27 research outputs found

    Rate-limiting transport of positively charged arginine residues through the Sec-machinery is integral to the mechanism of protein secretion

    Get PDF
    Transport of proteins across and into membranes is a fundamental biological process with the vast majority being conducted by the ubiquitous Sec machinery. In bacteria, this is usually achieved when the SecY-complex engages the cytosolic ATPase SecA (secretion) or translating ribosomes (insertion). Great strides have been made towards understanding the mechanism of protein translocation. Yet, important questions remain – notably, the nature of the individual steps that constitute transport, and how the proton-motive force (PMF) across the plasma membrane contributes. Here, we apply a recently developed high-resolution protein transport assay to explore these questions. We find that pre-protein transport is limited primarily by the diffusion of arginine residues across the membrane, particularly in the context of bulky hydrophobic sequences. This specific effect of arginine, caused by its positive charge, is mitigated for lysine which can be deprotonated and transported across the membrane in its neutral form. These observations have interesting implications for the mechanism of protein secretion, suggesting a simple mechanism through which the PMF can aid transport by enabling a 'proton ratchet', wherein re-protonation of exiting lysine residues prevents channel re-entry, biasing transport in the outward direction

    Fundamental and applied investigations into mycobacterial bioenergetics

    No full text
    From the war on drug resistance, through cancer biology, even to agricultural and environmental protection; there is a huge demand for rapid and effective solutions to infections and diseases. The development of small molecule inhibitors was once an accepted “one-size fits all” approach to these varied problems, but persistence and resistance threaten to return society to a pre-antibiotic era. Nowhere is this more apparent than the treatment and management of Mycobacterium tuberculosis (TB) infections. The extremely long therapy timeframes needed to clear persistent cells, followed by the advent of extensively and totally drug resistant infections, indicate a failure in the development and efficacy of antibiotics. Only 5 out of approximately 200 conserved essential bacterial targets are utilized, which are flawed by their bias toward growing cells. Recently, a medical revolution was instigated by the FDA approval of the antitubercular bedaquiline (BDQ), which is more effective than its rival therapeutics at clearing persister TB cells. This drug targets the F1Fo-ATP synthase and so classifies cellular energy generation as the 6th antibiotic target space. At the time of writing, this has been a medically valid target space for less than 5 years. There is understandably a huge paucity of information on function, scope and safety of both inhibitors and targets within this target-space. A multidisciplinary approach, encompassing chemical biology, bioinformatics, biochemistry and physiology, is used to understand both this new drug and a new target in TB bioenergetics; combining both fundamental and applied approaches in this space. Both strands of study reveal new ways in which the generation of the proton motive force (PMF) in persistent cells is both applicable to therapeutics and distinct from model systems. A uniquely strict regulation of PMF generation is argued to have tailored the physiology of the Mycobacterium genus for survival in hostile environments, in a way that is easily abusable by the avid drug-developer. Integration of this work with other recent studies is used to make an argument that all antibiotics kill bacteria by disrupting the PMF, extending the applicability of this target-space significantly. As a high profile and newly emerging field of research, with minimal room for error, strategies to improve our understanding of the efficacy and safety of these new antimicrobials are discussed

    Chemical synthesis of a pore-forming antimicrobial protein, caenopore-5, by using native chemical ligation at a glu-cys site.

    No full text
    The 2014 report from the World Health Organization (WHO) on antimicrobial resistance revealed an alarming rise in antibiotic resistance all around the world. Unlike classical antibiotics, with the exception of a few species, no acquired resistance towards antimicrobial peptides (AMPs) has been reported. Therefore, AMPs represent leads for the development of novel antibiotics. Caenopore-5 is constitutively expressed in the intestine of the nematode Caenorhabditis elegans and is a pore-forming AMP. The protein (82 amino acids) was successfully synthesised by using Boc solid-phase peptide synthesis and native chemical ligation. No γ-linked by-product was observed despite the use of a C-terminal Glu-thioester. The folding of the synthetic protein was confirmed by (1) H NMR spectroscopy and circular dichroism and compared with data recorded for recombinant caenopore-5. The permeabilisation activities of the protein and of shortened analogues were evaluated

    Two uptake hydrogenases differentially interact with the aerobic respiratory chain during mycobacterial growth and persistence

    No full text
    To persist when nutrient sources are limited, aerobic soil bacteria metabolize atmospheric hydrogen (H2). This process is the primary sink in the global H2 cycle and supports the productivity of microbes in oligotrophic environments. H2-metabolizing bacteria possess [NiFe] hydrogenases that oxidize H2 to subatmospheric concentrations. The soil saprophyte Mycobacterium smegmatis has two such [NiFe] hydrogenases, designated Huc and Hhy, that belong to different phylogenetic subgroups. Both Huc and Hhy are oxygen-tolerant, oxidize H2 to subatmospheric concentrations, and enhance bacterial survival during hypoxia and carbon limitation. Why does M. smegmatis require two hydrogenases with a seemingly similar function? In this work, we resolved this question by showing that Huc and Hhy are differentially expressed, localized, and integrated into the respiratory chain. Huc is active in late exponential and early stationary phases, supporting energy conservation during mixotrophic growth and transition into dormancy. In contrast, Hhy is most active during long-term persistence, providing energy for maintenance processes following carbon exhaustion. We also show that Huc and Hhy are obligately linked to the aerobic respiratory chain via the menaquinone pool and are differentially affected by respiratory uncouplers. Consistently, these two enzymes interacted differentially with the respiratory terminal oxidases. Huc exclusively donated electrons to, and possibly physically associated with, the proton-pumping cytochrome bcc-aa3 supercomplex. In contrast, the more promiscuous Hhy also provided electrons to the cytochrome bd oxidase complex. These results indicate that, despite their similar characteristics, Huc and Hhy perform distinct functions during mycobacterial growth and survival.</p

    Ionophoric effects of the antitubercular drug bedaquiline

    No full text
    Bedaquiline (BDQ), an inhibitor of the mycobacterial F1Fo-ATP synthase, has revolutionized the antitubercular drug discovery program by defining energy metabolism as a potent new target space. Several studies have recently suggested that BDQ ultimately causes mycobacterial cell death through a phenomenon known as uncoupling. The biochemical basis underlying this, in BDQ, is unresolved and may represent a new pathway to the development of effective therapeutics. In this communication, we demonstrate that BDQ can inhibit ATP synthesis in Escherichia coli by functioning as a H+/K+ ionophore, causing transmembrane pH and potassium gradients to be equilibrated. Despite the apparent lack of a BDQ-binding site, incorporating the E. coli Fo subunit into liposomes enhanced the ionophoric activity of BDQ. We discuss the possibility that localization of BDQ at F1Fo-ATP synthases enables BDQ to create an uncoupled microenvironment, by antiport-ing H+/K+. Ionophoric properties may be desirable in high-affinity antimicrobials targeting integral membrane proteins

    FAD-sequestering proteins protect mycobacteria against hypoxic and oxidative stress

    No full text
    The ability to persist in the absence of growth triggered by low oxygen levels is a critical process for the survival of mycobacterial species in many environmental niches. MSMEG_5243 (fsq), a gene of unknown function in Mycobacterium smegmatis, is up-regulated in response to hypoxia and regulated by DosRDosS/DosT, an oxygen- and redox-sensing two-component system that is highly conserved in mycobacteria. In this communication, we demonstrate that MSMEG_5243 is a flavin-sequestering protein and henceforth refer to it as Fsq. Using an array of biochemical and structural analyses, we show that Fsq is a member of the diverse superfamily of flavin- and deazaflavin-dependent oxidoreductases (FDORs) and is widely distributed in mycobacterial species. We created a markerless deletion mutant of fsq and demonstrate that fsq is required for cell survival during hypoxia. Using fsq deletion and overexpression, we found that fsq enhances cellular resistance to hydrogen peroxide treatment. The X-ray crystal structure of Fsq, solved to 2.7 Å, revealed a homodimeric organization with FAD bound noncovalently. The Fsq structure also uncovered no potential substrate-binding cavities, as the FAD is fully enclosed, and electrochemical studies indicated that the Fsq:FAD complex is relatively inert and does not share common properties with electron-transfer proteins. Taken together, our results suggest that Fsq reduces the formation of reactive oxygen species (ROS) by sequestering free FAD during recovery from hypoxia, thereby protecting the cofactor from undergoing autoxidation to produce ROS. This finding represents a new paradigm in mycobacterial adaptation to hypoxia.This work was supported by the Maurice Wilkins Centre for Molecular Biodiscovery and the Marsden Fund, Royal Society, New Zealand. This work was also supported by a University of Otago Doctoral Scholarship and a Sandy Smith Scholarship (to L. K. H.) and by a CSIRO OCE Postdoctoral Fellowship, ARC DECRA Fellowship DE170100310, and NHMRC New Investigator Grant APP1139832 (to C. G.). In addition, this work was supported by NHMRC Project Grant APP1128929 (to C. J. J., C. G., and G. M. C.)

    FAD-sequestering proteins protect mycobacteria against hypoxic and oxidative stress

    No full text
    The ability to persist in the absence of growth triggered by low oxygen levels is a critical process for the survival of mycobacterial species in many environmental niches. MSMEG_5243 (fsq), a gene of unknown function in Mycobacterium smegmatis, is up-regulated in response to hypoxia and regulated by DosRDosS/DosT, an oxygen- and redox-sensing two-component system that is highly conserved in mycobacteria. In this communication, we demonstrate that MSMEG_5243 is a flavin-sequestering protein and henceforth refer to it as Fsq. Using an array of biochemical and structural analyses, we show that Fsq is a member of the diverse superfamily of flavin- and deazaflavin-dependent oxidoreductases (FDORs) and is widely distributed in mycobacterial species. We created a markerless deletion mutant of fsq and demonstrate that fsq is required for cell survival during hypoxia. Using fsq deletion and overexpression, we found that fsq enhances cellular resistance to hydrogen peroxide treatment. The X-ray crystal structure of Fsq, solved to 2.7 Å, revealed a homodimeric organization with FAD bound noncovalently. The Fsq structure also uncovered no potential substrate-binding cavities, as the FAD is fully enclosed, and electrochemical studies indicated that the Fsq:FAD complex is relatively inert and does not share common properties with electron-transfer proteins. Taken together, our results suggest that Fsq reduces the formation of reactive oxygen species (ROS) by sequestering free FAD during recovery from hypoxia, thereby protecting the cofactor from undergoing autoxidation to produce ROS. This finding represents a new paradigm in mycobacterial adaptation to hypoxia.</p

    M. tuberculosis relies on trace oxygen to maintain energy homeostasis and survive in hypoxic environments

    No full text
    The bioenergetic mechanisms by which Mycobacterium tuberculosis survives hypoxia are poorly understood. Current models assume that the bacterium shifts to an alternate electron acceptor or fermentation to maintain membrane potential and ATP synthesis. Counterintuitively, we find here that oxygen itself is the principal terminal electron acceptor during hypoxic dormancy. M. tuberculosis can metabolize oxygen efficiently at least two orders of magnitude below the concentration predicted to occur in hypoxic lung granulomas. Despite a difference in apparent affinity for oxygen, both the cytochrome bcc:aa3 and cytochrome bd oxidase respiratory branches are required for hypoxic respiration. Simultaneous inhibition of both oxidases blocks oxygen consumption, reduces ATP levels, and kills M. tuberculosis under hypoxia. The capacity of mycobacteria to scavenge trace levels of oxygen, coupled with the absence of complex regulatory mechanisms to achieve hierarchal control of the terminal oxidases, may be a key determinant of long-term M. tuberculosis survival in hypoxic lung granulomas.</p

    M. tuberculosis relies on trace oxygen to maintain energy homeostasis and survive in hypoxic environments

    No full text
    Summary: The bioenergetic mechanisms by which Mycobacterium tuberculosis survives hypoxia are poorly understood. Current models assume that the bacterium shifts to an alternate electron acceptor or fermentation to maintain membrane potential and ATP synthesis. Counterintuitively, we find here that oxygen itself is the principal terminal electron acceptor during hypoxic dormancy. M. tuberculosis can metabolize oxygen efficiently at least two orders of magnitude below the concentration predicted to occur in hypoxic lung granulomas. Despite a difference in apparent affinity for oxygen, both the cytochrome bcc:aa3 and cytochrome bd oxidase respiratory branches are required for hypoxic respiration. Simultaneous inhibition of both oxidases blocks oxygen consumption, reduces ATP levels, and kills M. tuberculosis under hypoxia. The capacity of mycobacteria to scavenge trace levels of oxygen, coupled with the absence of complex regulatory mechanisms to achieve hierarchal control of the terminal oxidases, may be a key determinant of long-term M. tuberculosis survival in hypoxic lung granulomas
    corecore