36 research outputs found

    Modelling virus and antibody dynamics during dengue virus infection suggests a role for antibody in virus clearance

    Get PDF
    Dengue is an infection of increasing global importance, yet uncertainty remains regarding critical aspects of its virology, immunology and epidemiology. One unanswered question is how infection is controlled and cleared during a dengue infection. Antibody is thought to play a role, but little past work has examined the kinetics of both virus and antibody during natural infections. We present data on multiple virus and antibody titres measurements recorded sequentially during infection from 53 Vietnamese dengue patients. We fit mechanistic mathematical models of the dynamics of viral replication and the host immune response to these data. These models fit the data well. The model with antibody removing virus fits the data best, but with a role suggested for ADCC or other infected cell clearance mechanisms. Our analysis therefore shows that the observed viral and antibody kinetics are consistent with antibody playing a key role in controlling viral replication. This work gives quantitative insight into the relationship between antibody levels and the efficiency of viral clearance. It will inform the future development of mechanistic models of how vaccines and antivirals might modify the course of natural dengue infection

    Genetic variants of MICB and PLCE1 and associations with non-severe dengue

    No full text
    BACKGROUND: A recent genome-wide association study (GWAS) identified susceptibility loci for dengue shock syndrome (DSS) at MICB rs3132468 and PLCE1 rs3740360. The aim of this study was to define the extent to which MICB (rs3132468) and PLCE1 (rs3740360) were associated with less severe clinical phenotypes of pediatric and adult dengue. METHODS: 3961 laboratory-confirmed dengue cases and 5968 controls were genotyped at MICB rs3132468 and PLCE1 rs3740360. Per-allele odds ratios (OR) with 95% confidence intervals (CI) were calculated for each patient cohort. Pooled analyses were performed for adults and paediatrics respectively using a fixed effects model. RESULTS: Pooled analysis of the paediatric and adult cohorts indicated a significant association between MICB rs3132468 and dengue cases without shock (OR  =  1.15; 95%CI: 1.07 - 1.24; P  =  0.0012). Similarly, pooled analysis of pediatric and adult cohorts indicated a significant association between dengue cases without shock and PLCE1 rs3740360 (OR  =  0.92; 95%CI: 0.85 - 0.99; P  =  0.018). We also note significant association between both SNPs (OR  =  1.48; P  =  0.0075 for MICB rs3132468 and OR  =  0.75, P  =  0.041 for PLCE1 rs3740360) and dengue in infants. DISCUSSION: This study confirms that the MICB rs3132468 and PLCE1 rs3740360 risk genotypes are not only associated with DSS, but are also associated with less severe clinical phenotypes of dengue, as well as with dengue in infants. These findings have implications for our understanding of dengue pathogenesis

    Evolution and spatio-temporal dynamics of Enterovirus A71 subgenogroups in Vietnam

    No full text
    BackgroundEnterovirus A71 (EV-A71) is the major cause of severe hand, foot and mouth disease and viral encephalitis in children across the Asia-Pacific region, including in Vietnam which has experienced a high burden of disease in recent years. Multiple subgenogroups (C1, C4, C5 and B5) concurrently circulate in the region with a large variation in epidemic severity. The relative differences in their evolution and epidemiology were examined within Vietnam and globally. MethodsA total of 752 VP1 gene sequences were analysed (413 generated in this study combined with 339 obtained from GenBank), collected from patients in 36 provinces in Vietnam during 2003andndash;2013 along with epidemiological metadata. Globally representative VP1 gene datasets of subgenogroups were used to co-estimate time-resolved phylogenies and relative genetic diversity to infer virus origins and regional transmission network. ResultsDespite frequent virus migration between countries, the highest genetic diversity of individual subgenogroups was maintained independently for several years in specific Asian countries representing genogroup-specific sources of EV-A71 diversity. ConclusionThis study highlights a persistent transmission network of EV-A71, with specific Asian countries seeding other countries in the region and beyond, emphasising the need for improved EV-A71 surveillance and detailed genetic and antigenic characterisation.</p

    Households as foci for dengue transmission in highly urban Vietnam.

    No full text
    BackgroundDengue control programs commonly employ reactive insecticide spraying around houses of reported cases, with the assumption that most dengue virus (DENV) transmission occurs in the home. Focal household transmission has been demonstrated in rural settings, but it is unclear whether this holds true in dense and mobile urban populations. We conducted a prospective study of dengue clustering around households in highly urban Ho Chi Minh City, Vietnam. MethodsWe enrolled 71 index cases with suspected dengue (subsequently classified as 52 dengue cases and 19 non-dengue controls); each initiated the enrollment of a cluster of 25-35 household members and neighbors who were followed up over 14 days. Incident DENV infections in cluster participants were identified by RT-PCR, NS1-ELISA, and/or DENV-IgM/-IgG seroconversion, and recent infections by DENV-IgM positivity at baseline. Principal findings/ conclusionsThere was no excess risk of DENV infection within dengue case clusters during the two-week follow-up, compared to control clusters, but the prevalence of recent DENV infection at baseline was two-fold higher in case clusters than controls (OR 2.3, 95%CI 1.0-5.1, p = 0.05). Prevalence of DENV infection in Aedes aegypti was similar in case and control houses, and low overall (1%). Our findings are broadly consistent with household clustering of dengue risk, but indicate that any clustering is at a short temporal scale rather than sustained chains of localized transmission. This suggests that reactive perifocal insecticide spraying may have a limited impact in this setting.</p

    Sensitivity and specificity of a novel classifier for the early diagnosis of dengue.

    No full text
    BackgroundDengue is the commonest arboviral disease of humans. An early and accurate diagnosis of dengue can support clinical management, surveillance and disease control and is central to achieving the World Health Organisation target of a 50% reduction in dengue case mortality by 2020. Methods5729 children with fever of &lt;72 hrs duration were enrolled into this multicenter prospective study in southern Vietnam between 2010-2012. A composite of gold standard diagnostic tests identified 1692 dengue cases. Using statistical methods, a novel Early Dengue Classifier (EDC) was developed that used patient age, white blood cell count and platelet count to discriminate dengue cases from non-dengue cases. ResultsThe EDC had a sensitivity of 74.8% (95%CI: 73.0-76.8%) and specificity of 76.3% (95%CI: 75.2-77.6%) for the diagnosis of dengue. As an adjunctive test alongside NS1 rapid testing, sensitivity of the composite test was 91.6% (95%CI: 90.4-92.9%). ConclusionsWe demonstrate that the early diagnosis of dengue can be enhanced beyond the current standard of care using a simple evidence-based algorithm. The results should support patient management and clinical trials of specific therapies.</p

    Sensitivity and specificity of a novel classifier for the early diagnosis of dengue.

    No full text
    BackgroundDengue is the commonest arboviral disease of humans. An early and accurate diagnosis of dengue can support clinical management, surveillance and disease control and is central to achieving the World Health Organisation target of a 50% reduction in dengue case mortality by 2020. Methods5729 children with fever of andlt;72 hrs duration were enrolled into this multicenter prospective study in southern Vietnam between 2010-2012. A composite of gold standard diagnostic tests identified 1692 dengue cases. Using statistical methods, a novel Early Dengue Classifier (EDC) was developed that used patient age, white blood cell count and platelet count to discriminate dengue cases from non-dengue cases. ResultsThe EDC had a sensitivity of 74.8% (95%CI: 73.0-76.8%) and specificity of 76.3% (95%CI: 75.2-77.6%) for the diagnosis of dengue. As an adjunctive test alongside NS1 rapid testing, sensitivity of the composite test was 91.6% (95%CI: 90.4-92.9%). ConclusionsWe demonstrate that the early diagnosis of dengue can be enhanced beyond the current standard of care using a simple evidence-based algorithm. The results should support patient management and clinical trials of specific therapies.</p
    corecore