1,523 research outputs found

    On a zero speed sensitive cellular automaton

    Get PDF
    Using an unusual, yet natural invariant measure we show that there exists a sensitive cellular automaton whose perturbations propagate at asymptotically null speed for almost all configurations. More specifically, we prove that Lyapunov Exponents measuring pointwise or average linear speeds of the faster perturbations are equal to zero. We show that this implies the nullity of the measurable entropy. The measure m we consider gives the m-expansiveness property to the automaton. It is constructed with respect to a factor dynamical system based on simple "counter dynamics". As a counterpart, we prove that in the case of positively expansive automata, the perturbations move at positive linear speed over all the configurations

    Generation of broad XUV continuous high harmonic spectra and isolated attosecond pulses with intense mid-infrared lasers

    Full text link
    We present experimental results showing the appearance of a near-continuum in the high-order harmonic generation (HHG) spectra of atomic and molecular species as the driving laser intensity of an infrared pulse increases. Detailed macroscopic simulations reveal that these near-continuum spectra are capable of producing IAPs in the far field if a proper spatial filter is applied. Further, our simulations show that the near-continuum spectra and the IAPs are a product of strong temporal and spatial reshaping (blue shift and defocusing) of the driving field. This offers a possibility of producing IAPs with a broad range of photon energy, including plateau harmonics, by mid-IR laser pulses even without carrier-envelope phase stabilization.Comment: 7 pages, 5 figures, submitted to J.Phys. B (Oct 2011

    Softening of the insulating phase near Tc for the photo-induced insulator-to-metal phase transition in vanadium dioxide

    Full text link
    We use optical-pump terahertz-probe spectroscopy to investigate the near-threshold behavior of the photoinduced insulator-to-metal (IM) transition in vanadium dioxide thin films. Upon approaching Tc a reduction in the fluence required to drive the IM transition is observed, consistent with a softening of the insulating state due to an increasing metallic volume fraction (below the percolation limit). This phase coexistence facilitates the growth of a homogeneous metallic conducting phase following superheating via photoexcitation. A simple dynamic model using Bruggeman effective medium theory describes the observed initial condition sensitivity.Comment: accepted for publication in Physical Review Letter

    Demonstration of the synchrotron-type spectrum of laser-produced Betatron radiation

    Get PDF
    Betatron X-ray radiation in laser-plasma accelerators is produced when electrons are accelerated and wiggled in the laser-wakefield cavity. This femtosecond source, producing intense X-ray beams in the multi kiloelectronvolt range has been observed at different interaction regime using high power laser from 10 to 100 TW. However, none of the spectral measurement performed were at sufficient resolution, bandwidth and signal to noise ratio to precisely determine the shape of spectra with a single laser shot in order to avoid shot to shot fluctuations. In this letter, the Betatron radiation produced using a 80 TW laser is characterized by using a single photon counting method. We measure in single shot spectra from 8 to 21 keV with a resolution better than 350 eV. The results obtained are in excellent agreement with theoretical predictions and demonstrate the synchrotron type nature of this radiation mechanism. The critical energy is found to be Ec = 5.6 \pm 1 keV for our experimental conditions. In addition, the features of the source at this energy range open novel perspectives for applications in time-resolved X-ray science.Comment: 5 pages, 4 figure

    Bright betatron x-ray radiation from a laser-driven-clustering gas target

    Get PDF
    Hard X-ray sources from femtosecond (fs) laser-produced plasmas, including the betatron X-rays from laser wakefield-accelerated electrons, have compact sizes, fs pulse duration and fs pump-probe capability, making it promising for wide use in material and biological sciences. Currently the main problem with such betatron X-ray sources is the limited average flux even with ultra-intense laser pulses. Here, we report ultra-bright betatron X-rays can be generated using a clustering gas jet target irradiated with a small size laser, where a ten-fold enhancement of the X-ray yield is achieved compared to the results obtained using a gas target. We suggest the increased X-ray photon is due to the existence of clusters in the gas, which results in increased total electron charge trapped for acceleration and larger wiggling amplitudes during the acceleration. This observation opens a route to produce high betatron average flux using small but high repetition rate laser facilities for applications

    Single shot phase contrast imaging using laser-produced Betatron x-ray beams

    Full text link
    Development of x-ray phase contrast imaging applications with a laboratory scale source have been limited by the long exposure time needed to obtain one image. We demonstrate, using the Betatron x-ray radiation produced when electrons are accelerated and wiggled in the laser-wakefield cavity, that a high quality phase contrast image of a complex object (here, a bee), located in air, can be obtained with a single laser shot. The Betatron x-ray source used in this proof of principle experiment has a source diameter of 1.7 microns and produces a synchrotron spectrum with critical energy E_c=12.3 +- 2.5 keV and 10^9 photons per shot in the whole spectrum.Comment: 3 pages, 3 figure

    Quasi-monoenergetic electron beams production in a sharp density transition

    No full text
    International audienceUsing a laser plasma accelerator, experiments with a 80 TW and 30 fs laser pulse demonstrated quasi-monoenergetic electron spectra with maximum energy over 0.4 GeV. This is achieved using a supersonic He gas jet and a sharp density ramp generated by a high intensity laser crossing pre-pulse focused 3 ns before the main laser pulse. By adjusting this crossing pre-pulse position inside the gas jet, among the laser shots with electron injection more than 40% can produce quasi-monoenergetic spectra. This could become a relatively straight forward technique to control laser wakefield electron beams parameters
    • …
    corecore