3 research outputs found
A Search for various Double Beta Decay Modes of Cd, Te and Zn Isotopes
Various double beta decay modes of Cd, Zn and Te isotopes are explored with
the help of CdTe and CdZnTe semiconductor detectors. The data set is splitted
in an energy range below 1 MeV having a statistics of 134.5 gd and one
above 1 MeV resulting in 532 gd. No signals were observed in all
channels under investigation. New improved limits for the neutrinoless double
beta decay of Zn70 of (90% CL), the longest
standing limit of all double beta isotopes, and 0EC of Te120 of
(90% CL) are given. For the first time a
limit on the half-life of the 2ECEC of Te of (90% CL) is obtained. In addition, limits on 2ECEC for ground
state transitions of Cd106, Cd108 and Zn64 are improved. The obtained results
even under rough background conditions show the reliability of CdTe
semiconductor detectors for rare nuclear decay searches.Comment: Extended introduction and summar
Double Beta Decay
We review recent developments in double-beta decay, focusing on what can be
learned about the three light neutrinos in future experiments. We examine the
effects of uncertainties in already measured neutrino parameters and in
calculated nuclear matrix elements on the interpretation of upcoming
double-beta decay measurements. We then review a number of proposed
experiments.Comment: Some typos corrected, references corrected and added. A less blurry
version of figure 3 is available from authors. 41 pages, 5 figures, submitted
to J. Phys.
First results on double β-decay modes of Cd, Te, and Zn isotopes
Four 1-cm(3) CdZnTe semiconductor detectors were operated in the Gran Sasso National Laboratory to explore the feasibility of such devices for double beta-decay searches as proposed for the COBRA experiment. The research involved background studies accompanied by measurements of energy resolution performed at the surface. Energy resolutions sufficient to reduce the contribution of two-neutrino double beta-decay events to a negligible level for a large-scale experiment have already been achieved and further improvements are expected. Using activity measurements of contaminants in all construction materials a background model was developed with the help of Monte Carlo simulations and major background sources were identified. A total exposure of 4.34 kg center dot days of underground data have been accumulated allowing a search for neutrinoless double beta-decay modes of seven isotopes found in CdZnTe. Half-life limits (90% C.L.) are presented for decays to ground and excited states. Four improved lower limits have been obtained, including zero neutrino double electron capture transitions of Zn-64 and Te-120 to the ground state, which are 1.19x10(17) years and 2.68x10(15) years, respectively