a)
When the interaction time is small, so that Qn"= ~Hn Cn (00", (45
where
Agr<1, gT<n>1/2<l, (39
u®=ru@ 4 e (40
we can expana, to the second order im, and obtain and
1 @ = p@ @ _ p@,(@)
an=§(gf)2(n+l). (40) (OQ)n rbnflgnfl I‘bn On
+C(nr+1)V(n+1)(n+q+ el
Apart from the prefactor 1/2, the expressi@id) is the same —C(nr+1)n(n+q)e@+cnrn(in+a)e'®,
as that for the probability of a one-photon transition in a
two-level atom in the second-order perturbation theory. The —cnp/(n+1)(n+q+1)el@. (47)
prefactor 1/2 results from the spread of the atomic position
along the standing-wave cavity field. Here, we have introduced the notation
(@) — _
uy’=a b , 48
B. Bragg regime n n.n+q  ~n,n+q (48)
We now consider the case when the micromaser is oper- ng>= Brntq: (49

ating in the Bragg regime of the atomic scattering. In this
regime the amplitude€(""*1)(7) are given by Eq(20). On  and
substituting Eq(20) into Eq. (30), we find
cl@=¢(nr+1)(n+q/2)+Cn(n+q/2+1)
a,=sirf[(n+1)'%k7]. (41)

—C(nr+1)yn(n+q)—Cnry(n+1)(n+q+1).

This expression, together with E@Q9), describes the evolu- (50

tion of the photon distribution in the micromaser operating

on the Bragg scattering of the atoms. Apart from the definidt is clear that the expression given in E¢7) for (Og)®

tion, given in Eq.(18) for «, Eq.(41) is similar to the prob- consists of the terms that can be interpreted as outflows and
ability for al,-photon transition in a two-level atom. Hence, inflows of o{¥ . Therefore, the operatd? can be considered
the operation of the micromaser in the Bragg regime of theas an operator for the right-hand side of a kinetic equation,
atomic scattering is a multiphoton action. Note that if the (q):(o’é)(q) We call 0@
. . . . . n n - n
interaction timer is chosen so that for integer numberg
andq we have

a steady-state solution of this
kinetic equation,

(0e)P=o0. (51)
(No+ 1)k 7=qqr, (42
We assume that the initial density matrix of the fiel@pid’ .
then we havennO:O. In this case the steady-state photonWe study the decay of the off-diagonal matrix elements dur-
distribution of Eq.(33), for ny=0, is truncated at the value ing the time when the field state is still near to the initial state
no, that is, the field trapping phenomenft6] occurs. EE,“). When we substitute the ansatz
When the interaction time is small so that

e (r)=exf ~ DV (n)]el? (52)
kr(n)lo2<1, (43) _
into Eq. (45) and assume that
we can expan@, to the second order im and obtain ngi)l(T)Eng)(T)’ (53)
a,=(k7)?(n+1)'o. (44 we find
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D7) = (54 == v =—rimug, (63
Taking into account the initial conditioP (?(0)=0, we find  respectively. Hergn) is the steady-state mean number of
from Eq. (54) photons.
@ @ Below, we examine in more detail the linewidth and the
Dy’ (7)=pp’ 1. (55 frequency shift of the field in the Raman-Nath and Bragg
regimes.

The condition(53) is fulfilled when

9 A. Raman-Nath regime
%ng) <1, (56)

In the Raman-Nath regime, the probability amplitudes
o _ 3 @ c@M(7) andC®"*1(7) are given by Eqs(10) and (11),
that is, (i) for short timest and (i) when ", given in Eq.  regpectively. We substitute these probability amplitudes in

(46), is a slowly varying function of. - Eq. (60) and perform the summation. With the help of the
According to Eqs(52) and(55), the coefficieniu{? char-  relation[14]

acterizes the phase diffusion of the matrix elemefit from
the initial value_,(ﬁ). Its real part is associated with the N e

exponential decay of the field. In contrast to the standard |=§;m O(E)=do(6= &), (64
micromaser[15] the coefficient u!? here may have an

imaginary part that which corresponds to the frequency shiftve obtain
of the field. We, therefore, present the coefficigi?’ as

| ul®=1-734[(29/A0)siN(Ag7/2)(\Vn+qg+1—n+1)].
POEVOREMON (57) (65

wherey? and v are the real and imaginary parts, respec-Since the above expression fof® is real, we findy(®=0
tively. Then, from Eq(46), we find andQ =0, that is, there is no frequency shift of the field in
the microlaser operating in the Raman-Nath regime.

(@) — (@) 1 (@)
Yoo =r Reuy7+cy”, (58) We now assume thgin)>1. In this case, we find from
ng):r Im uﬁ‘” _ (59 Eq. (65) the approximate expression
- : : uB=1-3,[(g/AgV(n))siN(Ay7/2)] (66)
On substituting Eq(25) into Eq. (48), we obtain (n) 0 0 0 '
> The corresponding evaluation fofy) is found from Eq.(50)
uff=1- 3 [C(nCr e (n) to be
+CPMI(mCr e, (60) @ {2t l)
C<n>: - (67)
8(n)

By using the normalization condition given in E), we
find that Eq.(60) reduces tai”’=0. On the other hand, Eq.

When we substitute Eq$66) and (67) into Eqg. (62), we
(50) yields c”’=0. Hence, we have q466) 7 a. (62

arrive at the expression

g AgT
This formula indicates that the diagonal matrix elemezff8 1= AOWIHT *
do not decay.

The coefficientsy{!) determine the decay rates of the for the linewidth of the field.

first-off-diagonal matrix elemen@gl) and, consequently, the
linewidth of the field modg6,7,13. The coefficientsy ") B. Bragg regime
characterize the frequency shift. In general, the coefficients i ) (@n)
¥ and v{!) depend omn. Therefore, the spectrum of the (blr:Hgle Bragg regime the amplitude€™"(7) and
field is not a Lorentzian line but a sum of Lorentzian distri- G~ (7) are given by Eqs(16) and (20), respectively.
butions. It is not easy to find the exact expressions for th&Vhen we insert these equations in £60), we find
linewidth and the frequency shift of such a spectrum. Fol- iqur
lowing Refs.[13,6,7,1q3, We);zstimate the IineWiF()jth and the uﬁ‘q):l_elq cog[(n+a-+1)'0%=(n+1)0%]x}.

0= =0, 61
Y= (62) c(2nr+1)

4(n)

D=2r (68)

frequency shift by (69)
DEZ)/ERZZ[I’ Reugﬁ;Jng;] (62) In the casgn)>1, we find the approximate expression
and u=1-e"""cog (1¢/2)(n)'02 1k 7]. (70)
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When we substitute this equation into E¢R2) and(63) and 50
use Eq.(67), we obtain the linewidth as {a)

c(2nr+1) <n=>
_l’_ e —

D=2r
4(n) #L
(71 25

1
1—cog w)cos<§I0<n>'0’21m-

and the frequency shift as

Q=r sin(w)cos<%I0<n>'0’2‘1Kr), (72

30 60 90
of the field in the microlaser operating on the atomic Bragg .
scattering. (b)

VI. DISCUSSION

In this paper we have studied the microlasers in two op-
tical regimes, namely, the Raman-Nath regime and the Bragc
regime. The set of basic equations is obtained by considering 1 Y
the preparation of an atom in a specific momentum state, ant
taken to be in resonant with the field of the cavity.

In the Raman-Nath regime, the cavity field remains uni-
form on the dimension of the cavity, and the recoil frequency 0
is very low compared with the Rabi frequency. Therefore,
there is no appreciable energy transfer from the cavity to the
atom, hence, the momentum of the atom is required to be
conserved. The cavity mode function contributes in the form
of Bessel behavior to the probability amplitudes.

In the case of zero transversal momentum, that is wher P(n)
the atom is incident perpendicularly at the field, the probabil-
ity amplitudes are no more periodic functions of interaction
time. This implies that for a large interaction time the gain of
the medium becomes constant which indicates a steady stat
and if the mean thermal photon numbers are zero, the photol
distribution becomes just Poissonian with the mean photor
numbers(n)=r/2C. This feature is again to the credit of the 0
microlaser. At the onset of the experiment the photon distri-
bution inside the cavity is thermal, which changes as the
atoms pass through the cavity with fluctuations in mean pho- FIG. 1. We display(@) the mean number of photons afigj the
ton number depending upon the Rabi frequency and after g\vit)_/Q factor of the emiFteq field as a function of the in_teraction
few oscillations it gets a constant value of mean photondiMe in @ case of normal incidence of the atoms at the fieldcin
with a Poisson distribution of photons. This feature can pave display photon statistics for three different interaction times.

seen from Fig. (a), where the average number of photons is | the Bragg regime, the recoil frequency is much larger
plotted as a function of scaled interaction time. as compared with Rabi frequency and there is an appreciable
In case the initial transversal momentum of the atom isransfer of energy from the cavity field to the incoming atom
nonzero, the probability amplitudes are having periodic dein the form of integral multiple of field quanta. Hence, in this
pendence on interaction time with a peridek27/A,. This  case conservation of energy is the governing principle. As a
interesting behavior adds up more properties to the systemesult of energy conservation, there exists two values for the
Initially the average number of photons observes the samw@ansferred field momenta corresponding to initial momen-
behavior as in the case of zero transversal momentum; howitim of the atom, that is, the number of transferred qudgpta,
ever, after half of the period;/2, it just reverses and comes can be zero or By/#%Kk. The valuel,=0 stands for the in-
to the initial value when the interaction time becomes equatoming field wheread,=2p,/%k indicates the scattered
to one period. Physically, for these values of interaction timebeam of atoms. The incident atom entering with an initial
the field inside the cavity becomes transparent to the atortransversal momentuip, contributed o photons to the field
and displays, therefore, thermal distribution. The atom leaveand leaves the cavity with a lesser momentpg,= pg
the cavity without contributing to photon statistics. A com- —Iy%k, hence conserving the momentum and energy. This
plete cycle of the photon distribution function resulting from phenomenon is analogous to Bragg scattering in solid state
this phenomenon is shown in Fig. 3. physics.

30 gt 60 90
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FIG. 3. A complete cycle of photon statistics inside the cavity
for initial nonzero transversal momentum in Raman-Nath scatter-

ing.

, This modulation indicates the behavior of noise in the cavity
m 4n field as a function of the interaction time.
87 For all the odd values dfy, the atom that initially comes
FIG. 2. We display@) the mean number of photons afigj the 1N @n excited state leaves the cavity after contributing pho-
cavity Q factor of the emitted field as a function of the interaction tons to the cavity. The number of photons contributed to the
time in the Raman-Nath regime. cavity are proportional to the initial momentum of the atom,
hence in this regime the microlaser observes a multiphoton

Looking at the probability amplitudes in this case, giventransnmn. Hence, the gain of the cavity field also becomes

in Eq. (19) and Eq.(20), it comes out that the probability nonlinear. The gain of the field can be expressed as
amplitudes have sinusoidal dependence on interaction time oo oy _
as in conventional micromasers. However, the dependence (M=rg*kX(n+1)0)=C((n)—ny), (73
on the number of photons is governed kyas (1+1)'°%  \yhich indicates this phenomenon.
moreover, a phase factor appears that depends upon the num-|n grder to realize our suggested scheme, we use the ex-
ber of photonsn, linearly. This phase shift provides a fre- parimental setup of Hennriadt al.[19]. We consider a cloud
quency shift to the emitted field spectra, as expressed in Egf yypidium atoms, cooled and stored in a magneto-optic
(72). A point to note is that this observed frequency shift isyap By means of an atomic fountain we control the atomic
associated only with the microlasers. _ dynamics in such a way that at one time there is only one
When the initial momentum of the atom is such that theyatom in the cavity. We take the vacuum Rabi frequency as
can support the transfer of just one photon from the atom i — 5 -5 MHz. We consider the atoms with a small veloc-
the field, that is,lo=1, the probability amplitudes, apart jy, component from 1 m/s to 1 cm/s, parallel to the cavity.
from the phase factor, are exactly the same as in the case g} 5 rubidium atom of mass 1.42.0~ 25 kg moving with a
micromasers. The only difference appears in the Rabi frege|ocity 0.01 m/s out of the above-mentioned range, the de
quency which reduces to half as compared with convennonaérog“e wavelength is 2 nm. In the Raman-Nath regime with
lasers and micromasers. This difference arises since an atogege parameters at hand we may find the periodic behavior

on its passage through the node of the optical field, is pushegd 5, average photon numbgr) with a period of 0.2 us.
towards the antinodes and thus reduces the probability am-

plitude in either of the emitted directions to half. Apart from
this slight difference, the microlaser for these values has an
average number of photoqdN) and cavity Q factor Qy, The authors submit their thanks to Professor Dr. Wolfgang
exactly similar to conventional micromasdrs6—18. The  P. Schleich for his kind hospitality at Abteilungrf@Quanten-
spectrum of the field, as expressed in E&f), is having an  physik, Universita Ulm, Germany, where part of this work
additional modulation which is again special to microlaserswas finished.
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